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ABSTRACT

This study is based on the article “Parameter Duration” Method for Solving Nonlinear Fred-

holm Integral Equations of the Second kind and is collected from the writings of Nineh and

Vitkha. In this paper, first, the Fredholm nonlinear integral equation of the second type is

solved using the parametric continuity method. Next, the parametric continuity method is

introduced to solve the turbulent nonlinear integral equation of the second type, which is an

extension of the paradoxical mapping method. Also, the parametric continuity method is ap-

plied to solve the nonlinear integral equation of the second type. Lastly, sample examples are

given to show the effectiveness and convenience of the parametric continuity method.

1 Introduction
The parametric continuity method is employed in Fredholm integral equations to find the answers to some of the
problems of change calculus. The main goal is to find the answer to the nonlinear equation that gives rise to the
problem of the calculus of variations. It is generally challenging to achieve an analytical approximation of com-
plex nonlinear problems. The expression for nonlinear problems is usually determined by the type of nonlinear
equations, and the convergence region of the answer series is heavily dependent on physical parameters. It is
well known that nonlinear problem analysis approximations become more ineffective as nonlinear properties be-
comemore complex, and turbulence approximations are correct only for nonlinear problems with weak nonlinear
properties. In this study, an analytical method for nonlinear problems is proposed named the parametric conti-
nuity method in Fredholm nonlinear integral equations and the homotopy analysis technique. It is revealed that
even if a nonlinear problem has a unique answer, it may have an infinite number of answers whose convergence
region and convergence rate depend on a certain parameter. Unlike all prior analysis methods, the homotopy
analysis technique provides a simple approach to control and regulate the convergence region and convergence
rate of solution series of nonlinear problems. Wazwaz et al. proposed the method of sequential approximation
of the linear and nonlinear integral equations of the function f(x), whose root is to be determined, are written as
af(x) =g(x) − x. The roots of the equation f(x) = 0 are the cross-sections of the function g(x) and the straight
line indicating the x. The iteration technique begins with giving the initial conjecture x0 to the procedure. The
result of the substitution of x0 in g(x), that is g(x0), is considered as the next conjecture.
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This procedure is repeated until two consecutive values are close enough to each other [1]. Ezzati and Najafal-
izadeh have developed polynomial approximation methods using various basic functions, including Chebyshev
and Legendre polynomials for the Bernoulli order functions. In modern decades, the use of continuous orthogo-
nal functions (including Legendre, Chebyshev, Hermit polynomials, etc.) to solve integral equations and integral
?differential equations has gained much attention. The central highlight of this method is that it transforms the
assumed equations into a system of algebraic equations. In these systems, the direct placement of the approxi-
mation expansion in the given equation along with the completion conditions is adopted [2]. Ninh [3, 4] has ex-
amined the parametric continuity method for solving second type operator equations with a sum of two operators
(Nineh, 2011). Vetekha [5] suggested the application of the parametric continuity method to solve the boundary
value problem for ordinary second-order differential equations (Vetekha, 2000). Nevertheless, the parametric
continuity method for the nonlinear integral equation of the second type has not been studied. In this study, the
application of the parametric continuity method to solve the Fredholm nonlinear integral equation in the second
type, in general, is investigated. Also, a parametric continuity method is introduced to solve the nonlinear Fred-
holm turbulent equations of the second type. This proposition can be considered as an extension. The point of
using the paradoxical mapping method and the parametric continuity method is to solve the Fredholm nonlinear
integral equation of the second type, which is obtained by comparing, calculating, and determining the error.

Fredholm’s nonlinear integral equation of the second type Here we consider the parametric conti-
nuity method for Fredholm’s integral equations. Hold the Voltra integral equation below.

x(t)=

∫ t

0
κ(t, s, x(s))ds+ f(t), t ∈ [0, T ] (1.1)

Where k:S × lR → lR , f : [0,T ] → lR are the given functions, and the set S is defined as

S={(t, s) : 0 ≤ s ≤ t ≤ T}.

Now consider Fredholm’s nonlinear integral:

x(t)=

∫ b

a
K(t, s, x(s))ds=f(t) a ≤ t ≤ b) (1.2)

WhereK(t, s, x) and f(t) are known functions and x(t) is an unknown function which we want to determine.

Theorem 1.1. Consider that the following terms are sufficient:

1) f(t) ∈ L2[a, b]

2) K(t, s, x)receives the terms of a Lipshitz of the following type:

|K(t, s, x)−K(t, s, y)| ≤ |ϕ(t, s)||x− y|

For a ≤ t, s ≤ band for every real x, y, where ever∫ b

a

∫ b

a
|ϕ(t, s)|2dsdt=L2<∞
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3) K(t, s, x)meets the conditions.∫ b

a
{
∫ b

a
[K(t, s, x(s))−K(t, s, y(s))]ds}[x(t)− y(t)]dt ≥ 0

Then, Fredholm’s nonlinear integral equation of the second type has a unique solution.

x(t) ∈ L2[a, b]

Theorem 1.2. Assume that the conditions of Theorem 1 are sufficient. Then, the sequence of approximate
solutions {x(n,N)(t)} ≡ xn(t),n= 1, 2, ... formed by iterative processes converges with the exact solution x(t) ∈
L2[a, b] of Fredelm’s nonlinear integral Equation. Besides, the following estimates are available.

∥x(n,N)(t)− x(t)∥ ≤ qn+1

1− q

eq
N − 1

eq − 1
∥f(t)∥ (1.3)

WhereN is the least natural number that q= L
N< 1,n= 1, 2, ... holds.

Consider the following peripheral problems.

