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ABSTRACT

Fuzzy Volterra integral equations, especially the second kind is interested for researchers

to be solved with numerical methods since analytical methods are not applicable. Here a

new study based on Fibonacci polynomials collocation method in order to solve them is in-

troduced. Some properties of these polynomials are considered to implement a collocation

method in order to approximate the solution of Fuzzy Volterra integral equations of the sec-

ond kind. The existence and uniqueness of the solution also convergence and error analysis of

proposed method are proved thoroughly. The results showed the calculations of the method

are simple and low cost.

1 Introduction
Fuzzy systems have been used in a various of problems ranging from fuzzy metric spaces [1], fuzzy topological

spaces [2], control chaotic systems [3, 4], fuzzy differential equations [5, 6, 7] and particle physics [8, 9, 10, 11].
The topics of fuzzy integral equations (FIE) which attracted growing interest for some times in relation with fuzzy
control, have been developed in recent years.
The concept of integration of fuzzy functions was firstly introduced by Dubois and Prade [12]. Alternative ap-
proaches were later suggested by Goetschel and Voxman [13], Kaleva [14], Matloka [15], Seikkala [16].
Recently, some numerical methods have been introduced to solve fuzzy integral equation of the second kind in
one-dimensional space FIE-2. For instance Babolian et al [17] used the Adomian decomposition method (ADM)
to solve Fredholm fuzzy integral equations of the second kind (FFIE-2). Also Allahviranloo et al [18] applied the
homotopy perturbation method for solving fuzzy Volterra integral equations (FVIE). Allahviranloo et al [19] ob-
tained numerical solution of FFIE-2 by modified trapezoidal method. Allahviranloo and Behzadi [20] used airfoil
and Chebyshev polynomials methods to solve fuzzy Fredholm integro-differential equations with Cauchy kernel.
After Mirzaee and hosieni [21] solved systems of linear Fredholm integro-differential equations with Fibonacci
polynomials. Besides Behzadi et al [22] used fuzzy collocation methods for solving second–order fuzzy Abel–
Volterra integro–differential equations. Mirzaee and hosieni [30] solved a class of Fredholm–Volterra integral
equations in two-dimensional spaces by Fibonacci collocation method. Recently Paripour and Kamyar [36] used
new basis functions to solve nonlinear Volterra-Fredholm integral equations.

In this work, we use the Fibonacci polynomials collocation method in order to find a solution for the Fuzzy
Volterra integral equations of the second kind. The existence and uniqueness of this solution are proved to remove
hesitation about the method. Also convergence and error analysis of proposed method are examined thoroughly.
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The results showed the calculations of themethod respect to others are simple and low cost indeed. The rest of
the paper is organized as follows: In Section 2, the basic notations and concepts of fuzzy numbers, fuzzy functions
and fuzzy integrals have been illustrated. In Section 3, we point out some properties of the Fibonacci polynomials
and collocation method which is used for solving Fuzzy Volterra integral equations of the second kind. In Section
4, existence and uniqueness of the solution, convergence and error analysis of the proposedmethod are discussed.
In Section 5, numerical results with the exact solution for some examples have been compared.

2 Preliminaries
In this section the basic definitions of a fuzzy calculus is as follows.

Definition 2.1. [23] A fuzzy number is a fuzzy set u : R1 −→ I = [0, 1]which satisfies

(i) u is upper semicontinuous.

(ii) u(x) = 0 outside some interval [c, d].

(iii) There are real numbers a,b: c ≤ a ≤ b ≤ d for which

(1) u(x) is monotonic increasing on [c, d],

(2) u(x) is monotonic decreasing on [b, d],

(3) u(x) = 1, a ≤ x ≤ b.

The set of all fuzzy numbers is denoted by E1. An equivalent definition or parametric form of fuzzy numbers
which yields the same E1 is given by Kaleva [19].

Definition 2.2. [17] An arbitrary fuzzy number in parametric form is represented by an ordered pair of func-
tions (u(α), u(α)), 0 ≤ α ≤ 1, which satisfy the following requirements:

(1) u(α) is a bounded monotonic increasing left continuous function,

(2) u(α) is a bounded monotonic decreasing left continuous function,

(3) u(α) ≤ u(α), 0 ≤ α ≤ 1.

