

ARTICLE INFO ABSTRACT

Keywords Code, Ring, Group Ring, Constacyclic Codes

Article history Received: 27 June 2020 **Accepted:** 11 July 2021

Constacyclic Codes over Group Ring

$$
\Big(Z_q\big[\!v\!\big]/\Big<\!v\!\big<^q-v\Big>\!\Big)\!G
$$

Alireza Soleimani

Faculty of Mathematics, Tarbiat Modares University, Tehran, Iran

1 Introduction and Preliminaries

 $R = Z_q [v]/\langle v^q - v \rangle$ is a commutative, with $v^q = v$ (q is a prime number). For a prime p and an integer k take $n = 2p^k$ then the set $G = 2Z_n^*$ is a cyclic group of orde $p^k - p^{k-1}$ and identity element $p^k + 1$. Then, the group ring RG is the set of all linear combinations in the form *g g G* $u = \sum a_{g} g$ $=\sum_{g\in G}\alpha_g g$ such that $\alpha_g \in R$ and only finitly many α_g is non zero. This set is commutative and

operation of addition and multiplication is

$$
u + v = \sum_{g \in G} \alpha_g g + \sum_{g \in G} \beta_g g = \sum_{g \in G} (\alpha_g + \beta_g) g
$$

$$
uv = \left(\sum_{g \in G} \alpha_g g\right) \left(u = \sum_{h \in G} \beta_h g\right)
$$

A non-zero element $u \in RG$ is a zero-divisor if and only if there exists a non-zero $v \in RG$ such that uv = 0. For a fixed listing $\{g_1, g_2, ..., g_n\}$ of the elements of G the RG matrix of the element

*Corresponding author's E-mail: mr.soleymani25@yahoo.com *© 2021. All rights reserved. Hosting by IA University of Arak Press*

1 *i n* $\sum_{i=1}$ ^{α_{g_i}} g_i $w = \sum_{i=1}^{n} \alpha_{e_i} g_i \in RG$ $=\sum_{i=1}^n \alpha_{g_i} g_i \in RG$ is defined

$$
w = \begin{pmatrix} \alpha g_1^{-1}g_1 & \alpha g_1^{-1}g_2 & \dots & \alpha g_1^{-1}g_n \\ \alpha g_2^{-1}g_1 & \alpha g_2^{-1}g_2 & \dots & \alpha g_2^{-1}g_n \\ \vdots & \vdots & \vdots & \vdots \\ \alpha g_n^{-1}g_1 & \alpha g_n^{-1}g_2 & \dots & \alpha g_n^{-1}g_n \end{pmatrix}
$$

A group ring RG is isomorphic to a subring of the ring of $n \times n$ matrices over R.

The transpose of an element
$$
u = \sum_{g \in G} \alpha_g g
$$
 in RG is $u^T = \sum_{g \in G} \alpha_g g^{-1}$ or equivalently $u^T = \sum_{g \in G} \alpha_{g^{-1}} g$

The definition of the weight immediately leads to a Gray map from R to Z_q^q which can be extended to $\left(\mathsf{Z}_q + \mathsf{v}\mathsf{Z}_q + ... + \mathsf{v}^{q-1} \mathsf{Z}_q\right)^n$ $_{q}$ + vZ_{q} +...+ $v^{q-1}Z_{q}$) :

$$
a = a_0 + a_1 v + ... + a_{q-1} v^{q-1} \longrightarrow \phi(a) = \phi(a_0 + a_1 v + ... + a_{p-1} v^{q-1}) = (a(0), a(1), ..., a(q-1))
$$

 $\phi: R \to Z_q^q$

Where $q-1 \pmod{q}$ $a(i) = a_0 + a_1 i + ... + a_{q-1} i^{q-1} \pmod{q}$ for all $i \in \{0,1,...,q-1\}$. this map is basically the natural one that gives the Chinese Remainder Theorem and hence this map relates the rings R and Z_q^q . Since ϕ is a isomorphism we have:

$$
R \cong Z_q \left[\nu \right] / \langle \nu \rangle \oplus Z_q \left[\nu \right] / \langle \nu - 1 \rangle \oplus \dots \oplus Z_q \left[\nu \right] / \langle \nu - (q - 1) \rangle \cong Z_q^q
$$