Problem 1.1. (One step with parameter ε). Consider Fredholm’s nonlinear integral equation:

x(t) + ε0(Fx)(t)=f(t) (1.4)

Since the operator ε0F is a paradoxical operatorwith the shrinkage coefficient q< 1, it is concluded that equation
(??) is a x(ε0)(t)unique solution for every f(t) ∈ L2[a, b]. Approximate solutions of equation (??) are obtained
as a result of the standard iteration process.

xi+1(t)=− ε0(Fxi)(t) + f(t). i= 0, 1, 2, ...x0(t)=f(t) (1.5)

According to the paradoxical mapping principle we have:

∥xn(t)− x(ε0)(t)∥ ≤ qn

1− q
∥x1(t)− x0(t)∥

Since (F0)(t) = 0:

∥x1(t)− x0(t)∥=∥ − ε0(Ff)(t) + f(t)− f(t)∥=∥ε0(Ff)(t)− ε0(F0)(t)∥ ≤ q∥f(t)∥

Therefore, the approximate error xn(t) of problem (??) gives

∆1(n) ≡ ∂1(n) ≡ ∥xn(t)− x(ε0)(t)∥ ≤ µ(n)

Where

µ(n) =
qn+1

1− q
∥f(t)∥ (1.6)
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Problem 1.2. (step to of parameter ) Consider Fredholm’s nonlinear integral equation:

x(t) + 2ε0(Fx)(t)=f(t) (1.7)

Here, we have a change of the variable:

x(1)(t)=x(t) + ε0(Fx)(t) ≡ (G1x)(t) (1.8)

This equation has a unique solution for every x(??)(t) ∈ L2[a, b]. For example, the operatorG−1
1 is determined in

the entire L2[a, b] space.

Proof. Because of the uniformity of operator F, operator G has a continuous Lipshitz coefficient equal to 1. In fact,
for every x(??)(t).x(??)(t) ∈ L2[a, b]we have:

∥(G−1
1 x(1))(t)− (G−1

1 x(1))(t)∥=∥x(t)− x(t)∥
≤ ∥x(t)− x(t) + ε0[(Fx)(t)− (Fx)(t)]∥
=∥x(1)(t)− x(1)(t)∥

After the change of variable in equation (??), equation (??) is rewritten as:

(G2x
(1))(t) ≡ x(1)(t) + ε0(FG−1

1 x(1))(t)=f(t) (1.9)

The operator ε0FG−1
1 is a paradoxical operator with a shrinkage coefficient of q< 1. Thus, equation (??) has a

unique solution for every f(t) ∈ L2[a, b] . Hence, equation (??) has a unique solution x(2ε0)(t) for every f(t) ∈
L2[a, b] . The approximate solutions of the integral equation (??) are obtained as a result of the standard iteration
process.

x
(1)
(j+1)(t)=− ε0(FG−1

1 x
(1)
j )(t) + f(t) j= 0, 1, 2, . . . .x

(1)
0 (t)=f(t) (1.10)

Meanwhile, in every step of a higher iteration process, the standard iteration process will be used again when
calculating G−1

1 x(??)j (t) .

xi+1(t)=− ε0(Fxi)(t) + x
(1)
j (t). i= 0, 1, 2, ....x0(t)=x

(1)
j (t) (1.11)

Hence, the approximate solution of the equation (??) can be obtained by below steps:

xi+1(t)=− ε0(Fxi)(t) + x
(1)
j (t). i= 0, 1, 2, ..

x
(1)
(j+1)(t)=− ε0(FG−1

1 x
(1)
j )(t) + f(t) j= 0, 1, 2, ....x

(1)
0 (t)=f(t)

(1.12)

G−1
1 x(??)j )(t) values are obtained using the 11-iteration process with error µ(n). Since ε0F is a paradoxical operator

with a shrinkage coefficient of q< 1, error µ(n) when determaining the operator argument ε0Fequals qµ(n) when
determining the right side of f(t) in equation (??). On the other hand, the operatorG−1

2 has a continuous Lipshitz
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coefficient equalling 1. Based on theorem (??), for every f(t),f(t) ∈ L2[a, b] we have:

∥(G−1
2 f)(t)− (G−1

2 f)(t)∥=∥x(1)(t)− x(1)(t)∥
=∥x(t)− x(t) + ε0[(Fx)(t)− (Fx)(t)]∥
≤ ∥x(t)− x(t) + 2ε0[(Fx)(t)− (Fx(1))(t)]∥
=∥x(1)(t)− x(1)(t) + ε0[(FG−1

1 x(1))(t)− (FG−1
1 x(1))(t)]∥=∥f(t)− f(t)∥

Therefore, the insertion of error qµ(n) in the right side of the equation (3-10) leads to the production of an error
higher than qµ(n) in the corresponding x(??)(t) solution. The error of an iteration process in the calculation of
x(??)(t) is qn

1−q∥x
(??)
1 (t)− x(??)0 (t)∥, since (F0)(t)= 0 , we have (G10)(t) = 0(t) + ε0(F0)(t) = 0. Therefore:

∥x(1)1 (t)− x
(1)
0 (t)∥=∥ − ε0(FG−1

1 f)(t) + f(t)− f(t)∥
=∥ε0(FG−1

1 f)(t)− ε0(FG−1
1 0)(t)∥

≤ q∥f(t)∥

Then, the error of an iteration process in the calculation of x(??)(t) is qn+1

1−q ∥f(t)∥=µ(n).
Therefore,

∂2(n) ≡ ∥x(1)n (t)− x(1)(t)∥ ≤ qµ(n) + µ(n) =q∂1(n) + µ(n)

Inverse switching, that is the change from variable x(??)(t) to variable x(t), again introduces the error µ(n). There-
fore, the errors of the approximate solutions of xn(t)in problem (??) give the following estimation:

∆2(n) =∥xn(t)− x(2ε0)(t)∥ ≤ qµ(n) + 2µ(n) =∂2(n) + ∂1(n)

By using similar arguments for the problem k:x(t) + kε0(Fx)(t) =f(t),k ∈ [1,N ], the estimation can be obtained.

�K(n)=∥xn(t)− x(kε0)(t)∥ ≤ ∂k(n) + ∂k−1(n) + ...+ ∂1(n) (1.13)

Where
∂h(n) ≤ q[∂h−1(n) + ...+ ∂1(n)] + µ(n), 1 ≤ h ≤ k (1.14)

This relation should be rewritten as:

∂k(n) ≤ µ(n) + q

k−1∑
h−1

∂h(n).∂1(n) ≤ µ(n) k= 2, 3, ...N (1.15)

By using the discrete analog of the well-known Bellman-Gronwall theorem for inequality 5, we have:

∂k(n) ≤ µ(n)

k−1∏
h−1

(1 + q) ≤ µ(n)

k−1∏
h−1

eq =µ(n) eq(k−1), k= 1, 2, 3, ...N

Hence, the error 14 estimations for the problem (k) can be written as:

∆K(n) =∥xn(t)− x(kε0)(t)∥ ≤
k∑

h−1

∂h(n) ≤ µ(n)
k∑

h−1

eq(k−1) = µ(n)
ekq − 1

eq − 1
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By replacing N with K, the proof finishes.