Lemma 2.1. [20] Suppose (u(r), ū(r)), 0 ≤ r ≤ 1 is a given family of non-empty intervals. If

(1) (u(r1), ū(r1)) ⊇ (u(r2), ū(r2)) for 0 ≤ r1 ≤ r2 ≤ 1.
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(2) (limk→∞ u(rk), limk→∞ ū(rk)) = (u(r), ū(r)), whenever {rk} is a non-decreasing converging sequence con-
verges to 0 ≤ r ≤ 1,

then the family (u(r), ū(r)), 0 ≤ r ≤ 1, represent the r-cut sets of a fuzzy number u ∈ E1.
On the contrary, suppose (u(r), ū(r)), 0 ≤ r ≤ 1, are the r-cut sets of a fuzzy number u ∈ E1, then the conditions
(1) and (2) hold.

Definition 2.3. [18] For arbitrary u = (u(α), u(α)) , v = (v(α), v(α)) and k ∈ R, we define addition and multi-
plication by k as follows:

(u+ v(α)) = (u(α) + v(α)),

(u+ v(α)) = (u(α) + v(α)),

(ku(α)) = ku(α), (ku(α)) = ku(α) if k ≥ 0,

(ku(α)) = ku(α), (ku(α)) = ku(α) if k < 0.

Definition 2.4. [26] For arbitrary ũ = (u, u) , ṽ = (v, v) the distance between u, v is define as follows:

D(u, v) = sup
0≤α≤1

max{|u(α)− v(α)|, |u(α)− v(α)|} (2.1)

and also metric space (D,E1) is a complete metric space [25], and the following properties are well known:

D(ũ+ w̃, ṽ + w̃) = D(ũ, ṽ), ∀ũ, ṽ ∈ E

D(kũ, kṽ) = |k|D(ũ, ṽ), ∀k ∈ R, ũ, ṽ ∈ E

D(ũ+ ṽ, w̃ + ẽ) ≤ D(ũ, w̃ +D(ṽ, ẽ)), ∀ũ, ṽ, w̃, ẽ ∈ E

Definition 2.5. [27] Consider ũ, ṽ ∈ E. If there exist w̃ ∈ E such that ũ = ṽ+ w̃ then w̃ is called the H-difference
of ũ and ṽ, and is denoted by ũ⊖ ṽ.

Definition 2.6. [22] The mapping f̃ : T → E for some interval T is called a fuzzy process. Therefore, its
α–level set can be written as follows:

[f(t)]α = [fα
−(t), f

α
+(t)]

Definition 2.7. [22] Let f̃ : T → E be Hukuhara differentiable and denote by [f(t)]α = [fα
−, f

α
+]. Then, the

boundary functions fα
− and fα

+ are differentiable (or Seikkala differentiable) and

[f ′(t)]α = [(fα
−)

′(t), (fα
+)

′(t)], t ∈ T, α ∈ [0, 1].
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3 Fuzzy integral equations
The fuzzy Fredholm integral equation of the second kind is displayed as follows:

ũ(s) = f̃(s) + λ

∫ b

a
k(s, t)ũ(t)dt, a ≤ s ≤ b, (3.1)

If the kernel function satisfies

k(s, t) = 0, s > t,

we obtain the fuzzy Volterra integral equation

ũ(s) = f̃(s) + λ

∫ s

a
k(s, t)ũ(t)dt, s ≥ a, (3.2)

where ũ(s) and f̃(s) are fuzzy functions on [a, b] and k(s, t) is an arbitrary kernel function over [a, b]× [a, b], λ is a
crisp constant and u is unknown on [a, b] [24].

4 The Fibonacci polynomials and collocation method
4.1 The Fibonacci polynomials and their properties

A sequence of polynomials is a Fibonacci polynomials, {Fn(x)}, are defined by the recursion

Fn+2(x) = xFn+1 + Fn(x); n ≥ 1

with initial values F1(x) = 1 and F2(x) = x.

Definition 4.1. [21] For any positive real number k, the k−Fibonacci sequence, say {Fk,n}n∈N is defined re-
currently by

Fk,n+1 = kFk,n + Fk,n+1, n ≥ 1

with initial conditions

Fk,0 = 0, Fk,1 = 1.

The Fibonacci polynomials are given by the explicit formula

Fn+1(x) =

⌊n
2
⌋∑

i=0

(
n− i

i

)
xn−2i, n ≥ 0, (4.1)
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where ⌊n2 ⌋ denotes the greatest integer in
n
2 .

