
Theory of Approximation and Applications, 2022, Volume 16, No.1:73-80, DOR: 20.1001.1.25382217.2022.16.1.9.5

A Nonlinear Optimal Control Model for a generator
System

H.R.Sahebia,∗ ,S. Ebrahimia and S.Radenovicb

aDepartment of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian, Iran.
bFaculty ofMechanical Engineering, University of Belgrade, KraljiceMarije 16, 11120 Beograd,

Serbia

ARTICLE INFO

KEYWORDS

Parametric continuity Method

Fredholm

Nonlinear Integral Equations

Approximate Solution

ARTICLE HISTORY

RECEIVED:2022 MARCH 19

ACCEPTED:2021 DECEMBER 24

ABSTRACT

In this article, we apply this new method for solving an engineering system with initial and

boundary conditions and integral criterion ,and we will using dynamic programming as iter-

ation for solving model.

1 Introduction
Embedding method was introduced in 1986 by Rubio in his book([7]). In fact, by doing a deformation, the prob-
lems are converted into a measure one with some positive theoretical coefficient and by extending space and then
applying discretization scheme, the optimal pair of trajectory and control is determined as a finite linear pro-
gramming. In real life situations, continuous optimal control problems arise mostly in every aspect of human
endeavour. Among these are the electric power systems, mainly the generation, transmission and distribution
of electric energy.The industrial growth of any nation depends greatly on the reliability of large interconnected
electric power system. Electric power system is a significant form of modern energy source, because of its applica-
tion in nearly all spheres of human endeavour for economic development([4, 5, 6]). In an interconnected power
system, the objective of an electric energy system engine is to generate electric energy in sufficient quantities at
the most suitable generating locality, transmit it in bulk quantities to the load centres, and then distribute it to the
individual customers in proper form and quality and at the lowest possible economic price. However, the factors
influencing power generation atminimum cost are operating efficiencies of generators, fuel cost and transmission
losses. Themost efficient generator in the systemmay not guaranteeminimum cost as it may be located in an area
where fuel cost is high. In this article, we try to bring the attention to these two facts for an optimal control prob-
lem governed by a electric power generating systemwith initial and boundary conditions and an integral criterion
([4], [11], [3]). The problem present in a variational form and then, by doing a deformation, it is converted into
a measure theoretical one with some positive coefficient. Next, by extending the underlying space, using some
density properties and applying some discretization scheme,
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the optimal pair of trajectory and control is determined simultaneously as a result of a finite linear program-
ming. The approach would be improved if the number of nods in discretization is exceeded.

2 Dynamic SystemModel
Consider themathematical model of electric power generating system given below ([1]), where x1(t) is the amount
of power generated by the ith generator at time t and x2(t) is the cost of production/ generation at a particular
time. Thus we have,

ẋ1(t) = (α+ β)− u1(t)kx1(t) + qx1(t)x2(t)− γ1x1(t) (2.1)

ẋ2(t) = (a+ b)− u2(t)cx1(t) + rx1(t)x2(t) + γ2x1(t) (2.2)

The problem to study is to find the controls u1, u2 that minimizes the cost functional

J(u1, u2) =

∫ T

0
[δx2(t) + ξ1u

2
1 + ξ2u

2
2]dt (2.3)

where α+ β is the actual mechanical / electrical energy from the turbine, k is the rate of generation, q is the total
running cost, γ1 is the rate of energy loss during transmission, a is the labour cost at a particular time, b is the
cost of maintenance, c is the capacity rate of generator, r is the fuel cost rate, γ2 is the total cost of transmission.
The control u1 is the load shedding rate, u2 is the generator actual capacity rate, δ is the unit of power generating
station and η1, η2 are to balance the size of the control.
Now, we consider the following optimal control problem:

Minimize
∫ T
0 [δx2(t) + η1u

2
1 + η2u

2
2]dt

Subject to : ẋ1(t) = (α+ β)− u1(t)kx1(t) + qx1(t)x2(t)− γ1 (2.4)

ẋ2(t) = (a+ b)− u2(t)cx1(t) + rx1(t)x2(t) + γ2x1(t)

x1(0) = x10, x2(0) = x20.

We try to follow Rubio in [7]. This would guide us to introduce a new solution method for the problem with many
advantages. In this manner, we will design an embedding method for solving such strong nonlinear problems in
whichdetermines the optimal solution by transferring the problem into a finite linear programming. Thehistorical
background of this method and its applications can be found in many literatures like [7, 8] and [10]. Definition.
Let X(t) = (x1(t), x2(t)) be the trajectory vector and U(t) = (u1(t), u2(t)) be the control vector; the pair P =

(X(t), U(t)) is called admissible whenever it satisfies the equations (2.1-2.3) and its related initial and terminal
conditions. Also for J = [0, T ], we suppose that the function x1 : J → [ax1 , bx1 ],x2 : J → [ax2 , bx2 ] be absolutely
continuous and bounded on J ; further, u1 : J → [cu1 , du1 ] and u2 : J → [cu2 , du2 ] are considered as bounded
Lebesque measurable function on J . The set of all admissible pairs is shown by W . Therefore, the purpose is to
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determine an admissible pair P ∈ W so that it

I(P) =

∫
J
F0(t) =

∫
J
(δx2(t) + ξ1u

2
1 + ξ2u

2
2)dt.