Fredholm’s turbulent nonlinear integral equation of the second type
In this part, the parametric continuity method is proposed for solving non-linear turbulence.
The second type of Fredholm integral equation is as follows.

x(t)=

∫ b

a
K(t, s, x(s))ds+

∫ b

a
K1(t, s, x(s))ds=f(t) a ≤ t ≤ b (1.16)

Where k(t, s, x).k1(t, s, x) and f(t) are known functions and x(t) is an unknown function that is to be determined.
Now, Fredholm’s turbulence nonlinear integral equation of the second type (??) will be examined under the

following hypotheses.

1.f(t) ∈ L2[a, b]

2. k(t, s, x) receives the following Lipshitz condition.

|K(t, s, x)−K(t, s, y)| ≤ |ϕ(t, s)||x− y|

For every a ≤ t, s ≤ band every x, y within where∫ b

a

∫ b

a
|ϕ(t, s)|2dsdt=L2<∞

3. k(t, s, x) satisfies the following condition.∫ b

a
{
∫ b

a
[k(t, s, x(s))− k(t, s, y(s))]ds}[x(t)− y(t)]dbt ≥ 0

4. k1(t, s, x) satisfies the following condition.

|k1(t, s, x)− k1(t, s, y)| ≤ |ϕ(t, x)||x− y|

For every a ≤ t, s ≤ b and every real x, y within, we have∫ b

a

∫ b

a
|ϕ(t, s)|2dsdt=B2, B< 1

F 1, F 2 need to be defined in L2[a, b].

(Fx)(t) =

∫ b

a
k(t, s, x(s))ds, (F1x)(t) =

∫ b

a
k1(t, s, x(s))ds

It can be concluded from terms (??) and (??) that the operator F is uniform and is continuous Lipshitz with
Lipshitz coefficient equal to L (see the proof of Theorem 3).
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Based on the term (??), for every x(t),y(t) ∈ L2[a, b] we have

|(F1x)(t)− (F1y)(t)|=|
∫ b
a [k1(t, s, x(s))− k1(t, s, y(s))]ds|
≤

∫ b
a |k1(t, s, x(s))− k1(t, s, y(s))|ds

≤
∫ b
a |ϕ(t, s)||x(s)− y(s)|ds

By using the Cauchy-Schwartz inequality we have:

∥(F1x)(t)− (F1y)(t)∥2=
∫ b
a |(F1x)(t)− (F1y)(t)|2dt
≤

∫ b
a

∫ b
a |ϕ(t, x)|2dsdt

∫ b
a |x(s)− y(s)|2ds=B2∥x− y∥2

Therefore,
∥(F1x)(t)− (F1y)(t)∥ ≤ B∥x− y∥

Since B< 1, F 1 is a paradoxical operator with a shrinkage coefficient of q=B< 1. A minimum natural numberN
is obtained so that q=ε0L< 1,ε0=

1
N . Equation (??) can be rewritten as:

x(t) +Nε0(Fx)(t) + (F1x)(t)=f(t) (1.17)

Consider the following peripheral problems.
Problem 3. (N=1) Consider the following Fredholm’s turbulent nonlinear integral equation.

x(t) + ε0(Fx)(t) + (F1x)(t)=f(t) (1.18)

A change of variable should be done:

x(1)(t)=x(t) + ε0(Fx)(t)=(G1x)(t) (1.19)

For every x(t),x(t) ∈ L2[a, b] we have:

∥ε0(Fx)(t)− ε0(Fx)(t)∥ ≤ ε0L∥x(t)− x(t)∥=q∥x(t)− x(t)∥

Hence, ε0F is a paradoxical operation with a shrinkage coefficient q=ε0L< 1.
Then, the equation (??) has a unique solution for every x(??)(t) ∈ L2[a, b].
For example, the operator (G−1

1 x(1))(t) is determined in the entireL2[a, b] space andmakes the operator F uniform.
The operator G−1

1 is a continuous Lipshitz with a Lipshitz coefficient of 1. In fact, for every x(??)(t),x(??)(t) ∈
L2[a, b]we have:

∥(G−1
1 x(1))(t)− (G−1

1 x(1))(t)∥=∥x(t)− x(t)∥
≤ ∥x(t)− x(t) + ε0[(Fx)(t)− ε0(Fx)(t)∥
=∥x(1)(t)− x(1)(t)∥

After the change of variable in equation (??), the equation (??) is represented as:

(Ax(1))(t)=x(1)(t) + (F1G
−1
1 x(1))(t)=f(t) (1.20)
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For every x(??)(t),x(??)(t) ∈ L2[a, b] we have:

∥(F1G
−1
1 x(1))(t)− (F1G

−1
1 x(1))(t)∥ ≤ q∥(G−1

1 x(1))(t)− (G−1
1 x(1))(t)∥

≤ q∥x(1)(t)− x(1)(t)∥

Thus, F1G
−1
1 is a paradoxical operator with a shrinkage coefficient of q< 1. Then, the integral equation (4-5)

has a unique solution for every f(t) ∈ L2[a, b]. Therefore, equation (??) has a unique solution x(ε0)(t) for every
f(t) ∈ L2[a, b]. The approximate solutions of the equation (??) are obtained using the standard iteration process.

x
(1)
(j+1)(t) =− (F1G

−1
1 x

(1)
j )(t) + f(t). j= 0, 1, 2, ...x

(1)
0 (t) =f(t)

Meanwhile, in every higher iteration step of calculating the (G−1
1 x

(1)
j )(t)value, the standard iteration will be used

twice.
xi+1(t) =− ε0(Fxi)(t) + x

(1)
j (t) , i= 0, 1, 2, ...x0(t) =x

(1)
j (t)

As a result, approximate solutions of the integral equation (??) can be found by iterative processes.

xi+1(t)=− ε0(Fxi)(t) + x
(1)
j (t) , i= 0, 1, 2, ...

x
(1)
j+1)(t)=− (F1G

−1
1 x

(1)
j )(t) + f(t). j= 0, 1, 2, ...x

(1)
0 (t)=f(t)

(1.21)

Problem 4. (N=2) considers the following Fredholm’s turbulent nonlinear integral equation.

x(t) + 2ε0(Fx)(t) + (F1x)(t)=f(t) (1.22)

Two change of variables should be done:

x(1)(t) =x(t) + å0(Fx)(t) ≡ (G1x)(t)

x(2)(t)=x(1)(t) + ε0(FG−1
1 x(1))(t) ≡ (G2x

(1))(t)
(1.23)