Note that F2n(0) = 0 and x = 0 is the only real root, while F2n+1(0) = 1 with no real roots. Also for x = k ∈ N , we
obtain the elements of the k-Fibonacci sequence [26].
The Fibonacci polynomials have generating function [27]

G(x, t) =
t

1− t2 − tx
=

∞∑
n−1

Fn(x)t
n = t+ xt2 + (x2 + 1)t3 + (x3 + 2x)t4 + . . . .

The Fibonacci polynomials are normalized so that Fn(1) = Fn, where the Fn is the nth Fibonacci number.
The equation for the Fibonacci polynomials can be written in matrix form as

F (x) = BX(x),

where F (x) = [F1(x), F2(x), . . . , FN+1(x)]
T , X(x) = [1, x, x2, . . . , xN ]T , and B is the lower triangular matrix with

entrances the coefficients appearing in expansion of Fibonacci polynomials in increasing powers of x, for example,
for N = 6 we have 

1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 2 0 1 0 0 0

1 0 3 0 1 0 0

0 3 0 4 0 1 0

1 0 6 0 5 0 1


.

Note that in martixB the non–zero entrances construct precisely the diagonals of the pascal triangle and the sum
of the elements in the same row gives the classical Fibonacci sequence. In addition, matrix B is invertible. So xn

may be written as linear of Fibonacci polynomials [31].
These expansions are given in closed form in theorem as follows

Theorem 4.1. [31] For every integer n ≥ 1, xn−1 may be written in a unique way as linear combination of the
n first Fibonacci polynomials as

xn−1 =

⌊n
2
⌋∑

i=0

(−1)i
[(

n

i

)
−
(

n

i− 1

)]
Fn−2i(x), where

(
n

−1

)
= 0.

4.2 Description of the method

In this section the equation (3.2) is solved using the Fibonacci polynomials and collocation method.
To obtain the approximation solution of (3.2) we can write
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y(x) =
N+1∑
n=1

cnFn(x), 0 ≤ a ≤ x ≤ b, (4.2)

where cn, n = 1, 2, . . . , N+1, are unknown Fibonacci coefficients,N is an arbitrary positive integer and Fn(x), n =

1, 2, . . . , N + 1 are Fibonacci polynomials. The aim of the method is to get solution as Fibonacci series defined by

ũ ∼= ũN =
N+1∑
n=1

cnFn(s) = F (s)C, (4.3)

where cn, n = 1, 2, . . . , N + 1 are unknown Fibonacci coefficients,

C = [c1, c2, . . . , cN+1]
T ,

F (s) = [F1(s), F2(s), . . . , FN+1(s)]
T ,

where N is an arbitrary positive integer.

5 Existence and Uniqueness of the solution and Error analysis
In this section, uniqueness and existence of the solution are proved. Then error in the method is illustrated.

Theorem 5.1. In the Equation (3.2), assume that f̃(s), s ∈ [a, b] is a fuzzy continuous function and k(s, t) is
continuous for s ∈ [a, b]. Moreover, assume that
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p = max
a≤s≤b

D(ũ(s), 0̃) ,

M = max
a≤s,t≤b

| k(s, t) | .

If L = M(b− a)ap < 1, then the integral equation (3.2) has a unique solution.

Proof. At first, we investigate the conditions of the Banach fixed point principle.
We define the operatorK : X → X by

K(ũ(s)) = f̃(s) +

∫ s

a
k(s, t)ũ(t)dt, s ∈ [a, b].

We show that the operatorK is uniformly continuous. Since f̃(s) is continuous on compact set of [a, b], we deduce
that it is uniformly continuous and hence for ϵ1 > 0, there exists δ1 > 0 such that

D(f̃(s1), f̃(s2)) < ϵ1, whenever | s1 − s2 |< δ1, s1, s2 ∈ [a, b].

As described above, k(s, t) also is uniformly continuous, thus for ϵ2 > 0, exists δ2 > 0 such that

| k(s1, t)− k(s2, t) |< ϵ2, whenever | s1 − s2 |< δ1, s1, s2 ∈ [a, b].

