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1 Introduction

Throughout the paper unless otherwise stated, H denotes a real Hilbert space, we denote the norm and inner
product of H by (.,.) and |.||, respectively. The set C' (C' be a nonempty closed convex subset of H) is called
proximinal if for each € H, there exists an element y € C such that ||z — y| = d(x,C), where d(z,C) =
inf{||z—z|| : z € C}. Let CB(D), K(C) and P(C) be the families of nonempty closed bounded subsets, nonempty
compact subsets, and nonempty proximinal bounded subsets of C, respectively. The Hausdorff metric on CB(C)
is defined by

H(A, B) = max{supd(z, B),supd(y,A)}, A,Be CB(C).
€A yeB

A multi-valued mapping 7' : C' — C'B(C) is said to be nonexpansive if H(Tz,Ty) < |[z — y|| forall z,y € C. An
element p € C is called a fixed point of 7' : C' — C'B(C) if p € T'p. The fixed points set of T" is denoted by Fix(7").

A mapping M : C — H is said to be monotone, if
(Mx — My,z —y) >0, Vax,yecC.
M is called a-inverse-strongly-monotone if there exist a positive real number « such that

(Mz — My,z —y) > o|Mz — My|*, Vz,ye€C.
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It is obvious that any a-inverse strongly monotone mapping M is monotone and Lipschitz continuous.
Ceng et.al [5], introduced the following generalized mixed equilibrium problem with perturbation: Find z* €
C such that
f@*,y) +(A+ B)z*,y —z*) >0, Vy € C. (1.1)

where A, B : C — H are nonlinear mappings, ¢ : C — R is a function and f : C x C — R is a bifunction.
The problem (1.1)is very general in the sense that it includes, as special cases, optimization problems, variational
inequalities, minimax problems, Nash equilibrium problems in noncooperative games and others [2, 3, 4, 15, 18]

Very recently, Azhini and Taherian [16], motivated by [5, 19], proposed the following iteration process for
finding a common element of the set of solutions of variational inequality (1.1) and the set of common fixed points
of infinitely many nonexpansive mappings {5, } of Cinto itself and proved the strong convergence of the sequence
generated by this iteration process to an element of F/(PcS) = (2, F(PcSy)-

Tn

Tn+l = BnPCf(xn) + TnTn + /\nPC'Sn[anZ + (1 - an)un]y Vn € N, '

where 3, + v, + A\ = 1.

Motivated and inspired by Azhini and Taherian [16], Ceng et.al [5] and Takahashi [19] we introduce the it-

erative algorithm for finding a common element of the set of fixed point of a nonexpansive set-valued mapping
in a real Hilbert space. Some strong convergence theorems and lemmas of the proposed algorithm are proven
under new techniques and some mild assumption on the control conditions. Finally, some numerical examples
that show the efficiency and implementation of our algorithm are presented.
The paper is structured as follows. In Section 2, we collect some lemmas, which are essential to prove our main
results. In Section 3, we introduce a new algorithm for finding a common element of the set of fixed point of a
nonexpansive set-valued mapping in a real Hilbert space. Then, we establish and prove the strong convergence
theorem under some proper conditions. In Section 4, we also give some numerical examples to support our main
theorem.

2 Preliminaries

Let H be a Hilbert space and C' be a nonempty closed and convex subset of H.For each point z € H, there exists
a unique nearest point of C, denote by Prx, such that ||z — Poz|| < ||z — y|| for all y € C. P is called the metric
projection of H onto C. It is well known that P. is nonexpansive mapping. Recall that a mapping 7' : H — H is
said to be firmly nonexpansive if

(Tz —Ty,x —y) > Tz - Ty|? ~ Va,yeH.
It is also known that H satisfies Opial’s condition [13], i.e., for any sequence {z,,} with x,, — z, the inequality

liminf||z,, — || < liminf |z, — y|| (2.1)
n—oo n—o0

holds for every y € H with y # .
The following lemmas will be used for proving the convergence result of this paper in the sequel.
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Lemma 2.1. [1] Let C be a nonempty and weakly compact subset of a Banach space E with the Opial condition
and T : C — K(F) a nonexpansive mapping. Then I — T is demiclosed.

Lemma 2.2. [6] The following inequality holds in real space H :

lz +ylI* < ll=)|* + 20y, @ +y), Va,y € H.