Let $x = \sum_{g \in G} \alpha_g$ $x = \sum_{g} \alpha_{g} g$ $=\sum_{g\in G}\alpha_g g$ and $y = \sum_{g\in G}\beta_g$ $y = \sum \beta_{g} g$ ╒ $\mathcal{B} = \sum \beta_{g} g$ be two elements in the group ring RG. Then, inner product of

x and y is given by $\langle x \, , y \rangle = \sum_{g \in G} \alpha_g \beta_g$ $\langle x, y \rangle = \sum \alpha_{g} \beta_{g}$ $=\sum\alpha_{_g}\beta_{_g}$.

 ϕ :

The map

.

$$
\theta: RG \to R^n, \theta\bigg(\sum_{i=1}^n \alpha_i g_i\bigg) = (\alpha_1, \alpha_2, ..., \alpha_n)
$$

is an isomorphism from RG to Rⁿ. Thus every element in RG can be considered as an n-tuple in R^n .

A linear code C of length n over R, is a submodule of $Rⁿ$. A linear code of length n, dimension

```
2021, Volume 15, No. 1
```
 (x_0)

k, and minimum (Hamming) distance d over R is termed as an $\left[n, k \, , d \, \right]_{\!q} \,$ code. Let n be a positive integer and α be a unit element of R. A linear code C of length n over R is said to be a–constacyclic if for any codeword $(c_0, c_1, ..., c_{n-1}) \in C$ we have that $(ac_{n-1}, c_0, c_1, ..., c_{n-2}) \in C$ If we take α as -1 , then the code is called negacyclic.

It is not easy to find the structure of lattices of ideals of non-chain rings in general. Here by using the Gray map introduced above, we are able to give the structure of ideals of *R* and further count the number of ideals as follows:

Lemma 1.1 *R* has exactly 2^q ideals.

Proof. Since Z_q is a field (q is a prime number) then its ideals are exactly the zero ideal and

 $Z_{\it q}^{}$ itself, then the number of ideals of $Z_{\it q}^{q}$ is the product of the number of trivial ideals. Therefor the number of ideal of R is 2^q .

The cyclic codes of length m are ideals in the quotient ring $R\left[x\right]/\langle x^m-1\rangle.$ Further, for a cyclic

group C_m of order m we have $R\left[x \right]/\langle x^m - 1 \rangle \cong RC_m$.

Definition 1 Let u be a zero-divisor in RG, i.e. $uv = o$ for some non-zero $v \in RG$. Let W be a submodule of RG with basis of group elements $S \subseteq G$. Then, a zero-divisor code is $C = \{ux | x \in W\} = uW$ or $C = \{xu | x \in W\} = Wu$.

Definition 2 A zero-divisor u with rank(U) = r is called a principal zero-divisor if and only if there exists a $v \in RG$ such that $uv = o$ and rank $(V) = n-r$.

Corollary 3 $C = \{xu | x \in W\}$ = Wu has a unique check element if and only if u is a principal zero divisor.

The dual of a code with respect to the standard inner product forms a group ring encoding as well where the dual is defined by

$$
C^{\perp} = \{ y \in RG | \langle ux, y \rangle = 0, \forall x \in W \}.
$$

Proof. In [7].

Theorem 4 Let $u, v \in RG$ such that $uv = o$. Let U and V be the RG matrices of u and v respectively, such that rank(U) = r and rank(V) = n-r Let W be a submodule over a basis $S \subset G$ of dimension r such that Su is linearly independent and W^{\perp} denote the submodule over basis

2021, Volume 15, No. 1

(TAA)

 $G\backslash S.$ Then, the dual code of $C = \{xu|x \in W\} = Wu \text{ is } C^{\perp} = \left\{xv^{T}\middle|x \in W^{\perp}\right\} = \left\{y \in RG|yu^{T} = 0\right\}$.

Proof. Note that v^T is a zero-divisor and that rank $v^T = n - r$ (because rankV = n - r), and that W^{\perp} does not contain a zero-divisor of v^T . Thus, there is a 1-1 map between W^{\perp} and ${xv}^T : x \in W^{\perp}$. It remains to show it is the dual.