Take δ = min{δ1, δ2}, therefore we have

D(K(ũ(s1)),K(ũ)(s2)) =

D

(
f̃(s1) +

∫ s

a
k(s1, t)ũ(t)dt, f̃(s2) +

∫ s

a
k(s2, t)ũ(t)dt

)
,

(5.1)

by using Definition (2.4), we have
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D(K(ũ(s1)),K(ũ(s2))) ≤

D(f̃(s1), f̃(s2)) +D

(∫ s

a
k(s1, t)ũ(t)dt,

∫ s

a
k(s2, t)ũ(t)dt

)
≤

ϵ1 + max
s∈[a,b]

{
sup

0≤α≤1

∣∣∣∣∫ s

a
k(s1, t)u(t)dt−

∫ s

a
k(s2, t)u(t)dt

∣∣∣∣, sup
0≤α≤1

∣∣∣∣∫ s

a
k(s1, t)u(t)dt−

∫ s

a
k(s2, t)u(t)dt

∣∣∣∣} ≤

ϵ1 + max
s∈[a,b]

{
sup

0≤α≤1

∫ s

a
| k(s1, t)− k(s2, t) || u(t) | dt, sup

0≤α≤1

∫ s

a
| k(s1, t)− k(s2, t) || u(t)dt |

}
≤

ϵ1 + ϵ2

∫ s

a
(ũ(t), 0̃)dt ≤ ϵ1 +Mϵ2,

now let ϵ1 = ϵ and ϵ2 =
ϵ
M , then we derive

D(K(ũ(s1)),K(ũ(s2))) ≤ ϵ,

this show that K is uniformly continuous for any ũ(s), and so continuous on [a, b], and hence K(X) ⊂ X. Now,
we prove that the operatorK is contraction map. So, for ũ1(s), ũ2(s) ⊂ X and s ∈ [a, b], now

D(K(ũ1)(x), ũ2)(x)) ≤ D

(∫ s

a
k(s, t)ũ1(t)dt,

∫ s

a
k(s, t)ũ2(t)dt

)
.

By using Definition (2.4), we have

D(K(ũ1)(s), ũ2)(s)) ≤

max
s∈[a,b]

{
sup

0≤α≤1

∣∣∣∣∫ s

a
k(s, t)u1(t)dt−

∫ s

a
k(s, t)u2(t)dt

∣∣∣∣, sup
0≤α≤1

∣∣∣∣∫ s

a
k(s, t)u1(t)dt−

∫ s

a
k(s, t)u2(t)dt

∣∣∣∣} ≤

max
s∈[a,b]

{
sup

0≤α≤1

∣∣∣∣∫ s

a
| k(s, t) || u1(t)− u2(t) | dt

∣∣∣∣, sup
0≤α≤1

∣∣∣∣∫ s

a
| k(s, t) || u1(t)− u2(t) | dt

∣∣∣∣} ≤

M

∫ s

a
D(ũ1(t), ũ2(t))dt+M

∫ s

a
D(ũ1(t), ũ2(t))dt ≤

2M

∫ s

a
D(ũ1, ũ2)dt,

and thus according to the above,K is the contraction on the Banach space. Consequently, the Banach fixed point
principle implies that Equation (3.2) has a unique solution inX.

Theorem 5.2. According to the assumptions of the theorem (5.1), the series solution of the Equation (3.2) using
Fibonacci polynomials method converges.

Proof. Let the ũm(s) and ũn(s), are the approximate(with m > n) of Equation (3.2). By using Equation (4.3) we
can write
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ũm(s) =
m∑
i=1

Fi(s)Ũi,

ũn(s) =

n∑
i=1

Fi(s)Ũi.

Assume ũm(s) and ũn(s) be two arbitrary partial sums with m > n. Now, we are going to prove that ũm(s) is a
Cauchy sequence in Banach spaceX.

D(ũm(s), ũn(s)) ≤ D

((∫ s

a
k(s, t)ũm(t)dt

)
,

(∫ s

a
k(s, t)ũm(t)dt

))
.

Then

D(ũm(s), ũn(s)) ≤

D

((∫ s

a
k(s, t)

m∑
i=1

Fi(t)Ũidt

)
,

(∫ s

a
k(s, t)

n∑
i=1

Fi(t)Ũidt

))
=

max
s∈[a,b]

{
sup

0≤α≤1

∣∣∣∣∫ k(s, t)

m∑
i=1

Fi(t)U idt−
∫

k(s, t)

n∑
i=1

Fi(t)U idt

∣∣∣∣,
sup

0≤α≤1

∣∣∣∣∫ k(s, t)

m∑
i=1

Fi(t)U idt−
∫

k(s, t)

n∑
i=1

Fi(t)U idt

∣∣∣∣}≤

max
s∈[a,b]