Lemma 2.3. [7] Let C be a closed and convex subset of a real Hilbert space H and T : C — CB(C) be a
nonexpansive multi-valued map with Fix(T) # 0, and Tp = {p} for each p € Fix(T). Then Fix(T) is a closed and
convex subset of C.

Lemma 2.4. [9] Let F : C x C' — R be a bifunction satisfying Assumption 2 and let T be defined as in Lemma
2.5,forr > 0. Let x,y € H and t,s > 0. Then,

F F S
|T5y =T z|| <|lz =yl +|

—t
TFy — .
. 15y — vl

Lemma 2.5. [10] Let C be a nonempty, closed convex subset of H and let F : C x C — R be a bifunction
satisfying Assumption 2. Then for r > 0 and x € H, there exists z € C such that F(z,y) + +(y — z,z — z) >
0, vy e C.

Further define

1
fo:{zeC’:F(z,y)Jr;(y—z,z—ﬂ:)20}, Yy e C

forallr > 0and x € H. Then, the following hold:
(i)TF is single — valued.

(ii)TF is firmly nonexpansive,i.e.,
1T (@) = T )1 < (L7 (@) = TF ()2 —y), Yo,y € H.
(iii)Fix(TF) = EP(F).

(iv)EP(F) is compact and convez.

Lemma 2.6. [11] Assume that B is a strong positive linear bounded self adjoint operator on a Hilbert space H
with coefficient ¥ > 0and 0 < p < || B|~L.

Lemma 2.7. [12, 17] Let C be a closed and convex subset of a real Hilbert space H and let Pc be the metric
projection from H onto C. Given z € H and z € C. Then z = Pgz if and only if

(x —z,y—2) <0, Yy € C.

Lemma 2.8. [14] Let {x,,} and {y,} be bounded sequences in a Banach space X and {3, } be a sequence in [0, 1]
with 0 < liminf,, . 8, <limsup,,_,. B, < 1. Suppose
Tp+1 = (1 — Bn)yn + Bnxn, for all integers n > 0 and limsup,,_, . ([|yn+1 — ynll — |Zn+1 — zn]|) < 0. Then
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Lemma 2.9. [20] Let {a, } be a sequence of nonnegative real numbers such that
ant+1 < (1 — ap)an + 6,, n > 0where o, is a sequence in (0, 1) and §,, is a sequence in R such that

)

(1) Xpljan =o00; (i) limsup, =<0 or X526, <oo.

Then lim,,_,oc a, = 0.

Lemma 2.10. [19] Let F : C x C — R be a bifunction satisfying Assumption 2 and let T'" be defined as in
Lemma 2.5, forr > 0. Let x € H and s,t > 0. Then,

—t
|7 = 1] 2 |? < (T (2) = T (), T (2) - ).

Let F : C x C — R be a bifunction satisfying the following assumptions:

1. F(x,z) >0, Vz e,
2. Fis monotone, i.e., F(z,y) + F(y,z) <0, Vz € C,

3. F is upper hemicontinuouse, i.e., for each z,y, 2 € C,

limsup,_, F(tz + (1 —t)z,y) < F(x,y),

4. For each z € C fixed, the function x — F'(z,y) is convex and lower semicontinuous;

3 A Nonlinear Iterative Algorithm

Let C be a nonempty closed convex subset of real Hilbert space H. Let F' : C x C — R be a bifunction sat-
isfying Assumption 2. Let M, N be two a-inverse strongly monotone and j3-inverse strongly monotone map-
pings from C into H, respectively. Let T' be a nonexpansive multi-valued mapping on C' into K(H) such that
© = Fix(T) N GEPP # (. Also f : C — H be a a-contraction mapping and A, B be a strongly positive bounded
linear self adjoint operators on H with coefficient ; > 0 and 4, > 0 respectively such that 0 < v < 2 < v+ 1,
71 < ||A]| £ 1 and | B|| = #2. For given x( € C arbitrary, let the sequence {z, } be generated by:

Uy = Tfi(mn — (M + N)zyp);

