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Abstract

Let R is a commutative ring whit Z(R) the set of zero divisors. The total graph
of R, denoted by T'(I'(R)) is the (undirected) graph with all elements of R as
vertices, and two distinct vertices are adjacent if their sum is a zero divisor.
For a graph G = (V, E), a set S is a dominating set if every vertex in V' \ §
is adjacent to a vertex in S. The domination number is equal |S| where |S] is
minimum. For R-module M, an Nagata extension (idealization), denoted by
R(4+)M is a ring with identity and for two elements (r,m), (s,n) of R(+)M
we have (r,m)+(s,n) = (r+s,m+n) and (r,m)(s,n) = (rs,rn+sm). In this
paper, we seek to determine the bound for the domination number of total
graph T(T'(R(+)M)).
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1 Introduction and Preliminaries

Let G = (V, E) be a graph of order |V| = n. For any vertex v € V| the
open neighborhood of v is the set N(v) = {u € V| uv € E'} and the closed
neighborhood of v is the set N[v] = N(v) U{v}. Foraset S C V', the open
neighborhood of S is N(S) = U,es IV (v) and the closed neighborhood of
Sis N[S] = N(S)US. A set S C V is a dominating set if N[S] =V,
or equivalently, every vertex in V' \ S is adjacent to at least one vertex
in S. The domination number v(G) is the minimum cardinality all of a
dominating sets in G. A dominating set with cardinality v(G) is called a
y—set.

We assume throughout that all rings are commutative with 1 # 0. Let R
be a commutative ring with T'(R) its total quotient ring, Reg(R) its set
of regular elements, Z(R) its set of zero divisors, and Nil(R) its ideal of
nilpotent elements. In [5], Anderson and Livingston introduced the zero-
divisor graph of R, denoted by I'(R), as the (undirected) graph with
vertices Z(R)* = Z(R) \ {0}, the set of nonzero zero-divisors of R, and
for distinet x,y € Z(R)*, the vertices z and y are adjacent if and only
if zy = 0. This concept is due to Beck [9], who let all the elements of R
be vertices and was mainly interested in colorings. For some other recent
papers on zero-divisor graphs, see [2,5,7,8,10].

The total graph of R, denoted by T(I'(R)), as the (undirected) graph
with all elements of R as vertices, and for distinct x,y € R, the vertices
x and y are adjacent if and only if x +y € Z(R). Let Reg(I'(R)) be the
(induced) subgraph of T'(I'(R)) with vertices Reg(R), let Z(I'(R)) be the
(induced) subgraph of T'(I'(R)) with vertices Z(R), and let Nil(I'(R)) be
the (induced) subgraph of T'(I'(R)) (and Z(I'(R))) with vertices Nil(R).

Let G be a graph. We say that G is connected if there is a path between
any two distinct vertices of G. For vertices z and y of GG, we define
d(z,y) to be the length of a shortest path from z to y (d(z,z) = 0 and
d(z,y) = oo if there is no such path), see [1,3,4].

Recall that for an R—module M, the idealization of M over R is the
commutative ring formed from R x M by defining addition and multipli-



cation as (r,m)+ (s,n) = (r+s,m+n) and (r,m)(s,n) = (rs,rn+sm),
respectively. A standard notation for this ”idealized ring” is R(+4)M; see
[6] for basic properties of rings resulting from the idealization construc-
tion. The zero-divisor graph I'(R(+)M) has recently been studied in [5]
and [6].

2 Domination of idealization

Definition 2.1 Let R be a commutative ring and M be a R—module.
Idealizer ring M in R is denoted by R(+)M and is defined with two
actions addition and multiplication as follows:

i) (ri,my) + (re,ma) = (r1 + 12, M1 + Mmy)
i) (r1,ma) X (rg, ma) = (rire, rima + ramy)
It is easy to see, R(4)M with two above actions is a commutative ring.

