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Abstract

Let R is a commutative ring whit Z(R) the set of zero divisors. The total graph
of R, denoted by T (Γ(R)) is the (undirected) graph with all elements of R as
vertices, and two distinct vertices are adjacent if their sum is a zero divisor.
For a graph G = (V,E), a set S is a dominating set if every vertex in V \ S
is adjacent to a vertex in S. The domination number is equal |S| where |S| is
minimum. For R-module M , an Nagata extension (idealization), denoted by
R(+)M is a ring with identity and for two elements (r,m), (s, n) of R(+)M
we have (r,m)+(s, n) = (r+s,m+n) and (r,m)(s, n) = (rs, rn+sm). In this
paper, we seek to determine the bound for the domination number of total
graph T (Γ(R(+)M)).
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1 Introduction and Preliminaries

Let G = (V,E) be a graph of order |V | = n. For any vertex v ∈ V , the
open neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E} and the closed
neighborhood of v is the setN [v] = N(v)

⋃{v}. For a set S ⊆ V , the open
neighborhood of S is N(S) =

⋃
v∈S N(v) and the closed neighborhood of

S is N [S] = N(S)
⋃
S. A set S ⊆ V is a dominating set if N [S] = V ,

or equivalently, every vertex in V \ S is adjacent to at least one vertex
in S. The domination number γ(G) is the minimum cardinality all of a
dominating sets in G. A dominating set with cardinality γ(G) is called a
γ−set.

We assume throughout that all rings are commutative with 1 6= 0. Let R
be a commutative ring with T (R) its total quotient ring, Reg(R) its set
of regular elements, Z(R) its set of zero divisors, and Nil(R) its ideal of
nilpotent elements. In [5], Anderson and Livingston introduced the zero-
divisor graph of R, denoted by Γ(R), as the (undirected) graph with
vertices Z(R)∗ = Z(R) \ {0}, the set of nonzero zero-divisors of R, and
for distinct x, y ∈ Z(R)∗, the vertices x and y are adjacent if and only
if xy = 0. This concept is due to Beck [9], who let all the elements of R
be vertices and was mainly interested in colorings. For some other recent
papers on zero-divisor graphs, see [2,5,7,8,10].

The total graph of R, denoted by T (Γ(R)), as the (undirected) graph
with all elements of R as vertices, and for distinct x, y ∈ R, the vertices
x and y are adjacent if and only if x+ y ∈ Z(R). Let Reg(Γ(R)) be the
(induced) subgraph of T (Γ(R)) with vertices Reg(R), let Z(Γ(R)) be the
(induced) subgraph of T (Γ(R)) with vertices Z(R), and let Nil(Γ(R)) be
the (induced) subgraph of T (Γ(R)) (and Z(Γ(R))) with vertices Nil(R).

Let G be a graph. We say that G is connected if there is a path between
any two distinct vertices of G. For vertices x and y of G, we define
d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and
d(x, y) =∞ if there is no such path), see [1,3,4].

Recall that for an R−module M , the idealization of M over R is the
commutative ring formed from R×M by defining addition and multipli-
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cation as (r,m) + (s, n) = (r+ s,m+n) and (r,m)(s, n) = (rs, rn+ sm),
respectively. A standard notation for this ”idealized ring” is R(+)M ; see
[6] for basic properties of rings resulting from the idealization construc-
tion. The zero-divisor graph Γ(R(+)M) has recently been studied in [5]
and [6].

2 Domination of idealization

Definition 2.1 Let R be a commutative ring and M be a R−module.
Idealizer ring M in R is denoted by R(+)M and is defined with two
actions addition and multiplication as follows:

i) (r1,m1) + (r2,m2) = (r1 + r2,m1 +m2)

ii) (r1,m1)× (r2,m2) = (r1r2, r1m2 + r2m1)

It is easy to see, R(+)M with two above actions is a commutative ring.

Definition 2.2 Let M be a R−module on commutative ring R. A zero
divisor of module M is defined as follows:

Z(M) = {r ∈ R : ∃m ∈M s.t. rm = 0}

Theorem 2.1 Let R be a commutative ring and M is a R−module. Then

Z(R(+)M) = Z(R)×M ∪ Z(M)×M

Proof. Suppose (r,m) ∈ Z(R(+)M), so there is a non-zero (s, n) ∈
R(+)M such that (r,m)(s, n) = 0. Thus, rs = 0 and rn+ sm = 0. Now
if r ∈ Z(R), then the proof is complement. Otherwise s = 0, so rn = 0.
Thus, r ∈ Z(M). Because (s, n) 6= 0 and s = 0, so n 6= 0. Therefore,