(3.1
Tnt1 = QY f(xn) + BunBry + (1 — €,)I — BB — anA)zy,

where z,, € Tu, such that ||z,+1 — z,,|| < H(Tups1, Tuy).
Let {a,}, {Bn}, {€n} are sequences in (0, 1), {r,} C [r,00) with r > 0 satisfied the following conditions:
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(CHlimy, 00 0y, = 0, X2 0, = 005
(C2)limsup,,_, . Bn # 1;

(C3)lim,, o0 |[Tnt1 — 70| = 0, liminf, ,oo7, >0, 0<b <71, <a<2min{a, }.
Lemma 3.1. Let p € © = Fix(T) N GEPP. Then the sequence {x,,} generated by Algorithm 3 is bounded.

proof: We may assume without loss of generality that o, < (1 — ¢, — 3,|/BJ|)||Al| . Since A and B are linear
bounded self adjoint operators, we have

[A[l = sup{|[(Az, )| : x € H, ||z]| = 1},
|B|l = sup{|(Bz,z)| : 2 € H, ||| = 1}

observe that
(1 —€ep) — BpB — anA)x,z) = (1 —¢€y)(x,x) — Bp(Bx,z) — an(Az, x)
> 1 —en = Bul Bl — ol All

> 0.

Therefore, (1 —€,)I — 5,B — a, A is positive. Then, by strong positivity of A and B, we get
|(1—ex)I — BB — anA|l =sup{{((1 —ex)] — BB — anA)z,z) x € H, ||z|| = 1}

=sup{(1 — e,)(z,z) — Bp(Bx,x) — an(Az,z) : x € H, ||z|| = 1}

(3.2)
<1l-—¢€,— 571’72 — apY1
<1- B2 — aph.
Let p € © := Fix(T') N GEPP. Since p € GEPP, from Theorem 3.1 [16] we have
[un —pl* < @ — plI® + ra(rn — 20) | M, — Mpl|® + ro(rn — 23) | Nazn — Npl|?
(3-3)

< Hxn - p”Q'

Then

[un = pll < llzn — pl|-
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We obtain
[Zn41 =Pl = llewvf(zn) + BrBan + (1 — )] — BuB — and)zn — p||

< an|lvf(zn) — Ap|| + Bul|Bxn — Bp|l + e|lpl|
(1 = en)I = BuB — anA)||llzn — pl|

< an(|vf(zn) =7 f @I + 17 (p) — Apll) + Bnl|Bxn — Bpl| + eullp||
+(1 = Bn¥2 — any1)d(2n, Tp)

< apyal|zy — pll + anllvf(p) — Apll + Br¥2llzn — pll + cnllp]|

(3-4)

+(1 = Bn¥2 — any1) H(Tun, Tp)

< apyal|zy — pll + anllvf(p) — Apll + Bu¥2ll2n — pll + cnllp]|
+(1 = BnY2 — any1)llun — pl|

< (1= (n —ya)aw)||zn = pll + anllpll + [Ivf(p) — Apll)

—Ap||+
< max{||z, — p|, LR=2eIlely

—Ap|+
< max{||zo — p||, ||7f(p'_31_$0|é| il 1.

Hence {z,} is bounded.This implies that the sequences {u,}, {z,} and { f(x,)} are bounded.

Lemma 3.2. The following properties are satisfying for the Algorithm 3

P1l. lim, . |[|Znt1 — za|| = 0.
P2. lim,_ ||zn — tn|| = 0.
P3. lim,_, [[Mx, — Mp||=0 and lim,_, ||[Nz, — Np|| = 0.

P4, limy e ||2n — wnl| = 0.
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proof: P1:We have