For every x(??)(t)Hx(??)(t) ∈ L2[a, b] we have

∥ε0(FG−1
1 x(1))(t)− ε0(FG−1

1 x(1))(t)∥ ≤ ε0L∥x(1)(t)− x(1)(t)∥
=q∥x(1)(t)− x(1)(t)∥

Therefore, ε0F1G
−1
1 is a Contraction operator with a shrinkage coefficient of q< 1. Therefore, the integral equation

x(??)(t) + ε0(FG−1
1 x(1))(t) =x(??)(t) has a unique solution for every x(??)(t) ∈ L2[a, b]. Meaning that the Operator

G−1
2 is determined in the entire L2[a, b] space. For every x(??)(t)x(??)(t) ∈ L2[a, b] we have:

∥(G−1
2 x(2))(t)− (G−1

2 x(2))(t)∥ =∥x(1)(t)− x(1)(t)∥
=∥x(t)− x(t) + ε0[(Fx)(t)− (Fx)(t)]∥ ≤ ∥x(t)− x(t) + 2ε0[(Fx)(t)− (Fx)(t)∥
=∥x(1)(t)− x(1)(t) + ε0[(FG−1

1 x(1))(t)− (FG−1
1 x(1))(t)]∥=∥x(2)(t)− x(2)(t)∥

Therefore, the operator G−1
2 is continuous Lipshitz using a continuous Lipshitz coefficient of 1. After the change

of variables, equation (??) can be rewritten as:

(A2x
(2))(t) ≡ x(2)(t) + (F1G

−1
1 G−1

2 x(2))(t)
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≡ f(t) (1.24)

For every x(??)(t)Hx(??)(t) ∈ L2[a, b] we have:

∥(F1G
−1
1 G−1

2 x(2))(t)− (F1G
−1
1 G−1

2 x(2))(t)∥ ≤ q∥x(2)(t)− x(2)(t)∥

Therefore, F1G
−1
1 G−1

2 is a paradoxical operator with a shrinkage coefficient q< 1. Then, the equation (3-9) has
a unique solution for every f(t) ∈ L2[a, b]. Therefore, equation (??) has a unique solution x(2ε0)(t) for every
f(t) ∈ L2[a, b]. Approximate solutions of equation (??) are obtained using the standard iteration process.

x(2)
l+1

(t) =− (F1G
−1
1 G−1

2 x
(2)
l )(t) + f(t),l= 0, 1, 2, ....x

(2)
0 (t) =f(t)

Meanwhile, we will use ” auxiliary function” iterative processes to invert operators. G1.G2At each stage of this
iteration process is the value of a. Hence, approximate solutions of the integral equation (??) can be found by
iterative processes.

x i+1(t)=− ε0(Fx i)(t) + x(1)
j
(t). i= 0, 1, 2, ...

x(1)
j+1

(t)=− ε0(FG−1
1 x

(1)
j )(t) + x

(2)
l (t).j= 0, 1, 2, . . .

x(2)
l+1

(t) =− (F1G
−1
1 G−1

2 x
(2)
l )(t) + f(t),l= 0, 1, 2, ....x

(2)
0 (t) =f(t)

Problem N (N>2). Consider the following Fredholm’s turbulent nonlinear integral equation.

x(t) +Nε0(Fx)(t) + (F1x)(t) ≡ x(t) + (Fx)(t) + (F1x)(t)=f(t) (1.25)

N change of variables should be done.

x(1)(t) =x(t) + ε0(Fx)(t) ≡ (G1x)(t)

x(2)(t) =x(1)(t) + ε0(FG−1
1 x(1))(t) ≡ (G2x

(1)(t)

. . . .....

x(N)(t) =x(N−1)(t) + ε0(FG−1
1 ...G−1

N−1x
(N−1))(t) ≡ (GNx(N−1)(t)

Using a similar method, it will be shown that operators G−1
3 ....G−1

N are determined at the entire space L2[a, b]and
are continuous Lipshitz with Lipshitz coefficients of 1. Therefore, after the change of variables, equation (??) is
rewritten as:

(ANx(N))(t) ≡ x(N)(t) + (F1G
−1
1 ...G−1

N x(N))(t)=f(t) (1.26)

For every x(N)(t),x(N)(t) ∈ L2[a, b] we have

∥(F1G
−1
1 ...G−1

N x(N))(t)− (F1G
−1
1 ...G−1

N x(N))(t)∥ ≤ q∥(x(N))(t)− (x(N))(t)∥

Therefore, F1G
−1
1 ...G−1

N is a paradoxical operator with a shrinkage coefficient of q< 1. Then, equation (??) has
a unique solution for every f(t) ∈ L2[a, b]. Therefore, equation (??) has a unique solution x(Nε0)(t) ≡ x(t) ∈
L2[a, b] for every f(t) ∈ L2[a, b]. Approximate solutions of equation (??) are obtained using the standard iteration
process.

x(N)
P+1

(t)=− (F1G
−1
1 ...G−1

N x
(N)
P )(t) + f(t). p= 0, 1, 2, ...x

(N)
0 (t)=f(t) (29) (1.27)

Meanwhile, the iteration processes of the ”auxiliary known function” will be used to reverse the operators.
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At each step of this process, G1.G2....GN is the value of (G−1
1 G−1

2 ...G−1
N x

(N)
P )(t). Therefore, the approximate

solutions of equation (??) can be obtained using the iteration process.

x i+1(t) =− ε0(Fx i)(t) + x(1)
j
(t). i= 0, 1, 2, ...

x(1)
j+1

(t)=− ε0(FG−1
1 x

(1)
j )(t) + x

(2)
l (t). j= 0, 1, 2, . . .

......

x(N)
P+1

(t)=− (F1G
−1
1 ...G−1

N x
(N)
P )(t) + f(t). p= 0, 1, 2, ...x

(N)
0 (t) =f(t)

This equation can be rewritten as:

xi+1(t) =− 1
N (Fxi)(t)− 1

N (Fxj)(t)− ...− 1
N (Fxlt)(t)?N conditions

−(F1xp)(t) + f(t),

i, j, ..., p= 0, 1, ...