Z(R(+)M ⊆ Z(R)×M ∪ Z(M)×M

The proof of other side of inclusion is easy. 2
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Lemma 2.1 Let x, y be adjacent in graph T (Γ(R)). Then the all mem-
bers of Ax are adjacent with all members of Ay in graph T (Γ(R(+)M)),
where Ax = {(x,m) : m ∈M}

Proof. Suppose (x,m) ∈ Ax and (y, n) ∈ Ay. Since x and y are adjacent
in graph T (Γ(R)), so x + y ∈ Z(R). Therefore, (x,m) + (y, n) = (x +
y,m+ n) ∈ Z(R(+)M) and this completes the proof. 2

Lemma 2.2 [12] Let D = {(xi,mi) : 1 ≤ i ≤ n} be a set. Then the
following are hold.

i) If D is a minimal dominating of T (Γ(R(+)M)), then for every i and
j, xi 6= xj.

ii) If D is a total minimal dominating set of T (Γ(R(+)M)), then there
is a total dominating set D′ = {(yi, ni) : 1 ≤ i ≤ n} such that for every
i 6= j, yi 6= yj.

Theorem 2.2 [12] Let R be a commutative ring and M be a R−module.
Then

γ(T (Γ(R))) ≤ γ(T (Γ(R(+)M))),

If one of the following conditions are established:

i) M be a free torsion R− module.

ii) R = Z(R)
⋃
U(R).

Theorem 2.3 [12] Let R be a commutative ring and M be a R−module.
Then

γt(T (Γ(R(+)M))) ≤ γt(T (Γ(R))).

Theorem 2.4 [12] Let R be a commutative ring and M be a R−module.
Then

γt(T (Γ(R))) = γt(T (Γ(R(+)M))),

If one of the following conditions are established:

i) M be a free torsion R− module.

ii) R = Z(R)
⋃
U(R).
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Corollary 2.1 Let R be a finite non-local ring that is not isomorphic
with F × F × · · · × F such that |F | = 2k + 1 and k is odd. Also suppose
M be a R−module. Then

γt(T (Γ(R))) = γt(T (Γ(R(+)M))) = γ(T (Γ(R(+)M))) = γ(T (Γ(R)))

Proof. The results are obtained using the theorems 2.1, 2.2 and 2.2. 2

3 Domination and localization

Now, under the new conditions we reduce assumption and find a relation
between the following statements.

γt(T (Γ(R)), γt(T (Γ(R(+)M)))

Theorem 3.1 Let R be a local ring with maximal ideal m and
∣∣∣R
m

∣∣∣ = k.

Then γ(T (Γ(R)) = k. Moreover, if char(R) 6= 2, then γt(TΓ(R)) = k.

Proof. Suppose D = {x1, x2, . . . , xn} is a set of cosets of m. We show
that D = {x1, x2, . . . , xn} is a dominator set of total graph on R.

Let x ∈ R. Then for one index 1 ≤ i ≤ k we have xi = −x. Equivalently,
xi +m = −x+m. Therefore, xi + x ∈ m. Since R is local, so m = Z(R),
i. e. x and xi are adjacent.Thus, D dominate total graph T (Γ(R)) and
γ(T (Γ(R))) ≤ k.

Now, if the set like D′ = {y1, y2, . . . , yk−1} dominate total graph T (Γ(R)),
then for two distinct index i, j, xi and xj dominate by only one member of
D′ like yt. Thus, xj + yt = mj and xi + yt = mi are belong to m = Z(R),
as xi − xj = mi + mj ∈ m, and this is equivalent to xi = xj that is
Contradictory with D. Therefore, γ(T (Γ(R))) = k.

Finally, if char(R) 6= 2, then for every i there is one j such that −xi = xj.
So

−xi +m = xj +m ⇒ xi + xj ∈ m
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Thats mean the members of D dominate all members of T (Γ(R)), thus,

γt(T (Γ(R))) = γ(T (Γ(R))) = k.

2

Definition 3.1 We say that the ring is reduced if there is any non-zero
nilpotent member. Equivalently, R is a reduced ring if x2 = 0, then x = 0.

Lemma 3.1 [12] If R is a finite reduced ring, then R =
∏n

i=1 Fi, where
for every 1 ≤ i ≤ n, Fi is a finite field.

Theorem 3.2 [12] Let R be a ring but it is not field. Also, suppose
R =

∏n
i=1 Fi (n ≥ 2), where Fi are field and |F1| ≤ |F2| ≤ · · · ≤ |Fn|.

Then

γ(T (Γ(R))) =

 |F1| − 1 R = F n
1 and |R| is odd

|F1| otherwise

moreover, for every ring we have γt(T (Γ(R))) = |F1|.

