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ABSTRACT

In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm in-

tegral equations of the second kind (2D-FFIE-2). We use new representation of parametric

form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to

system of two-dimensional Fredholm integral equations of the second kind in crisp case. We

can use Adomian decomposition method for finding the approximation solution of the each

equation, hence obtain an approximation for fuzzy solution of 2D-FFIE-2. We prove the con-

vergence of the method and finally apply the method to some examples.

1 Introduction
Fuzzy systems are nowused to study a different of problems ranging from fuzzymetric spaces [1], fuzzy topological
spaces [2], to control chaotic systems [3, 4], fuzzy differential equations [5, 6, 7] and particle physics [8, 9, 10,
11].The topics of fuzzy integral equations (FIE) which attracted growing interest for some time, in particular,
in relation to fuzzy control, have been developed in recent years.The concept of integration of fuzzy functions
was first presented by Dubois and Prade (1982). Alternative approaches were later suggested by Goetschel and
Voxman (1986), Kaleva (1987), Matloka (1987), Seikkala (1987).Recently, some numerical methods have been
introduced to solve fuzzy Fredholm integral equation of the second kind in one-dimensional space FFIE-2 and
two-dimensional space 2D-FFIE-2. For example Babolian et al [12] used the Adomian decomposition method
(ADM) to solve FFIE-2. Abbasbandi et al [13] obtained numerical solution of FFIE-2 using Nystrom method.
Ezzati et al [14] applied the fuzzy Bernstein polynomials to solve fuzzy integrals. Rivaz et al [15] used the modified
homotopy perturbation method to solve 2D-FFIE-2. Mirzaee et al [16] obtained numerical solution of 2D-FFIE-2
by using triangular functions.In this work, we use the Adomian decompositionmethod for solving 2D-FFIE-2.The
rest of the paper is organized as follows: In section 2, the basic notations of fuzzy numbers, fuzzy functions and
fuzzy integrals have been presented. In section 3, Adomian decomposition method is used for solving 2D-FFIE-
2. In section 4, the convergence of the method have been proved. In section 5, numerical results with the exact
solution for some examples have been compared.
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2 Preliminaries
In this section the basic concepts about fuzzy calculus are introduced.

Definition 2.1. [22] A fuzzy number is a fuzzy set u : R1 −→ I = [0, 1]which satisfies

(i) u is upper semicontinuous.

(ii) u(x) = 0 outside some interval [a2, b2].

(iii) There are real numbers a,b: a2 ≤ a1 ≤ b1 ≤ b2 for which

(1) u(x) is monotonic increasing on [a2, b2],

(2) u(x) is monotonic decreasing on [b1, b2],

(3) u(x) = 1, a1 ≤ x ≤ b1.

The set of all fuzzy numbers is denoted by E1. An equivalent definition or parametric form of fuzzy numbers
which yields the same E1 is given by Kaleva [26].

Definition 2.2. [12] An arbitrary fuzzy number in parametric form is represented by an ordered pair of func-
tions (u(α), u(α)), 0 ≤ α ≤ 1, which satisfy the following requirements:

(1) u(α) is a bounded monotonic increasing left continuous function,

(2) u(α) is a bounded monotonic decreasing left continuous function,

(3) u(α) ≤ u(α), 0 ≤ α ≤ 1.

Lemma 2.1. [18] Suppose (u(r), ū(r)), 0 ≤ r ≤ 1 is a given family of non-empty intervals. If

(1) (u(r1), ū(r1)) ⊇ (u(r2), ū(r2)) for 0 ≤ r1 ≤ r2 ≤ 1.

(2) (limk→∞ u(rk), limk→∞ ū(rk)) = (u(r), ū(r)), whenever {rk} is a non-decreasing converging sequence con-
verges to 0 ≤ r ≤ 1,

then the family (u(r), ū(r)), 0 ≤ r ≤ 1, represent the r-cut sets of a fuzzy number u ∈ E1.
On the contrary, suppose (u(r), ū(r)), 0 ≤ r ≤ 1, are the r-cut sets of a fuzzy number u ∈ E1, then the conditions
(1) and (2) hold.