Let $z \neq 0$ be an element in RG. We need to prove that $\langle xu, z \rangle = 0$, $\forall x \in W$ if and only if $z = y$ v^T for some y $\in W^{\perp}$.

Suppose $z = y$, and let $x, y \in RG$

Recall that $x' = \zeta^{-1}(x), y' = \zeta^{-1}(y)$. are the vectors in R^n corresponding to x,y. Then T = $\mathbf{x}'\mathbf{U}(\mathbf{V}^T\mathbf{v}')^T = \mathbf{x}'(\mathbf{U}\mathbf{V})\mathbf{v}'^T$ $\text{Recall that} \quad x' = \zeta^{-1}(x), y' = \zeta^{-1}(y) \text{ . are the vector } x u, z \rangle = \langle xu, yv^T \rangle = x'U(V^T y')^T = x'(UV) y'^T = 0 \text{ .}$

Conversely, suppose $\langle xu, z \rangle = 0 \ \forall x \in W$. Without loss of generality, assume $1 \in W$. Then xu, z = 0 implies $zu^T = 0$ and since u^T is the check element for the code generated by v^T , z $= yv^T$ for some $y \in W^{\perp}$.

2 Constacyclic Codes over Group Ring $\left(Z_{\scriptscriptstyle{q}} \left[v \hspace{0.3em} \right] \! / \langle v^{\scriptscriptstyle{q}} \, -v \hspace{0.3em} \rangle \right) \! G$

In this section, we extend the notion of cyclic group ring codes to constacyclic group ring codes. Throughout this section, we assume p is an odd prime, $R = Z_q \left[v \right] / \left\langle v^q - v \right\rangle$ and $n = 2p^k$ under the restrictions $\gcd\left(q, \varphi\big(2p^{\,k}\,\big)\right)$ = 1 ($\varphi\,$ is the Euler totient function) and $\,p^{\,k}\,$ + 1 \neq 0,1(mod q) .

Let Z_n be the set of integers modulo $n = 2p^k$. Let $G = 2Z_n^* \subset Z_n$ be the set of all double elements in Z_n^* .

Theorem 5 The set $G = 2Z_n^*$ all doubled elements in Z_n^* is a cyclic multiplicative group with identity element $e = p^k + 1$.

Corollary 6 Let p be an odd prime and $n = 2p$. Then, $G = 2Z_n^*$ the set of all doubled elements in Z_n^* is a cyclic multiplicative group with identity element $e = p + 1$.

Theorem 7 Let G be the cyclic group given in Theorem 5 and $R = Z_q[v]/\langle v^q - v \rangle$ such that

2021, Volume 15, No. 1

 $\gcd\bigl(\varphi\bigl(\,p^{\,k}\,\bigr), q\,\bigr)\! =\! 1$. Also, let u,v ∈ RG be principle zero divisors. Then, (RG)u is an e–constacyclic code of length $\,\varphi\!\left(\rho^{\,\kappa}\,\right)$ and dimension rank(u).

Corollary 8 The dual code of the code given in the Theorem 7 is a e^{-1} -constacyclic code of length $\varphi\!\left(p^{\,\kappa}\,\right)$ and dimension rank $\left(v^{\,}\right) .$

${\bf 3}$ Self Dual and Self Orthogonal Constacyclic Codes over $\left(Z_{\rule{0pt}{2ex} q} \left[v \right. \right] / \left\langle v^{\rule{0pt}{2ex}q} - v \right. \right\rangle) G$

This section is devoted to determining self dual and self orthogonal codes arising from constacyclic codes over group algebras

Lemma 9 Let $C = (\theta(RG)u)$ be an e−constacyclic code of length $\varphi(p^k)$ given in Theorem 7 with dual code $C^{\perp} = \theta((RG)v^{\top})$. Then, the code $C^{\perp} = \theta((RG)v^{\top})$ is also an e^{-1} -constacyclic $\text{code of length}\,\, \varphi\!\left(\rho^{\,k} \,\right)\!.$

Theorem 10 Let $C = (\theta(RG)u)$ be an e−constacyclic code of length $\varphi(p^k)$ given in Theorem 7 with dual code $C^\perp = \theta\big((RG\,)\nu^{\,T}\,\big)$. Then, C is self dual if and only if $e^{\,2} = 1\big(\, \text{mod} \, q\,\big)$ and $u = \nu^{\,T}$. **Corollary 11** Let $C = (\theta(RG)u)$ be an e−constacyclic code of length $\varphi(p^k)$ given in Theorem 7 with dual code $C^{\perp} = \theta((RG)v^T)$. Then, $p^k \equiv 2 \pmod{q}$.