In general, the set W may be empty; even if W , the infimum of I(P) may not be in W . Moreover, even the
minimizing pair does exist inW , itmay be difficult to be characterized (necessary conditions are not always helpful
because the information they give, may be impossible to interpret generally). Transforming the problem into
another appropriate space can be helpful to conquest these difficulties; it is exactly our purpose to introduce the
new approach. Hence, it is necessary at this stage to point out some characteristics of the admissible pairs inW .
For our purpose, we will find out some effects of these pairs on different type of functions.

3 Embedding Method Technique
Let A = [ax1 , bx1 ]× [ax2 , bx2 ], [cu1 , du1 ]× [cu2 , du2 ] and Ω = J ×A× U . Let g = (g1, g2) such that

g1 = (α+ β)− u1(t)kx1(t) + qx1(t)x2(t)− γ1x1(t)

g2 = a+ b)− u2(t)cx1(t) + rx1(t)x2(t) + γ2x1(t).

Assume that P = [X(t), U(t)] be an admissible pair, and B be an open ball in R3 containing J × A ; the space of
real-valued continuously differentiable functions on B denote by Ć(B) such that they and their first derivatives
are bounded on B. Let ϕ ∈ Ć(B), we define

ϕg(t,X, U) = ϕx(t,X)g(t,X, U) + ϕt(t,X).

Since P is admissible, ∫
J
ϕg(t,X, U))dt = ϕ(0, Xϕ)− ϕ(T,XT ). (3.1)

If J0 be the interior points of the time interval, we denoteD(J0) as the space of infinitely differentiable real-valued
functions with compact support in J0. For all ψ ∈ D(J0) define:

ψ1(t,X, U) = X1ψ(t) + g1(t,X, U)ψ(t);

ψ2(t,X, U) = X2ψ(t) + g2(t,X, U)ψ(t);

one can easily show that: ∫
J
ψj(t,X(t), U(t))dt = 0, ∀ψ ∈ D(J0). (3.2)

LetC1(Ω) be the set of all functions which depend only on time; in other words, f ∈ C1(Ω) if f(t,X(t), U(t)) = θ(t)

. Thus we have : ∫
J
f(t)dt = af , ∀f ∈ C1(Ω) (3.3)
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where af is the Lebesque integral of f(t) over J .
For each P we introduce the functional ΛP that:

ΛP : F →
∫
J
F (t,X(t), U(t))dt F ∈ C(Ω)

One can easily show that the transformation P7→ ΛP is injection and then the problem of electric power generate
can be equally represented as the following one but on the space of positive linear functionals on Ω:
Min : ΛP(F0)

S.to : ΛP(ϕ
g) = δϕ ∀ϕ ∈ Ć(B), (3.4)

ΛP(ψj) = 0, ∀ψ ∈ D(J0), j = 1, 2

ΛP(f) = af , ∀f ∈ C1(Ω)

According to the Riesz representation theorem ([7]), for each linear positive functional ΛP there exist a unique
positive regular Borel measure is called Radon measure on Ω such that :

ΛP(F ) =

∫
Ω
F (t,X(t), U(t))dt = µP(F ). (3.5)

Therefore problem (3.3) can be transferred into the space of measures by an one-to-one mapping. Note that
the above mentioned difficulties are still exist, because the map P7→ ΛP is injection and the induced measure is
unique. Hence we develop the solution space and consider the set of all positive Radon measures that just satisfy
the conditions of (3.4) . Indeed, the minimization in (3.4), takes place on M+(Ω), the set of all positive radon
measures on Ω, as follows:

Min : µ(F0)

S.to : µ(ϕg) = δϕ ∀ϕ ∈ Ć(B), (3.6)

µ(ψj) = 0, ∀ψ ∈ D(J0), j = 1, 2

µ(f) = af , ∀f ∈ C1(Ω).

Indeed, we have extended the solution space and moreover, we will show soon that the optimal solution is also
existed; thus the optimal solution of (3.6) is global. Assume that Q be the set of all positive radon measures in
M+(Ω) that satisfies in the equations of system (3.6). By equipping Q with weak∗-topology , according to the
following proposition, the existence of the optimummeasure ,µ∗, for (3.6) is guaranteed (see [7, 8]).

Theorem 3.1. The set of measures Q is compact in the topology induced by the topology onM+(Ω).

Proof. see [7].

Theorem 3.2. The function µ→ µ(F0), mapping Q into the real line, is continuous.