Definition 2.3. [13] For arbitrary u = (u(α), u(α)) , v = (v(α), v(α)) and k ∈ R we define addition and multi-
plication by k as follows:

(u+ v(α)) = (u(α) + v(α)),

(u+ v(α)) = (u(α) + v(α)),

(ku(α)) = ku(α), (ku(α)) = ku(α) if k ≥ 0,

(ku(α)) = ku(α), (ku(α)) = ku(α) if k < 0.
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Definition 2.4. [21] For arbitrary u = (u, u) , v = (v, v) the distance between u, v is define as follows:

D(u, v) = sup
0≤α≤1

max{|u(α)− v(α)|, |u(α)− v(α)|} (2.1)

and also metric space (D,E1) is a complete metric space [20].

Definition 2.5. [23] The fuzzy Fredholm integral equation of the second kind is

u(x) = f(x) + λ

∫ b1

a1

k(x, t)u(t)dt, x ∈ D, (2.2)

where u(x) and f(x) are fuzzy functions on D = [a1, b1] and k(x, t) is an arbitrary kernel function over T =

[a1, b1]× [a1, b1], and u is unknown onD.

Theorem 2.1. [24] Let k(x, t) be a continuous on T and f(x) be a fuzzy continuous function over theD. If

|λ| ≤ 1

M(b1 − a1)
,

whereM = max(x,t)∈T |k(x, t)|, then equation (2.2) has a fuzzy unique solution.

Remark 2.1. [13] Put u(α) = (u(α), v(α)),0 ≤ α ≤ 1 be a fuzzy number, we take{
uc(α) = u(α)+u(α)

2 ,

ud(α) = u(α)−u(α)
2 .

(2.3)

Obvious that ud(α) ≥ 0 and u(α) = uc(α) − ud(α), u(α) = uc(α) + ud(α), also the fuzzy number u ∈ E1 is
symmetric if uc(α) is independent from α for 0 ≤ α ≤ 1.

Remark 2.2. [13] Put u(α) = (u(α), u(α)), v(α) = (v(α), v(α) and k, s are arbitrary real numbers. Ifw = ku+sv

then

{
wc(α) = kuc(α) + svc(r),

wd(α) = |k|ud(α) + |s|vd(α).
(2.4)

Remark 2.3. [13] By referring to remark 2.1 we have

|ū(r)− v̄(r)| = |uc(r)− vc(r)|+ |ud(r)− vd(r)|,
|u(r)− v(r)| = |uc(r)− vc(r)|+ |ud(r)− vd(r)|,

(2.5)

hence for all r ∈ [0, 1]

D(u, v) ≤ sup
0≤r≤1

{
|uc(r)− vc(r)|+ |ud(r)− vd(r)|

}
.

Thus if |uc(r)− vc(r)| and |ud(r)− vd(r)| tend to zero thenD(u, v) tends to zero.
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Definition 2.6. [25] A function f : R2 → E1 is called a fuzzy function in two-dimensional space. f is said to be
continuous, if for arbitrary fixed t0 ∈ R2 and ϵ > 0 a δ > 0 exists such that

||t− t0|| < δ ⇒ D(f(t), f(t0)) < ϵ, t = (x, y), t0 = (x0, y0).

Definition 2.7. Let f : [a1, b1] × [a2, b2] → E1, for each partition p = {t0, t1, ...tm} of [a1, b1],Q = {s0, s1, ..., sn}
of [a2, b2] and for arbitrary ξi ∈ [ti−1, ti], 2 ≤ i ≤ m, and for arbitrary ηj ∈ [sj−1, sj ], 2 ≤ j ≤ n let

Rp =

m∑
i=2

n∑
j=2

f(ξi, ηj)(ti − ti−1)(sj − sj−1)

The definite integral of f(x, y) over [a1, b1]× [a2, b2] is∫ b2

a2

∫ b1

a1

f(x, y)dxdy = lim
(pi,qj)→(0,0)