Definition 2.2 Let M be a R—module on commutative ring R. A zero
divisor of module M 1is defined as follows:

Z(M)={reR: 3me M st.rm =0}
Theorem 2.1 Let R be a commutative ring and M is a R—module. Then

Z(R(+)M) = Z(R) x MU Z(M) x M

Proof. Suppose (r,m) € Z(R(+)M), so there is a non-zero (s,n) €
R(+)M such that (r,m)(s,n) = 0. Thus, rs = 0 and rn + sm = 0. Now
if r € Z(R), then the proof is complement. Otherwise s = 0, so rn = 0.
Thus, r € Z(M). Because (s,n) # 0 and s = 0, so n # 0. Therefore,

Z(R(+)M C Z(R) x MU Z(M) x M

The proof of other side of inclusion is easy. O



Lemma 2.1 Let x,y be adjacent in graph T'(I'(R)). Then the all mem-
bers of A, are adjacent with all members of A, in graph T(I'(R(+)M)),
where A, = {(z,m): m € M}

Proof. Suppose (z,m) € A, and (y,n) € A,. Since z and y are adjacent
in graph T(I'(R)), so « +y € Z(R). Therefore, (x,m) + (y,n) = (x +
y,m+n) € Z(R(+)M) and this completes the proof. O

Lemma 2.2 [12] Let D = {(z;,m;) : 1 < i < n} be a set. Then the
following are hold.

i) If D is a minimal dominating of T(T'(R(+)M)), then for every i and

ii) If D is a total minimal dominating set of T(I'(R(4)M)), then there
is a total dominating set D' = {(y;,n;) : 1 < i < n} such that for every

Theorem 2.2 [12] Let R be a commutative ring and M be a R—module.
Then
NT(T(R))) < A(TT(R(+)M))),

If one of the following conditions are established:
i) M be a free torsion R— module.
i) R=Z(R)UU(R).

Theorem 2.3 [12] Let R be a commutative ring and M be a R—module.
Then

WTT(R(+)M))) < %(T(T(R)))-

Theorem 2.4 [12] Let R be a commutative ring and M be a R—module.
Then

T (C(R))) = w(T(T(R(+)M))),
If one of the following conditions are established:

i) M be a free torsion R— module.

ii) R = Z(R)UU(R).



Corollary 2.1 Let R be a finite non-local ring that is not isomorphic
with F' X F' X -« X F such that |F| =2k + 1 and k is odd. Also suppose
M be a R—module. Then

n(T(C(R))) = n(T(T(R(+)M))) = (T (T (R(+)M))) = (T(I'(R)))

Proof. The results are obtained using the theorems 2.1, 2.2 and 2.2. O

3 Domination and localization

Now, under the new conditions we reduce assumption and find a relation
between the following statements.

(T (T(R)), %(TT(R(+)M)))
k.

Theorem 3.1 Let R be a local ring with maximal ideal m and ‘%‘ =
Then v(T'(I'(R)) = k. Moreover, if char(R) # 2, then v(TT(R)) = k.

Proof. Suppose D = {71, T3,...,T,} is a set of cosets of m. We show
that D = {x1,29,...,2,} is a dominator set of total graph on R.

Let x € R. Then for one index 1 < i < k we have T; = —Z. Equivalently,
z; +m = —x + m. Therefore, z; + € m. Since R is local, so m = Z(R),
i. e. x and z; are adjacent.Thus, D dominate total graph T(I'(R)) and
VT(T(R))) < k.

Now, if the set like D" = {y1, 9, . . ., yr_1} dominate total graph T'(I'( R)),
then for two distinct index ¢, 7, x; and z; dominate by only one member of
D' like y,. Thus, z; +y, = m; and z; +y, = m,; are belong to m = Z(R),
as x; — x; = m; +m; € m, and this is equivalent to 7; = ; that is
Contradictory with D. Therefore, v(T(I'(R))) = k.

Finally, if char(R) # 2, then for every i there is one j such that —7; = ;.
So
—Titm=x;+m = r;+Tr;EM



Thats mean the members of D dominate all members of T'(I'(R)), thus,

O

Definition 3.1 We say that the ring is reduced if there is any non-zero
nilpotent member. Equivalently, R is a reduced ring if x* = 0, then x = 0.

Lemma 3.1 [12] If R is a finite reduced ring, then R = [}, F;, where
for every 1 <1i <mn, F; is a finite field.