Based on the results obtained we have the following theorem.
Theorem 3. Provided that terms (??) to (??) are satisfied, Fredholm’s turbulent nonlinear integral equation

(4-1) has a unique solution x(t) ∈ L2[a, b].
Proof. As shownearlier, operatorsF1G

−1
1 , F1G

−1
1 G−1

2 , ..., F1G
−1
1 ...G−1

N are paradoxical operatorswith a shrink-
age coefficient q< 1. Thus, equation (??) that equals equation (??) has a unique solution for every f(t) ∈ L2[a, b]

and the proof is fulfilled.
Theorem 3. The conditions of theorem (??) must be met. In that case, the series of approximate solutions

{x(n,N)(t) }, n= 1, 2, .... made as a result of the iteration processes (??) converges to the exact solution x(t) ∈
L2[a, b] of Fredholm’s turbulent nonlinear integral equation (4-1). Besides, the following estimations hold.

∥x(n,N)(t)− x(t)∥ ≤ 1

1− q
[
qn−1

1− q

1− qn+1

1− q

eq
N − 1

eq − 1
+ qn+1]∥f(t)∥ (31) (1.28)

Where N is the minimum natural number such that q= 1
N<1 q=B< 1,n= 1, 2, .....

Proof. For simplicity, we assume that (F0)(t) =
∫ b
a k(t, s, 0)ds= 0 and (F10)(t) =

∫ b
a k1(t, s, 0)ds= 0 where

0(t) = 0 represents the element zero inL2[a, b]. If (F0)(t) ̸= 0 or (F10)(t) ̸= 0, two operatorsT, T1:L
2[a, b]−→ L2[a, b]

can be defined:
(Tx)(t) = (Fx)(t)− (F0)(t) =

∫ b
a [k(t, s, x(s))− k(t, s, 0)]ds,

(T1x)(t) = (F1x)(t)− (F10)(t) =
∫ b
a [k1(t, s, x(s))− k1(t, s, 0)]ds,

Then, (T0)(t) = (T1x)(t) = 0 and Fredholm’s turbulent nonlinear integral equation (4-1) equals

x(t) +

∫ b

a
Q(t, s, x(s))ds+

∫ b

a
Q1(t, s, x(s))ds=g(t), a ≤ t ≤ b,

Where
Q(t, s, x(s)) =k(t, s, x(s))− k(t, s, 0),

Q1(t, s, x(s)) =k1(t, s, x(s))− k1(t, s, 0)

g(t) =f(t)−
∫ b

a
k(t, s, 0)ds−

∫ b

a
k1(t, s, 0)ds,
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Plus, for every a ≤ t, s ≤ b and every x, y available, we have:

Q(t, s, x)− Q(t, s, y)=k(t, s, x)− k(t, s, y);

Q1(t, s, x)− Q1(t, s, y) =k1(t, s, x)− k1(t, s, y)

Thus, functions g(t),Q(t, s, x) . Q1(t, s, y)meet the conditions of theorem (??). It is necessary to consider that the
consequent problems 1, 2, , N are the approximate solutions of problem (??) are obtained by iteration processes.
(G−1

1 x
(1)
j )(t) are obtained using the iteration process.

x i+1(t) =− ε0(Fx i)(t) + x(1)
j
(t). i= 0, 1, 2, ....x0(t) =x(1)

j
(t)

With error

∥xn(t)− x∗(t)∥ ≤ qn+1

1− q
∥x(1)

j
(t)∥

For every k ∈ {1, 2, ...n} we have

∥x(1)
k
(t)− x(1)

k−1
(t)∥=∥(F1G

−1
1 x

(1)
k−1)(t)− (F1G

−1
1 x

(1)
k−2)(t)∥

≤ q∥x(1)k−1(t)− x
(1)
k−2(t)∥ ≤ ... ≤ qk−1∥x(1)l (t)− x(1)

0
(t)∥.

Such that
∥x(1)l (t)∥ ≤ ∥x(1)j (t)− x

(1)
j−1(t)∥+ ...+ ∥x(1)l (t)− x(1)

0
(t)∥+ ∥x(1)

0
(t)∥

≤ (qj−1 + qj−2 + ...+ q + 1)∥x(1)l (t)− x(1)
0
(t)∥+ ∥x(1)

0
(t)∥

≤ 1−qj

1−q ∥x
(1)
l (t)− x(1)

0
(t)∥+ ∥x(1)

0
(t)∥

Since (F0)(t) = 0 we have (G10)(t) = 0(t) + ε0(F0)(t) = 0. Therefore,

∥x(1)l (t)− x(1)
0
(t)∥=∥(F1G

−1
1 x

(1)
0 )(t) + f(t)− x(1)

0
(t)∥

=∥(F1G
−1
1 f)(t)− (F1G

−1
1 0)(t)∥

≤ q∥f(t)∥

Then it is concluded from the above inequality:

∥x(1)l (t)∥ ≤ 1−qj

1−q ∥x
(1)
l (t)− x(1)

0
(t)∥+ ∥x(1)

0
(t)∥ ≤ q 1−qj

1−q ∥f(t)∥+ ∥f(t)∥
≤ q 1−qn

1−q ∥f(t)∥+ ∥f(t)∥=1−qn+1

1−q ∥f(t)∥

Hence, (G−1
1 x

(1)
j )(t) values are obtained with error.

∆1(n) ≡ ∂1(n) ≡ ∥xn(t)− x∗(t)∥ ≤ µ(n)

Where

µ(n)=
qn+1

1− q

1− qn+1

1− q
∥f(t)∥ (1.29)

Since F1 is a paradoxical operator with a shrinkage coefficient q< 1, the error∆1(n)in determining the argument
of the operator F1 is q∆1(n)by determining the right side of f(t) in the equation (4-4). Plus, the operator A−1

1 is
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continuous Lipshitz and the Lipshitz coefficient is 1
1−q . In fact, for every f(t).f(t) ∈ L2[a, b] we have:

∥(A−1
1 f)(t)− (A−1

1 f)(t)∥=∥x(1)(t)− x(1)(t)∥
=∥x(1)(t)− x(1)(t) + (F1G

−1
1 x(1))(t)− (F1G

−1
1 x(1))(t)− [(F1G

−1
1 x(1))(t)− (F1G

−1
1 x(1))(t)]∥

≤ ∥x(1)(t)− x(1)(t) + (F1G
−1
1 x(1))(t)− (F1G

−1
1 x(1))(t)∥+ ∥(F1G

−1
1 x(1))(t)− (F1G

−1
1 x(1))(t)∥

≤ ∥(A1x
(1))(t)− (A1x

(1))(t)∥+ q∥x(1)(t)− x(1)(t)∥
=∥(f)(t)− (f)(t)∥+ q∥x(1)(t)− x(1)(t)∥

Therefore,

∥(A−1
1 f)(t)− (A−1

1 f)(t)∥ ≤ 1

1− q
∥f(t)− f(t)∥

Hence, the replacement of error q∆1(n) in the right side of the equation (4-4) produces an error higher than q
1−q in

the corresponding solution x(??)(t). The error of a repetition process in the calculation of x(??)(t) is qn+1

1−q ∥f(t)∥.
Therefore,

∥x(1)n (t)− x(1)(t)∥ ≤ q

1− q
∆1(n) +

qn+1

1− q
∥f(t)∥.