Theorem 3.3 [11] Let R = R1×R2×. . .×Rn, where for every 1 ≤ i ≤ n,

(Ri,mi) be local rings and
∣∣∣R1

m1

∣∣∣ = min
{∣∣∣Ri

mi

∣∣∣ : 1 ≤ i ≤
}

. If n ≥ 2 and for
at least one 1 ≤ k ≤ n, ring Rk is not field, then

γ(T (Γ(R))) = γt(T (Γ(R))) =
∣∣∣∣R1

m1

∣∣∣∣ .
Lemma 3.2 Let R be a commutative ring and p be a prime ideal. Then
Z(Rp) = (Z(R))p.

Proof. Let 0 6= x
s
∈ Z(Rp), so there is y

t
∈ Rp that x

s
· y
t

= 0. Thus, there
is r ∈ R− p such that rxy = 0, but x 6= 0 and ry 6= 0. Otherwise, y

t
= 0

and x
s

= 0, that is a contradiction. Therefore, x ∈ Z(R) and x
s
∈ (Z(R))p.

So we have

z(Rp) ⊆ (Z(R))p

On the other, let 0 6= x
s
∈ (Z(R))p, then x ∈ Z(R) and s ∈ Rp. So there

is 0 6= y ∈ R that xy = 0. Now we have x
s
· y
1

= xy
s

= 0. We show y
1
6= 0.

Otherwise there is r ∈ R − p such that ry = 0. Since p is prim ideal, so
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y ∈ p, but x(r − y) = 0 and r − y ∈ R− p. Thus,

x

s
=
x

s
· r − y
r − y

=
x(r − y)

s(r − y)
=

0

s(r − y)
= 0,

that is a contradiction. Therefore, y
1
6= 0 and this indicates that x

s
∈ Z(R)

and the proof is complete. 2

Lemma 3.3 If (R,m) is local ring, then γ(T (Γ(R))) = γ(T (Γ(R
m

))).

Proof. Let S = {x1, x2, · · · , xk} be a γ-set for T (Γ(R)). Then suppose
S = {x1, x2, · · · , xk} and show that this set dominate graph T (Γ(R

m
)).

An arbitrary element in R
m

is form y which y ∈ R, so there is xj ∈ S such
that y+ xj ∈ Z(R) and y + xj = y+ xj = 0. Therefore, y is adjacent xj,
i.e. S dominate T (Γ(R

m
)), thus,

γ(T (Γ(R))) ≥ γ(T (Γ(
R

m
))).

The other side of the inequality is proved to be the same and the equality
is established. 2

Theorem 3.4 [6] Let R be a commutative ring, I a ideal, M a R−module
and N be a submodule of M . Then I(+)M is a ideal of ring R(+)M
iff IM ⊆ N . When I(+)M is a ideal, then M

N
is a R

I
−module and

R(+)M
I(+)N

= R
I

(+)M
N

.

Theorem 3.5 [6] Let R be a commutative ring and M be a R−module.
Maximal ideal of R(+)M is m(+)M if m is maximal ideal of R. Also, ring
R(+)M is quasi-local iff R be a quasi-local ring. Moreover, J(R(+)M) =
J(R)(+)M .

Theorem 3.6 Let R be a local ring that not field and M be a R−module.
Then γt(T (Γ(R))) = γt(T (Γ(R(+)M))).

Proof. Let m be a maximal ideal of R. Then by Theorem 3.5, m(+)M
is a maximal ideal of R(+)M . Also, by Theorem 3.4 we have:

R(+)M

m(+)M
=
R

m
(+)

M

M
=
R

m
(+)0 =

R

m
.
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SoR(+)M is local ring. Now, using Lemma 3.3, the proof is completed. 2

Theorem 3.7 Let R be a non-local ring and p be a ideal of R. Suppose
Rp is a local ring of R with maximal ideal pRp. Then γt(T (Γ(R))) ≤
γt(T (Γ(Rp))).

Proof. Let D =
{
x1

s1
, x2

s2
, . . . , xn

sn

}
be a total dominating set for Rp. With-

out reducing the whole problem can be set D as follows to preserve the
domination property:

D =
{
x1
s
,
x2
s
, . . . ,

xn
s

}
where s = s1s2 . . . sn.

We put yi = sixi, where si = s1s2 . . . si−1si+1 . . . sn. So we have xi

si
= yi

s
.

Now, we show that S = {y1, y2, . . . , yn} is a total dominating set for R.
Suppose x ∈ R. Then x

s
∈ Rp. So there is yi

s
such that x+yi

s
= x

s
+ yi

s
∈

Z(Rp) = (z(R))p, as x + yi ∈ Z(R). Therefore, S is a total dominating
set for R and the result follows. 2
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