Rp,

such that

qj = max |sj − sj−1|, 2 ≤ j ≤ n pi = max |ti, ti−1|, 2 ≤ i ≤ m

then this limit exists in metricD.
If the function f(x, y) is continuous in the metricD, it’s definite integral exists [21].(∫ b2

a2

∫ b1

a1

f(x, y;α)dxdy

)
=

∫ b2

a2

∫ b1

a1

f(x, y;α)dxdy

(∫ b2

a2

∫ b1

a1

f(x, y;α)dxdy

)
=

∫ b2

a2

∫ b1

a1

f(x, y;α)dxdy

3 Adomian decomposition method for solving 2D-FFIE-2
Two-dimensional fuzzy Fredholm integral equation of the second kind (2D − FFIE − 2) is defined as follows

[16]:

F (x, y) = f(x, y) + λ

∫ b1

a1

∫ b2

a2

K(x, y, s, t)F (s, t)dsdt, (3.1)

where k(x, y, s, t) is an arbitrary kernel function over S = [a1, b1]× [a2, b2]× [a1, b1]× [a2, b2] and f(x, y) and F (x, y)

are fuzzy functions over V = [a1, b1]× [a2, b2] and F (s, t) is unknown on V .
Now, we are about to introduce parametric form of 2D-FFIE-2 with respect to definition (2.2).
Let (f(x, y;α), f(x, y;α)) and (F (x, y;α), F (x, y;α)), 0 ≤ α ≤ 1, be parametric form of f(x, y), F (x, y), respec-
tively. Then parametric form of 2D-FFIE-2 ia as follows:{

F (x, y;α) = f(x, y;α) + λ
∫ b1
a1

∫ b2
a2

υ1(x, y, s, t, F (s, t;α), F (s, t;α))dsdt,

F (x, y;α) = f(x, y;α) + λ
∫ b1
a1

∫ b2
a2

υ2(x, y, s, t, F (s, t;α), F (s, t;α))dsdt
(3.2)
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which

v1(x, y, s, t, F (s, t;α), F (s, t;α)) =

{
k(x, y, s, t)F (s, t;α), if k(x, y, s, t) ≥ 0,

k(x, y, s, t)F (s, t;α), if k(x, y, s, t) ≤ 0

and

v2(x, y, s, t, F (s, t;α), F (s, t;α)) =

{
k(x, y, s, t)F (s, t;α), k(x, y, s, t) ≥ 0,

k(x, y, s, t)F (s, t;α), k(x, y, s, t) ≤ 0

for 0 ≤ α ≤ 1, we can see that (3.1), are systems of Fredholm integral equations of the second kind with three
variables in crisp case.

hence

F c(x, y;α) = f c(x, y;α) + λ

∫ b1

a1

∫ b2

a2

K(x, y, s, t)F c(s, t;α)dsdt. (3.3)

F d(x, y;α) = fd(x, y;α) + λ

∫ b1

a1

∫ b2

a2

|K(x, y, s, t)|F d(s, t;α)dsdt. (3.4)

The Adomian decomposition method consists of decomposing the unknown function F (x) of any equation into a
sum of an infinite number of components defined by the decomposition series

F (x) =
∞∑
n=0

Fn(x),

where the components Fn(x), n ≥ 0 are to be determined in a recursive way. The decompositionmethod concerns
itself with determining the componentsF0, F1, F2, · · · individually. The aimof this section is usingADMfor solving
2D-FFIE-2. By using that, we can write (3.3),(3.4) as follows.

∞∑
n=0

F c
n(x, y;α) = f c(x, y, α) + λ

∫ b1

a1

∫ b2

a2

K(x, y, s, t)(

∞∑
n=0

F c
n(s, t;α))dsdt (3.5)

∞∑
n=0

F d
n(x, y;α) = fd(x, y, α) + λ

∫ b1

a1

∫ b2

a2

|K(x, y, s, t)|(
∞∑
n=0

F d
n(s, t;α))dsdt (3.6)

we have

F c
0 (x, y;α) = f c(x, y;α)

F c
1 (x, y;α) = λ

∫ b1

a1

∫ b2

a2

K(x, y, s, t)F c
0 (s, t;α)dsdt

F c
2 (x, y;α) = λ

∫ b1

a1

∫ b2

a2

K(x, y, s, t)F c
1 (s, t;α)dsdt, · · ·

and at the end

{
F c
0 (x, y;α) = f c(x, y;α)