A reverse multiplication, like a change of variable from x(??)(t) to x(t) again, introduces the error ∆1(n). Then,
the errors of the approximate solutions xn(t) of problem (??) are estimated.

∥xn(t)− x(ε0)(t)∥ ≤ q
1−q∆1(n) + ∆1(n) +

qn+1

1−q ∥f(t)∥
= 1

1−q∆1(n) +
qn+1

1−q ∥f(t)∥

The approximate solution of problem (??) is obtained by the repetition process. Values (G−1
1 G−1

2 x
(2)
l )(t) are cal-

culated by using the iteration process:

x i+1(t) =− ε0(Fx i)(t) + x(1)
j
(t). i= 0, 1, 2, ...x0(t) =x(1)

j
(t).

With error

∥xn(t)− x∗(t)∥ ≤ qn+1

1− q
∥x(1)j (t)∥.

We have
∥x(1)j (t)∥ ≤ ∥x(1)

j
(t)− x(1)

j−1
(t)∥+ ...+ ∥x(1)1 (t)− x

(1)
0 (t)∥+ ∥x(1)0 (t)∥

Since the operator G−1
2 is continuous Lipshitz with a Lipshitz coefficient of 1,

∥x(1)
k
(t)− x(1)

k−1
(t)∥=∥(G−1

2 x
(2)
k )(t)− (G−1

2 x
(2)
k−1)(t)∥ ≤ ∥x(2)k (t)− x

(2)
k−1(t)∥

For every k ∈ {1, 2, ...,n}. Therefore,

∥x(1)j (t)∥ ≤ ∥x(2)
j
(t)− x(2)

j−1
(t).∥+ ...+ ∥x(2)1 (t)− x

(2)
0 (t)∥+ ∥x(2)0 (t)∥
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For every k ∈ {1, 2, ...,n} we have:

∥x(2)
k
(t)− x(2)

k−1
(t)∥=∥(F1G

−1
1 G−1

2 x
(2)
k−1)(t)− (F1G

−1
1 G−1

2 x
(2)
k−2)(t)∥

≤ q∥x(2)k−1(t)− x
(2)
k−2(t)∥ ≤ ... ≤ qK−1∥x(2)

1
(t)− x

(2)
0 (t)∥

Therefore,
∥x(1)j (t)∥ ≤ (qj−1 + qj−2 + ...+ q + 1)∥x(2)1 (t)− x

(2)
0 (t)∥+ ∥x(2)0 (t)∥

≤ 1−qj

1−q ∥x
(2)
1 (t)− x

(2)
0 (t)∥+ ∥x(2)0 (t)∥

Since (F0)(t) = 0 and (G10)(t) = 0(t) + ε0(F0)(t) = 0

And (G20)(t) = 0(t) + ε0(FG−1
1 0)(t) = 0

Therefore,
∥x(2)1 (t)− x

(2)
0 (t)∥=∥(F1G

−1
1 G−1

2 f)(t) + f(t)− f(t)∥
=∥(F1G

−1
1 G−1

2 f)(t)− (F1G
−1
1 G−1

2 0)(t)∥
≤ q∥f(t)∥

Hence,
∥x(1)j (t)∥ ≤ 1−qj

1−q ∥x
(2)
1 (t)− x

(2)
0 (t)∥+ ∥x(2)0 (t)∥ ≤ q 1−qj

1−q ∥f(t)∥+ ∥f(t)∥
≤ q 1−qn

1−q ∥f(t)∥+ ∥f(t)∥=1−qn+1

1−q ∥f(t)∥

Therefore, the values of (G−1
1 x

(1)
j )(t)are estimated with error:

∥xn(t)− x∗(t)∥ ≤ qn+1

1− q

1− qn+1

1− q
∥f(t)∥ =µ(n)

Since ε0F is a paradoxical operator with a shrinkage coefficient of q< 1, the error µ(n) in the determination of
the argument of the operator ε0Fequals the error qµ(n). In the determination of the right side of x2(t)in the
equation, x1(t) + ε0(FG−1

1 x1)(t) =x2(t) the operator G−1
2 is continuous Lipshitz with a Lipshitz coefficient of 1.

The multiplication of the error qµ(n) from the right side of the equation x1(t) + ε0(FG−1
1 x1)(t) =x2(t) produces

an error qµ(n) higher than the corresponding solution x1(t). The iteration process error in the calculation x1(t)is
qn+1

1−q ∥x
2
l (t)∥ for every l ∈ {1, 2, ...,n} we have

∥x(2)l (t)∥ ≤ ∥x(2)l (t)− x
(2)
l−1(t)∥+ ...+ ∥x(2)1 (t)− x

(2)
0 (t)∥+ ∥x(2)0 (t)∥

≤ (ql−1 + ql−2 + ...+ q + 1)∥x(2)1 (t)− x
(2)
0 (t)∥+ ∥x(2)0 (t)∥

≤ 1−ql

1−q ∥x
(2)
1 (t)− x

(2)
0 (t)∥+ ∥x(2)0 (t)∥

≤ q 1−ql

1−q ∥f(t)∥+ ∥f(t)∥
≤ q 1−qn

1−q ∥f(t)∥+ ∥f(t)∥=1−qn+1

1−q ∥f(t)∥

Then, the error of an iteration process in the calculation of x1(t) equals µ(n). Therefore,

∂2(n) ≡ ∥x(1)n (t)− x(1)(t)∥ ≤ qµ(n) + µ(n) =q∂1(n) + µ(n)

The change of variable from x1(t) to x(t) again produces the error µ(n). Thus (G−1
1 G−1