Proof. see [7].
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Since each continuous function on a compact set, takes its infimum on this set, then the function µ → µ(F0)

takes its infimum onQ. Now we reached to a very important point; problem (3.6) is linear, since all the functions
are linear with respect to the variable. Furthermore, the measure is required to be positive; thus (3.6) is a linear
programming problem. But the number of constraints are infinite , while the dimension of space is infinite too.
It is the most desirable if we could obtain the optimal solution just by solving a finite linear programming one.
This process can be done by applying two steps of approximation. First, we choose suitable countable subsets of
functions whose linear combinations are dense in the appropriate spaces of constraints, and then selecting a finite
number of their elements.

For the first set of equalities in (3.6), let the set

{ϕi ∈ Ć(B), i = 1, 2, ...,M}

be such that the linear combinations of these functions are uniformly dense (dense in the topology of uniform
convergence in the space Ć(B)). For instance, these functions can be the polynomials in terms of x1, x2 and t. In
the other hand, We chooseM2 number of these functions for the second set of equalities in (3.6) as follows:

ψj(t) =

 sin[2πj
(

t−0
T−0

)
] j = 1, 2, ...,M2,

1− cos[2πj
(

t−0
T−0

)
] j =M2 + 1,M2 + 2, ..., 2M2.

(3.7)

Obviously, these functions are real-valued infinitely differentiable functions with compact support in J0.
By dividing the time interval into L subintervals J1, J2, ..., JL we introduce the third set of functions in (3.6) as the
following characteristic functions

fs(t) =

{
1 t ∈ Js,

0 otherwise,
(3.8)

Note that although these functions are not continuous , but they have two remarkable properties which are very
helpful for our purpose. Each function fs, s = 1, 2,…, L is the limit of an increasing sequence of positive con-
tinuous functions, say {fsk}; then, if µ is any positive Radon measure on Ω, we have µ(fs) = Limk→∞µ(fsk) .
Also consider now the set of all such functions, for all positive L. The linear combinations of these functions can
approximate a function in C1(Ω) arbitrarily well.
Remark. It must be noted that by applying this step, problem (3.6) is changed into a semi-infinite linear pro-
gramming (SILP ) ; hence one may use some of the SILP solution methods to find µ∗ (see [7] and [10] ).

4 Metamorphosis
According to the Rosenbloom’s theorem (see [7]), the optimummeasure of (3.6), has the following presentation

µ∗ =

N∑
k=1

αkδ(zk), αk ≥ 0, k = 1, 2, ..., N (4.1)
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where δ(zk) ∈M+(Ω) is the unitary atomicmeasurewith support the singleton set {zk} ⊂ Ωwhich is characterized
by

δ(zk)(F ) = F (zk), F ∈ C(Ω).

Replacing µ in (3.6) by (3.7), changes problem (3.6) into a nonlinear programming with unknown coefficients αk

and unknown supporting points zk. If we can minimize the problem just with respect to coefficients αk, then the
problem is converted into a finite linear programming. This process is possible if we employ a discretization on
the space Ω and just choose the nodes zj which belong to a dense subset of Ω. As a result, we attain the following
finite linear programming problem in which its solution is a very suitable approximation for (3.6):

Min :
∑N

j=1 αjF0(zj)

S.to :
∑N

j=1 αjϕ
g
i (zj) = ∆ϕi; i = 1, 2, ...,M1,

N∑
j=1

αjψij (zj) = 0; i = 1, 2, ...,M2, (4.2)

∑N
j=1 αjfs(tj) = af ; s = 1, 2, ..., L

where ϕi ∈ Ć(B), ψi ∈ D(J0), fs ∈ C1(Ω) and αj ≥ 0 for j = 1, 2, ..., N .
According to the density properties, it can be proved , that when M1,M2, L,N → ∞ , the solution of (3.8) will
tend to the solution of the main problem (see [7]).

5 Numerical Example
Based on the explained approach, we incline to find the optimal pair of trajectory and control in the following
numerical example.
Example.The parameters given in table below is used for find the optimal pair of trajectory and control for given
electric power generating system

Parameter Meaning Value
α+ β actual mechanical / electrical energy available 800 MW
q total running cost 0.3217
r fuel cost rate 0.347
x actual capacity rate 0.0606
k rate of generation 0.606
γ1 rate of energy loss during transmission 0.002MW
a labour cost 200
b maintenance cost 100
γ2 Cost of transmitting from generating station 0.3421
δ unit of power generating station 1
ξ1 no of hours for which the machines is on 16
ξ2 the no of hours of operation 16
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Interval Partition
x1 = [ax1 , bx1 ] = [600, 1800] 10
x2 = [ax2 , bx2 ] = [−1000, 3500] 10

J = [0, T ] = [0, 1] 10
u1 = [cu1 , du1 ] = [0, 1] 10
u2 = [cu2 , du2 ] = [0, 1] 10

Suppose thatM1 = 4,M2 = 16 and L = 10, we set up a finite linear programming like (4.2) by 100000 nodes
and 30 constraints , and then we used the revised simplex method from Compaq Visual Fortran software to
solve it.As a result, we attained 1140.946524727022100000.

The graph of the control and trajectory are shown in Figs. 1-2, respectively.
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