F c
n+1(x, y;α) = λ

∫ b1
a1

∫ b2
a2

k(x, y, s, t)F c
n(s, t;α)dsdt

(3.7)
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and {
F d
0 (x, y;α) = fd(x, y;α)

F d
n+1(x, y;α) = λ

∫ b1
a1

∫ b2
a2

k(x, y, s, t)F d
n(s, t;α)dsdt

(3.8)

4 Convergence analysis
In this section we prove that the ADM is convergent.

Theorem 4.1. Let k(x, y, s, t) be a continuous function over S and f(x, y) be a fuzzy continuous and bounded
function on V . If

|λ| < 1

M(b1 − a1)(b2 − a2)
, (4.1)

whereM = max(x,y,s,t)∈S |k(x, y, s, t)|, then the ADM in section (4), is convergence.

Proof. Without losing generality, let F c and F d are the exact solution of (3.3) and (3.4), and we illustrate how F c
n

and F d
n are convergent to F c and F d respectively. From Eq. (3.7), we have

F c
n(x, y;α) = λ

∫ b1

a1

∫ b2

a2

k(x, y, s, t)F c
n−1(s, t;α)dsdt

= λ

∫ b1

a1

∫ b2

a2

k(x, y, s, t)

(
λ

∫ b1

a1

∫ b2

a2

k(x, y, s, t)F c
n−2(s, t;α)dsdt

)
dsdt

...

= λn

∫ b1

a1

∫ b2

a2

· · ·
∫ b1

a1

∫ b2

a2

(k(x, y, s, t))nF c
0 (dsdt)

n

and

F c
n−1(x, y;α) = λn−1

∫ b1

a1

∫ b2

a2

· · ·
∫ b1

a1

∫ b2

a2

(k(x, y, s, t))n−1F c
0 (dsdt)

n−1,

therefore

|F c
n − F c

n−1| = |λn

∫ b1

a1

∫ b2

a2

· · ·
∫ b1

a1

∫ b2

a2

(k(x, y, s, t))nF c
0 (dsdt)

n − λn−1

∫ b1

a1

∫ b2

a2

· · ·
∫ b1

a1

∫ b2

a2

(k(x, y, s, t))n−1F c
0 (dsdt)

n−1|

≤ |λn

∫ b1

a1

∫ b2

a2

· · ·
∫ b1

a1

∫ b2

a2

(k(x, y, s, t))nF c
0 (dsdt)

n|+ |λn−1

∫ b1

a1

∫ b2

a2

· · ·
∫
a1

−b1

∫ b2

a2

(k(x, y, s, t))n−1F c
0 (dsdt)

n−1|

≤ N(λM(b1 − a1)(b2 − a2))
n +N(λM(b1 − a1)(b2 − a2))

n−1

= N(λM(b1 − a1)(b2 − a2))
n−1(λM(b1 − a1)(b2 − a2) + 1)

where
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N = sup
V

|F c
0 (x, y;α)|.

So F c
n is uniformly convergent. Consequently, we have

lim
n→∞

F c
n = F c.

Clearly, we can show limn→∞ F d
n = F d.

5 Numerical examples
In this section, we propose some examples and compare numerical results with other methods.

Example 5.1. [15]. Consider the following 2D-FFIE-2

f(x, y;α) = πxy(
13

15
(α2 + α) +

2

15
(4− α3 − α)),

f(x, y;α) = πxy(
2

15
(α2 + α) +

13

15
(4− α3 − α)),

and
k(x, y, s, t) = −7

6
πxy sin(πx), 0 ≤ x, y, s, t ≤ 1, λ = 1.

and a1 = a2 = 0, b1 = b2 = 1, the exact solution is

F (x, y;α) =
π

25
xy(

268

19
α3 +

568

19
α2) + 44α− 1072

19
,

F (x, y;α) = − π

25
xy(

568

19
α3 +

268

19
α2) + 44α− 2272

19
.