2 x
(2)
l )(t) is calculated with

the error:
∆2(n) =∥xn(t)− x∗(t)∥ ≤ qµ(n) + 2µ(n) =∂2(n) + ∂1(n)
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Since F1 is a paradoxical operator with a shrinkage coefficient q< 1, the error ∆2(n) in the determination of the
argument of the operator F1 equals the error q∆2(n) in the determination of the right side f(t) of the equation
(3-9). On the other hand, the operatorA−1

2 continuous Lipshitz with a 1
1−q correlation coefficient. Because in fact,

for every f(t).f(t) ∈ L2[a, b]we have

∥(A−1
2 f)(t)− (A−1

2 f)(t)∥ = ∥x(??)(t)− x(??)(t)∥
= ∥x(??)(t)− x(??)(t) + (F1G

−1
1 G−1

2 x(2))(t)

−(F1G
−1
1 G−1

2 x(2))(t)− [(F1G
−1
1 G−1

2 x(2))(t)− (F1G
−1
1 G−1

2 x(2))(t)]∥
≤ ∥x(??)(t)− x(??)(t) + (F1G

−1
1 G−1

2 x(2))(t)− (F1G
−1
1 G−1

2 x(2))(t)∥
+∥(F1G

−1
1 G−1

2 x(2))(t)− (F1G
−1
1 G−1

2 x(2))(t)∥
≤ ∥(A2x

(2))(t)− (A2x
(2))(t)∥+ q∥x(??)(t)

−x(??)(t)∥
= ∥f(t)− f(t)∥+ q∥x(??)(t)− x(??)(t)∥

Therefore,

∥(A−1
2 f)(t)− (A−1

2 f)(t)∥ ≤ 1

1− q
∥f(t)− f(t)∥

Thus, the mistaken replacement of q∆2(n)in the right side of the equation (4-9) produces an error higher than
q

1−q∆2(n) produced by the corresponding solution x2(t). The error of an iteration process in the calculation of

x2(t)is qn+1

1−q ∥f(t)∥. Therefore, we have:

∥x(2)n (t)− x(2)(t)∥ ≤ q

1− q
∆2(n) +

qn+1

1− q
∥f(t)∥

A change variations from x2(t) to x(t) produces the error ∆2(n) again. Then, the error of approximate solutions
x n(t) of problem (??) is estimated.

∥xn(t)− x(2ε0)(t)∥ ≤ q
1−q∆2(n) + ∆2(n) +

qn+1

1−q ∥f(t)∥
= 1

1−q∆2(n) +
qn+1

1−q ∥f(t)∥

By using a similar argument for the problem k:x(t) + kε0(Fx)(t) + (F1x)(t) =f(t),k ∈ [1,N ] the estimation is
obtained.

∥xn(t)− x(Kε0)(t)∥ ≤ 1

1− q
�K(n) +

qn+1

1− q
∥f(t)∥ (1.30)

Where
�k(n) ≤ ∂k(n) + ∂k−1(n) + ...+ ∂1(n) (1.31)

And
∂h(n) ≤ q[∂h−1(n) + ...+ ∂1(n)] + µ(n), 1 ≤ h ≤ k (1.32)

Which can be rewritten as:

∂k(n) ≤ µ(n) + q

k−1∑
h=1

∂h(n).∂1(n) ≤ µ(n), k= 2, 3, ...,N (1.33)
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Now see the discrete analog feature of the well-known Bekkman-Gronwall analogy [13, theorem 1]. We obtain
from inequality 36:

∂k(n) ≤ µ(n)

k−1∏
h=1

(1 + q) ≤ µ(n)

k−1∏
h=1

eq=µ(n)eq(k−1).k= 1, 2, ...,N

Therefore, (??) can be rewritten as:

∆k(n) ≤
k∑

h=1

∂h(n) ≤ µ(n)
k∑

h=1

eq(h−1)=µ(n)
ekq − 1

eq − 1

Thus, the error estimation 33 for problem k can be rewritten as:

∥xn(t)− x(kε0)(t)∥ ≤ 1

1− q
µ(n)

ekq − 1

eq − 1
+

qn+1

1− q
∥f(t)∥

By replacing N by k and from equation (??) we obtain (??). This completes the proof of the theorem.
Numerical examples (practical works) of Fredholm’s integral equations

Example 1. Consider the following Fredholm’s equation:

x(t) +

∫ π

0
cos(t) cos(x) x(s)ds= sin(t) + (1 +

π

2
)cos(t) , 0 ≤ t ≤ π,

Which has the exact solution of x(t) = sin(t) + cos(t) .
In this example, we have k(t, s, x(s) = cos(t)cos(x)x(s)and f(t) = sin(t) + (1 + π

2 )cos(t).
Proof.

Table 1. approximate values and If simply f(t) ∈ L2[0,π], for t, s ∈ [0,π] for every x, y we have

|k(t, s, x(s))− k(t, s, y(s))|=|cos(t)cos(x)x(s)− cos(t)cos(x)y(s)|
=|cos(t)cos(x)||x(s)− y(s)|

Where ∫ b

a

∫ b

a
|Q(t, s)|2dsdt=

∫ π

0

∫ π

0
cos2(t)cos2(s)dsdt=

π2

4
=L2<∞;

And ∫ π
0 {

∫ π
0 [k(t, s, x(s)− k(t, s, y(s)]ds}|x(t)− y(t)|dt

=
∫ π
0 {

∫ π
0 cos(t)cos(s)[x(s)− y(s)]ds}|x(t)− y(t)|dt

= (
∫ π
0 cos(t)[x(t)− y(t)]dt)2 ≥ 0

Therefore, functions f(t),k(t, s, x) satisfy the terms of the third theorem. By executing the iteration process with
N= 2 we have:

xi+1(t) = −1
2

∫ π
0 cos(t)cos(s)xi(s)ds+ x

(1)
j (t). i = {0, 1, 2, ...}

x(1)
j+1

(t) = −1
2

∫ π
0 cos(t)cos(s)G−1

1 x
(1)
j (s)ds+ sin(t) + 1 + π

2 cos(t),j = {0, 1, 2, ..., }
x
(1)
0 (t) = sin(t) + 1 + π

2 cos(t),

Where (G1x)(t) =x(t) + 1
2

∫ π
0 cos(t)cos(s)x(s)ds=x(??)(t). By choosing n= 20 (the steps of each iteration is the
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Homotopy analysis method Parametric continuity method Exact solution T
Absolute error Approximate solution Absolute error Approximate solution
4.342384× 10−3 1.004328417 4.342384× 10−3 1.004342384 1 0

3.748526× 10−3 1.369773930 3.760616× 10−3 1.369786020 1.366025404 π/6

3.060663× 10−3 1.417274225 3.70529 ×10−3 1.417284091 1.414113562 π/3

1 0 1 1 π/2

2.164213× 10−3 0.363861191 2.171192× 10−3 0.363854212 0.366025404 2π/3

3.060661× 10−3 -0.003060661 3.070529× 10−3 0.003070529- 0 3π/3

3.748528× 10−3 -0.369773932 3.760616× 10−3 0.369786020- 0.366025404- 5π/6

4.328427 ×10−3 -1.004328427 4.3423848× 10−3 1.004342384- -1 π

Table 1: Absolute errors for some points in example 1

same and equals 20) the approximate values and absolute errors at some points are t ∈ [0,π]. The presentation
and comparison of the results using the homotopy analysis method considering n= 20 is given in table (??).