Theorem 3.2 [12] Let R be a ring but it is not field. Also, suppose
R =TI, F, (n > 2), where F; are field and |Fy| < |F3| < --- < |F,|.
Then
|Fi| =1 R = F and |R| is odd
VT(C(R))) =

| Fi| otherwise

moreover, for every ring we have v (T(I'(R))) = |Fi|.

Theorem 3.3 [11] Let R = Ry X RyX...XR,,, where for every1 < i <n,
(R;, m;) be local rings and % = min {jLﬁfJ 1< S}. If n > 2 and for
eld, then

at least one 1 < k <n, ring Ry is not

AT (R) = (T (R) = |

Lemma 3.2 Let R be a commutative ring and p be a prime ideal. Then

Z(Ry) = (Z(R))p-

Proof. Let 0 # £ € Z(R,), so there is ¥ € R, that £ -¥ = 0. Thus, there
is 7 € R — p such that rzy = 0, but x # 0 and ry # 0. Otherwise, ¢ = 0
and % = 0, that is a contradiction. Therefore, v € Z(R) and 7 € (Z(R)),.
So we have

2(Ry) € (Z(R)),

On the other, let 0 # £ € (Z(R)),, then z € Z(R) and s € R,,. So there
is 0 # y € R that zy = 0. Now we have 7 - § = “¥ = 0. We show ¥ # 0.
Otherwise there is r € R — p such that ry = 0. Since p is prim ideal, so



y €p,but z(r —y)=0and r —y € R — p. Thus,
T r—y x(r—y) 0
r—y str—y) sr—y)

=0,

» |8

that is a contradiction. Therefore, ¥ # 0 and this indicates that ¥ € Z(R)
and the proof is complete. O

Lemma 3.3 If (R, m) is local ring, then v(T(I'(R))) = v(T(I'(£))).

Proof. Let S = {x,29, -+, 2} be a y-set for T(I'(R)). Then suppose
S = {%1,%, -+ , 71} and show that this set dominate graph T(I'(£)).
An arbitrary element in % is form § which y € R, so there is z; € S such
that y +x; € Z(R) and y + x; = §+T; = 0. Therefore, 7 is adjacent z;,
i.e. S dominate T(I'(£)), thus,

WTT(R)) 2 A (TITC))-
The other side of the inequality is proved to be the same and the equality

is established. O

Theorem 3.4 [6] Let R be a commutative ring, I a ideal, M a R—module
and N be a submodule of M. Then I(+)M is a ideal of ring R(+)M

iff IM C N. When I(+)M is a ideal, then % s a ?—module and
R(+H)M __ R(+)M

N — 1

N

Theorem 3.5 [6] Let R be a commutative ring and M be a R—module.
Mazimal ideal of R(+)M is m(+)M if m is mazimal ideal of R. Also, ring
R(+)M s quasi-local iff R be a quasi-local ring. Moreover, J(R(+)M) =
J(R)(+)M.

Theorem 3.6 Let R be a local ring that not field and M be a R—module.
Then w(T(I'(R))) = (T (T'(R(+)M))).

Proof. Let m be a maximal ideal of R. Then by Theorem 3.5, m(+)M
is a maximal ideal of R(+)M. Also, by Theorem 3.4 we have:
R+)M R M R
m(H-)M  m> M m

(0=



So R(+)M is local ring. Now, using Lemma 3.3, the proof is completed. O

Theorem 3.7 Let R be a non-local ring and p be a ideal of R. Suppose
R, is a local ring of R with mazimal ideal pR,. Then (T (I'(R))) <

1 (T(C(Ry)))-

Proof. Let D = {;”11, ’S”j, . } be a total dominating set for R,. With-

out reducing the whole problem can be set D as follows to preserve the
domination property:

Ty T2 T
po{mn
s’ s S

where s = s189...5,.

We put y; = 5;x;, where 5; = 5159...8;_1S;41 - .- Sp. S0 we have ’g—z =4,

Now, we show that S = {y1,92,...,y,} is a total dominating set for R.
Suppose x € R. Then { € R,. So there is % such that ”yl =+ %€

Z(Ry) = (2(R)),, as x 4 y; € Z(R). Therefore, S is a total dominating
set for R and the result follows. O
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