We can see

f c(x, y;α) = πxy(4− α3 + α2),

fd(x, y;α) = πxy(−11

15
(α2 + α) +

11

15
(4− α3 − α)),

and now {
F c(x, y;α) = f c(x, y;α) +

∫ 1
0

∫ 1
0 (−

7
6πxy sin(πx))F

c(s, t, α)dsdt,

F d(x, y;α) = fd(x, y;α) +
∫ 1
0

∫ 1
0 | − 7

6πxy sin(πx)|F
c(s, t, α)dsdt.

(5.1)

Now with doing ADM for Eq. (5.1), we have{
F c
0 (x, y;α) = f c(x, y;α),

F c
n+1(x, y;α) = λ

∫ 1
0

∫ 1
0 (−

7
6πxy sin(πx))F

c
n(s, t;α)dsdt.
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Figure 1: comparison between the exact solution and the approximate solution

{
F d
0 (x, y;α) = fd(x, y;α),

F d
n+1(x, y;α) = λ

∫ 1
0

∫ 1
0 | − 7

6πxy sin(πx)|F
d
n(s, t;α)dsdt.

and for n → ∞ then

F (s, t;α) ≃ F c
n(s, t;α)− F d

n(s, t;α),

F (s, t;α) ≃ F c
n(s, t;α) + F d

n(s, t;α).

Figure 2: Absolute error |F − F 50| Figure 3: Absolute error |F − F 50|

Example 5.2. [15]. Consider the following 2D-FFIE-2

f(x, y;α) = α(xy +
1

676
(x2 + y2 − 2)),

f(x, y;α) = (2− α)(xy +
1

676
(x2 + y2 − 2)),

and

k(x, y, s, t) =
1

169
(x2 + y2 − 2)(s2 + t2 − 2), 0 ≤ x, y, s, t ≤ 1, λ = 1.
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Table 1: Numerical results of Example 5.2

α Exact solution
F (x, y;α), F (x, y;α)

Approximate solu-
tion x = 0.3, y = 0.6
andN = 10

Absolute error for AD method x =
0.3, y = 0.6 andM = 50

Absolute error the method of Rivaz
and Yousefi. [23] forM = 62

0.0 -1.2762 , 2.7048 -1.2762 , 2.7048 3.11839e-12 , 1.47127e-12 0.0047 , 0.0009
0.1 -1.1696 , 2.6014 -1.1696 , 2.6014 2.99916e-12 , 1.34914e-12 0.0025 , 0.0016
0.2 -1.0476 , 2.4876 -1.0476 , 2.4876 2.86793e-12 , 1.20792e-12 0.0006 , 0.0046
0.3 -0.9082 , 2.3593 -0.9082 , 2.3593 2.71960e-12 , 1.04672e-12 0.0047 , 0.0084
0.4 -0.7495 , 2.2124 -0.7495 , 2.2124 2.55052e-12 , 8.64642e-13 0.0101 , 0.0134
0.5 -0.5697 , 2.0429 -0.5697 , 2.0429 2.35512e-12 , 6.56364e-13 0.0141 , 0.0094
0.6 -0.3667 , 1.8467 -0.3667 , 1.8467 2.12896e-12 , 4.22995e-13 0.0095 , 0.0054
0.7 -0.1388 , 1.6199 -0.1388 , 1.6199 1.86770e-12 , 1.60094e-13 0.0036 , 0.0003
0.8 0.1161 , 1.3582 0.1161 , 1.3582 1.56571e-12 , 1.33893e-13 0.0040 , 0.0081
0.9 0.3998 , 1.0577 0.3998 , 1.0577 1.21941e-12 , 4.61187e-13 0.0133 , 0.0183

and a1 = a2 = 0, b1 = b2 = 1, the exact solution is

F (x, y;α) = αxy,

F (x, y;α) = (2− α)xy.