It is worth noting that the table reveals that the results obtained using the Parametric continuitymethod belong
t ∈ [0,π] similar to the homotopy analysis method.

Note 1. The estimation error for each known ∂ can find the number of iteration, for example, such that
∥x(n,N)(t)− x(t)∥ ≤ ∂. In example (??), if ∂= 1.02× 10−5, the iteration number is 3969 (the number of steps at
each iteration plan is the same and equals n= 63).

Problem 1.3. Consider the following Fredholm’s turbulent nonlinear integral equation.

x(t) +
9

2

∫ 1

0
ts?x(s)ds+

2

3

∫ 1

0
tcos(x(s))ds=

√
t+

7 + 20sin(1) + 20cos(1)

15
t

With 0 <t ≤ 1with the exact solution x(t) =
√
t.

In this example, we have: f(t) =7+20sin(??)+20cos(??)
15 t and k(t, s, x(s) =9

2 ts x(s), k1(t, s, x(s) =
2
3 tcos(x(s) ).

Proof. To prove that f(t) ∈ L2[0, 1] is simple. For t, s ∈ [0, 1] for every x, y we have:

|k(t, s, x(s)− k(t, s, y(s)|=|9
2
ts x(s)− 9

2
ts y(s)|=|9

2
ts|| x(s)− y(s)|

Where
∫ b
a

∫ b
a |ϕ(t, s)|2dsdt=

∫ 1
0

∫ 1
0
81
4 t

2s2dsdt=9
4=L2<∞,

And ∫ 1
0 {

∫ 1
0 [k(t, s, x(s)− k(t, s, y(s)]ds}|x(t)− y(t)|dt

=
∫ 1
0 {

∫ 1
0

9
2 ts[x(s)− y(s)]ds}|x(t)− y(t)|dt

=9
2

∫ 1
0 t(x(t)− y(t))dt

∫ 1
0 s(x(s)− y(s)]ds=9

2(
∫ 1
0 t[x(t)− y(t)2 ≥ 0

Plus
|k1(t, s, x(s))− k1(t, s, y(s))|=|23 tcos(x(s))−

2
3 tcos(y(s))|

=|23 t||cos(x(s))− cos(y(s))|
≤ |23 t||x(s)− y(s)|.

The approximate solutions and the corresponding errors of the parametric continuationmethod are given in table
(??),
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Error The approximate solution N
0.1591747838 0.2205240321986× 10−3t+

√
t 20

0.8963691179× 10−2 0.124238398349× 10−3t+
√
t 30

0.2832576447× 10−3 0.635113898× 10−6t+
√
t 50

Table 2: The approximate solutions of the example (??)

Where ∫ b

a

∫ b

a
|ϕ(t, s)|2dsdt=

∫ 1

0

∫ 1

0

4

9
t2dsdt=

4

27
=B2<∞, B=

2
√
3

9
< 1

Therefore, functions f(t),k(t, s,��),k1(t, s, x) express the assumptions of the fourth chapter. By running the
iteration process (14-4) for N= 2 we have:

x i+1(t) =− 9
4

∫ 1
0 ts xi(s)ds+ x

(1)
j (t),i= 0, 1, 2, ...

x(1)
j+1

(t) =− 9
4

∫ 1
0 ts (G

−1
1 x

(1)
j )(s)ds+ x

(2)
j (t),j= 0, 1, 2, ...

x
(2)
l+1(t) =− 2

3

∫ 1
0 tcos((G

−1
1 G−1

2 x
(2)
l )(s))ds+

√
t+ 7+20sin(1)+20cos(1)

15 t

l= 0, 1, 2, ...x
(2)
0 (t) =

√
t+ 7+20sin(1)+20cos(1)

15 t

Where

(G1x)(t) =x(t) +
9

4

∫ 1

0
ts x(s)ds=x(1)(t)

And

(G2x
(1))(t) =x(1)(t) +

9

4

∫ 1

0
ts (G−1

1 x(1))(s)ds=x(2)(t)

Table (??) shows the available approximate solutions and corresponding errors. For errors obtained using itera-
tive processes and error estimates we have N= 2, n= 20, 30, 50.

Note 2. From the error estimation, we infer that

∥x(n,N)(t)− x(t)∥ ≤ C(N)αn+1

Where

α= max[q, q],C[N ] = [
1

(1− q)(1− q)2
eq

N − 1

eq − 1
+ 1]∥f(t)∥

For each δ given, the iteration number can be obtained where ∥x(n,N)(t) − x(t)∥ ≤ ∂. In the second example, if
δ= 0.009, the number of iterations is 29791 (the number of steps for each pattern is the same and equals 31).

Conclusion
The convergence problem of the step-by-step parametric continuity method with an arbitrary degree and arbi-
trary smoothness for Fredelm’s integral equations of the second type has been open for several years. In this
paper, we prove the convergence and degree of convergence of step-by-step parametric continuity methods for
Fredholm integral equations under completely algebraic conditions based solely on the smoothness and order of
the parameters. The stability of the parametric continuity method in Fredholm integral equations of the second
type was studied by the applied method. If the conditions of convergence theorems are not met, the step-by-step
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interpolation process is generally unstable. The technique used is based on estimating the expansion coefficient
in the proposed functions. Taylor and Lagrange’s expansions are successfully studied using step-by-step meth-
ods. Excellent degree convergence can be obtained in numerical methods to solve these equations. This operation
can be done using the parametric continuity method with special grading. Fredholm integral equations are not
dependent on the Volta integral equations.
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