{
sup

0≤α≤1

∣∣∣∣(∫ s

a
| k(s, t) ||

m∑
i=1

Fi(t)U i − 0 | dt
)∣∣∣∣, sup

0≤α≤1

∣∣∣∣(∫ s

a
| k(s, t) ||

n∑
i=1

Fi(t)U i − 0 | dt
)∣∣∣∣}+

max
s∈[a,b]

{
sup

0≤α≤1

∣∣∣∣(∫ s

a
| k(s, t) ||

m∑
i=1

Fi(t)U i − 0 | dt
)∣∣∣∣, sup

0≤α≤1

∣∣∣∣(∫ s

a
| k(s, t) ||

n∑
i=1

Fi(t)U i − 0 | dt
)∣∣∣∣}≤

M

(∫ s

a
D(ũm(t), 0)

)
+M

(∫ s

a
D(ũn(t), 0)

)
, (5.2)

it is clear that

D(ũm(t), 0) → 0 and D(ũn(t), 0) → 0,

now, we have

D(ũm(s), ũn(s)) → 0.
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By choosingm = n+ 1, we have

D(ũn+1(s), ũn(s)) = 0.

Now, we obtain error analysis for the Equation (3.2), by the following theorem.

Theorem5.3. Suppose that ũN (s) =
∑N

n=1 F (s)an and ũ(s) are the approximate and exact solution of Equation
(3.2), respectively. If the assumption of Definition (2.4) is satisfied, then ũN (s) → ũ(s) as N → ∞.

Proof. Due to the Theorem (5.1), Defenition (2.4) and replace ũm(s) by ũ(s) in the mentioned theorem, we have

D(ũ(s), ũN (s)) ≤ CD(ũ(s),

N∑
n=1

F (s)an),

now, we can write

ũ(s) = lim
N→∞

N∑
n=1

F (s)an ⇒ lim
N→∞

D(ũ(s),
N∑

n=1

F (s)an) → 0,

we will have

lim
N→∞

D(ũ(s), ũN (s)) ≤ C lim
N→∞

D(ũ(s),

N∑
n=1

F (s)an),

as a result

lim
N→∞

D(ũ(s), ũN (s)) → 0.

6 Numerical examples
By using Some examples and comparing numerical results with other methods in this section, in last section

we are able to conclude something about new method.

Example 6.1. [35]. Consider the fuzzy Volterra integral equation

f(x;α) = 2x(α5 + 2α)[3− 3 cos(x)− x2],

f(x;α) = 6x(2− α3)[3− 3 cos(x)− x2],

2020, Volume 14, No. 2 124 Theory of Approximation and Applications



A Novel Method to Solve Fuzzy Volterra Integral Equations Using Collocation Method Darabi and Parandin

Figure 1: Comparison between the exact solution and the approximate solution of the Example 6.1

and kernel
k(x, t) = x cos(t− x), 0 ≤ t ≤ x, 0 ≤ x ≤ π

2
,

and a = 0, b = π
4 , λ = 1, the exact solution is

F (x;α) = x3(α5 + 2α),

F (x;α) = x3(6− 3α3).

In this example, k(x, t) ≥ 0 for each 0 ≤ t ≤ x.
we have

f(x, α) = F (x, α)− λ

∫ x

0
t cos(x− t)F (t, α)dt

f(x, α) = F (x, α)− λ

∫ x

0
t cos(x− t)F (t, α)dt

and

F (x) =
n∑

i=0

U iFi(x)− f(x, α)−
n∑

i=0

U i

∫ x

0
t cos(x− t)Fi(t)dt

F (x) =
n∑

i=0

U iFi(x)− f(x, α)−
n∑

i=0

U i

∫ x

0
t cos(x− t)Fi(t)dt

Example 6.1 has been solved by assuming N = 5 and x = π
4 . In figures 2 and 3 the absolute error of the above

example has been showed.
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Figure 2: Absolute error |F (x, α)− F 5(x, α)| Figure 3: Absolute error |F (x, α)− F 5(x, α)|

Table 1: Numerical results of Example 6.1

α Exact solution
(F (x;α), F (x;α))

Approximate solution
x = π

4
andN = 5

Absolute error for presented
method x = π

4
andN = 5

Absolute error for VIM in
[30] x = π

4
andN = 7

0.0 (0.0000 , 2.9068) (0.0000 , 2.9068) (0.0000e-00 , 1.7763e-
15)

(0.0000e-00 , 6.3733e-
10)

0.1 (0.0968 , 2.9053) (0.0968 , 2.9053) (4.1633e-17 , 1.3322e-15) (2.1245e-11 , 6.3701e-
10)