We have

f c(x, y;α) = 2(xy +
1

676
(x2 + y2 − 2),

fd(x, y;α) = (2− 2α)(xy +
1

676
(x2 + y2 − 2).

and 
F c(x, y;α) = f c(x, y;α) +

∫ 1
0

∫ 1
0

(
1

169(x
2 + y2 − 2)(s2 + t2 − 2)

)
F c(s, t, α)dsdt,

F d(x, y;α) = fd(x, y;α) +
∫ 1
0

∫ 1
0

∣∣∣∣ 1
169(x

2 + y2 − 2)(s2 + t2 − 2)

∣∣∣∣F c(s, t, α)dsdt.
(5.2)

Now with doing ADM for Eq. (5.2), we have
F c
0 (x, y;α) = f c(x, y;α),

F c
n+1(x, y;α) = λ

∫ 1
0

∫ 1
0

(
1

169(x
2 + y2 − 2)(s2 + t2 − 2)

)
F c
n(s, t;α)dsdt.


F d
0 (x, y;α) = fd(x, y;α),

F d
n+1(x, y;α) = λ

∫ 1
0

∫ 1
0

∣∣∣∣ 1
169(x

2 + y2 − 2)(s2 + t2 − 2)

∣∣∣∣F d
n(s, t;α)dsdt.
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and at the end

F (s, t;α) ≃ F c
n(s, t;α)− F d

n(s, t; r),

F (s, t;α) ≃ F c
n(s, t;α) + F d

n(s, t;α).

Figure 4: comparison between the exact solution and the approximate solution

Figure 5: Absolute error |F − F 10| Figure 6: Absolute error |F − F 10|

2021, Volume 15, No.2 114 Theory of Approximation and Applications



A New Method for Solving Two-Dimensional Fuzzy Fredholm Integral Equations of The Second Kind M. Darabi et al.

Table 2: Numerical results of Example 5.2

α Exact solution
F (x, y; r), F (x, y; r)

Approximate solu-
tion x = 0.1, y = 0.4
andN = 10

Absolute error for AD method x =
0.1, y = 0.4 andM = 10

Absolute error the method of
Mirzaee et al. [16] forM = 12

0.0 0.00000 ,
0.08000

0.00000 ,
0.08000

0.0000000e-00 ,
1.3877787e-17

0.0000000e-00 ,
9.8553102e-06

0.1 0.00400 ,
0.07600

0.00400 ,
0.07600

2.6020852e-18 , 1.3877787e-
17

4.9276551e-07 , 9.3625447e-
06

0.2 0.00800 ,
0.07200

0.00800 ,
0.07200

1.7347234e-18 , 2.7755575e-
17

9.8553102e-07 , 8.8697792e-
06

0.3 0.01200 ,
0.06800

0.01200 ,
0.06800

6.9388939e-18 , 1.3877787e-
17

1.4782965e-06 , 8.3770137e-
06

0.4 0.01600 ,
0.06400

0.01600 ,
0.06400

6.9388939e-18 ,
0.0000000e-00

1.9710620e-06 , 7.8842481e-
06

0.5 0.02000 ,
0.06000

0.02000 ,
0.06000

3.4694469e-18 , 1.3877787e-
17

2.4638275e-06 , 7.3914826e-
06

0.6 0.02400 ,
0.05600

0.02400 ,
0.05600

6.9388939e-18 , 2.0816681e-
17

2.9565930e-06 , 6.8987171e-
06

0.7 0.02800 ,
0.05200

0.02800 ,
0.05200

1.0408340e-17 , 2.7755575e-
17

3.4493585e-06 , 6.4059516e-
06

0.8 0.03200 ,
0.04800

0.03200 ,
0.04800

6.9388939e-18 , 1.3877787e-
17

3.9421240e-06 , 5.9131861e-
06

0.9 0.03600 ,
0.04400

0.03600 ,
0.04400

1.3877787e-17 , 0.0000000e-
00

4.4348896e-06 ,
5.4204206e-06

6 Conclusion
In this study, we used Adomian decomposition method and new representation of the parametric form of fuzzy
numbers for solving 2D-FFIE-2. By using this method a two-dimensional fuzzy Fredholm integral equation leads
to two crisp. Efficiency and accuracy of the above method by providing a few examples and comparing results
with other methods and also exact solution were analyzed. As we can see error in the introducedmethod has been
decreased.
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