Theorem 12 11 Let $C = (\theta(RG)u)$ be an e−constacyclic code of length $\varphi(p^k)$ given in Theorem 7 with dual code $C^{\perp} = \theta((RG) v^{\top})$. Then, C is self orthogonal if and only if $e^{2} = 1(\bmod q)$ and for some $w \in RG w = uv^T$.

4 Quantum Codes Obtained from Negacyclic Codes over $\left(Z_{_q} \left[v \ \right] / \left\langle v^{\,q} - v \ \right\rangle \right)$ **G**

The construction of quantum codes via classical codes over $F_{_2}$ was first introduced by Calderbank and Shor [4] and Steane [13] in 1996. Later, construction quantum codes over different alphabets obtained from classical linear codes over Fq has been shown by Ketkar et al. in [10]. A quantum error correcting code Q is defined as follows:

2021, Volume 15, No. 1

Definition 14 A q−ary quantum code Q, denoted by $\left[\left[n, k, d \right] \right]_q$ is a q^k dimensional subspace of the Hilbert space C^{q^n} and can correct all errors up to $\frac{d-1}{1}$ $\lceil d-1\rceil$ $\left[\frac{a-1}{2}\right]$.

The following lemma is a method to get quantum error correcting codes via classical linear codes over finite fields.

2

Lemma 15 (CSS Code Construction) [10] Let C_1 and C_2 denote two classical linear codes with parameters $\left[n, k_1, d_1 \right]_q$ and $\left[n, k_2, d_2 \right]_q$ such that $C_2^{\perp} \le C_1$ \pm \leq C₁. Then there exists a $\left[\left[n, k_1+k_2-n, d\right]\right]_q$ quantum code with minimum distance $\begin{aligned} \mathsf{d} = \min \left\{ \! {wt\left(c \right)} \! \big| \! c\in & {\left({{C_1}\backslash {C_2}^\perp } \right)} \! \subset \! {\left({{C_2}\backslash {C_1}^\perp } \right)} \! \right\} \, . \end{aligned}$

Corollary 16 [10] If C is a classical linear $\left[n, k, d \right]_q$ code containing its dual, $C^{\perp} \subset C$ then there exists an $\left[\left[n, 2k - n \right] \geq d \right] \right]_q$ quantum code.

5 Conclusion

In this work, we determine self dual and self orthogonal codes arising from constacyclic codes of length $\varphi\!\left(p^{\,\kappa}\right)$ over group ring $\left(Z_{\,q}\!\left[\nu\,\right]/\!\left\langle\!\nu^{\,q}-\nu\,\right\rangle\right)\!G$. Further, we take look at a quantum codes.

References

[1] Aydin N Siap I and Ray-Chaudhuri D K 2001 Design Code Cryptogr 24 313-326

[2] Berlekamp E R 2015 World Scientific

[3] Bosma W Cannon J and Playoust C 1997 J. Symbolic Comput 24 235-265

[4] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098

[5] Calderbank A R Rains E M Shor P W and Sloane N J A 1998 IEEE Trans. Inform. Theory 44 1369

[6] Hurley T 2006 Int. J. Pure Appl. Math 31 319-335

[7] Hurley P and Hurley T 2009 Int. J. of Inform. and Coding Theory 1 57-87

[8] Kai X and Zhu S 2013 IEEE Trans. Inform. Theory 59 1193-1197

[9] Kai X Zhu S and Li P 2014 IEEE Trans. Inform. Theory 60 2080-2086

[10] Ketkar A Klappenecker A Kumar S and Sarvepalli P K 2006 IEEE Trans. Inform. Theory

52 4892-4914

- [11] Milies C P and Sehgal S K 2002 Springer
- [12] Ling S and Xing C 2004 Cambridge University Press
- [13] Steane A M 1996 Phys. Rev. A 54 4741
- [14] Xiaoyan L 2004 IEEE Trans. Inform. Theory 50 547-549