0.2 (0.1939 , 2.8952) (0.1939 , 2.8952) (1.1102e-16 , 8.8817e-16) (4.2522e-11 , 6.3478e-
10)

0.3 (0.2918 , 2.7686) (0.2918 , 2.8676) (2.7755e-16 , 4.4408e-
16)

(6.3991e-11 , 6.2872e-
10)

0.4 (0.3925 , 2.8138) (0.3925 , 2.8138) (5.5511e-17 , 2.2204e-15) (8.6065e-11 , 6.1693e-
10)

0.5 (0.4996 , 2.7251) (0.4996 , 2.7251) (2.7755e-16 , 8.8817e-
16)

(1.0954e-10 , 5.9749e-
10)

0.6 (0.6190 , 2.5929) (0.6190 , 2.5929) (1.1102e-16 , 1.7763e-15) (1.3572e-10 , 5.6850e-
10)

0.7 (0.7596 , 2.4083) (0.7596 , 2.4083) (3.3306e-16 , 808817e-
16)

(1.6656e-10 , 5.2803e-
10)

0.8 (0.9339 , 2.1626) (0.9339 , 2.1626) (3.3306e-16 , 1.3322e-
15)

(2.0476e-10 , 4.7417e-
10)

0.9 (1.1581 , 1.8473) (1.1581 , 1.8473) (2.2204e-16 , 1.3322e-
15)

(2.5392e-10 , 4.0502e-
10)

Example 6.2. [37]. Consider the fuzzy Volterra integral equation

f(x;α) = α+ α2 − (α+ α2)x sinh(x),

f(x;α) = 4− α− α3 − (4− α− α3)x sinh(x),
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Figure 4: Comparison between the exact solution and the approximate solution of the Example 6.2

and kernel
k(x, t) = sinh(x),

and a = 0, b = 1, λ = 1, the exact solution is

F (x;α) = α2 + α,

F (x;α) = 4− α3 − α.

we have

f(x, α) = F (x, α)− λ

∫ s

0
sinh(t)F (t, α)dt

f(x, α) = F (x, α)− λ

∫ s

0
sinh(t)F (t, α)dt

and

F (x) =
n∑

i=0

U iFi(x)− f(x, α)−
n∑

i=0

U i

∫ x

0
sinh(t)Fi(t)dt

F (x) =
n∑

i=0

U iFi(x)− f(x, α)−
n∑

i=0

U i

∫ x

0
sinh(t)Fi(t)dt

Example 6.2 has been solved by assuming N = 5 and x = 0.3. The absolute error of example has been showed
in Figures 5 and 6.
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Figure 5: Absolute error |F (x, α)− F 5(x, α)| Figure 6: Absolute error |F (x, α)− F 5(x, α)|

Table 2: Numerical results of Example 6.2

α Exact solution
(F (x;α), F (x;α))

Approximate solution
x = 0.3 andN = 5

Absolute error
x = 0.3 andN = 5

0.0 (0.000 , 4.000) (0.000 , 4.000) (0.000e-00 , 0.000e-
00)

0.1 (0.110 , 3.899) (0.110 , 3.899) (0.000e-00 , 0.000e-
00)

0.2 (0.240 , 3.792) (0.240 , 3.792) (2.775e-17 , 0.000e-00)
0.3 (0.390 , 3.673) (0.390 , 3.673) (0.000e-00 , 0.000e-

00)
0.4 (0.560 , 3.536) (0.560 , 3.536) (1.110e-16 , 0.000e-00)
0.5 (0.750 , 3.375) (0.750 , 3.375) (0.000e-00 , 0.000e-

00)
0.6 (0.960 , 3.184) (0.960 , 3.184) (0.000e-00 , 0.000e-

00)
0.7 (1.190 , 2.957) (1.190 , 2.957) (0.000e-00 , 0.000e-

00)
0.8 (1.440 , 2.688) (1.440 , 2.688) (0.000e-00 , 0.000e-

00)
0.9 (1.710 , 2.371) (1.710 , 2.371) (0.000e-00 , 0.000e-

00)

7 Conclusion
As an alternate method for solving second-order fuzzy Volterra integral equations based on collocation method
of polynomial Fibonacci, a numerical method has been introduced. Existence and uniqueness of the solution of
method along with its convergence clearly has been illustrated. Using some numerical examples, the rational and
tiny amount of error expressed for suggested method. As future work, we are about to develop this method in
speed and exactness respect to others.
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