unt1 —unll = ”Trn+1(xn+1 — i1 (M + N)zpy1) = Do, (0 — 70 (M + N)zy) ||

< N(@nt1 = 1 (M + N)zpi1) — (20 — 10 (M + N)ay) |

(3.5)
L=l T @t = Pt (M 4 N)@ns1) = @ng1 = Tapt (M 4 N)ang)|
< @t = @l + [rner = al (M + N)(@ns1 — 20) | + 2282202l
where
On+1 = SUPen (| Trp iy (Tt — Tt (M + N)zpi1) — (Tng1 — Tapr (M + N)apg) |-
Setting x,,+1 = e,z + (1 — €,)e,, then we have
e _ _ ant17f (@nt1) +Bnt1 Brnt1+((1—€nt1) I —Bnt1B—ant14) 2nt1—€nt1Tn+1
n+1 — €n = j—
_ an’}’f(mn)+BnBl’n‘f’((l*ﬁn)I*ﬁnB*anA)zn76,”1'“
1—epn
= %(Vf(‘rnﬂ-l) - Azn-i-l) + 1gzn (Azn - ’Yf(xn))
Brntl Bn B _ _
+(1_6n+1 1—en) (Tny1 — o) + (Zns1 — 2n)
(2 = ) Benin = ) + (12 = 1) (@0 — wnn)
1—en 1—ep+1 Zn+1 Zn 1—en 1—ep+1 Tn Tnt1)-
Using (3.5), we have
51 @ Theory of Approximation and Applications
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lent1 — enll

< P2y f (1) — Azt | + 1227 f (@) — Azall + 12225 — 2Bl —

— l—€nt1 € €n+41

izt = zall + 1125 = 225 IBllllz041 — zall + 15252 — 12zt — 2l

T2 |y f (1) = Azns || + 12 0 f (@) — Azall + 13225 — 12| Bll|@ns1 — 2|

— l—€ep+t1 €En+1

+H (T, Tun) + |12 — 2250 | B H (T, Tun) + 125 — 19|21 — 2]

1—€nt1

T2 7 f (@n1) = Aznia || + 1217 (@n) — Aza]l + | 22525 — 22| Bl @n i1 — 2

— l—ep+t1 € €nt1

a1 = unll + 1122 = 22 [|B 1 — | + 725 — 12|21 — a0

< 2y f (1) — Aznal] + 122 7 () — Azall + 1225 — By —

Fllznsr — 2]l + [ract — ol (M + N) (@41 — )| + Il

Tn+1
+ 1@2” - %Wﬂ”anA — Zp|| + |Tng1 — | |(M + N)(@nt1 — zn)|| + %a 1)
ey — e — ),

which implies

lent1 = enll = [l2n+1 — 2n]|

< P22y f (@nt1) — Azart | + 122117 (@n) = Azl + 11252 — 22|z — @

— l—ent1 € €n+41

Hrner = ral| (M + N)(@g1 — @) || + Imt=rnls

Tn+1
e — L 5o (|anss — @l + [rss = ralll(M + N)(@ng1 — 2)]| + 2220200, )
+|1i7;:_1’_1 - .’En”

Hence, it follows by conditions (C'1) — (C4) that

limsup([lent1 = enll = l#n1 = znll) < 0. (3.6)
n—oo

From (3.6) and Lemma 2.8, we get lim,, ,, ||e, — z,,|| = 0, and then
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lim ||z,41 — x| = lim (1 — €,)||en, — x| = 0. (3.7)
n—oo n—oo
P2: We can write
H-Tn - Zn” < Hxn-i-l - 'an + ||O‘n7f(xn) + BpBxy + ((1 - €n)I — BnB — O5n"4)zn - ZnH
S wng1 — zoll + anllvf(2n) — Azl + Bull Brn — Byl + €nl|znl|
S wng1 — zoll + anllvf(@n) — Azl + Buellzn — 2ull + enllznll-

Then
(1= B2 lrn — zall < [|Tns1 — @all + anlvf(20) — Azn|| + €nll2zal|-

Therefore lon = zall - < =go; lent1 — @nll + 255117 (20) — Atall + =555 2l

< e — ol + =5 (1 @) — Azall + 2.

Since o, — 0, ||z+1 — z,|| — 0 and (C2) we obtain
lim [l — 20| = 0. (3.8)

P3: From (3.3), we have
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[y
= llanyf(2n) + BnBrn + (1 = en)I = BpB — anA)z, — p|?
= lan(vf(xn) = Ap) + Bp(Bzn — Bp) + (1 — )] — BB — anA)(2n — p) — €np|®
< (X — eI = BuB — anA)(2n — p) + Bu(Bzryn — Bp) — enp|?
+2{an(vf(2n) — Ap), Tnt1 — p)
< ((1 = B2 — an§1)d(zn, TP) + BullBlllzn — 2ull + €nllpl)? + 200 (v (20) — Ap, 2n41 — p)
< (1= Bu¥2 = an1) H(Tun, Tp) + Bul| Bl |20 — 2l + €nllpl)?
(3.9)
200 (7f(2n) — Ap, Tny1 — p)
< (1= B2 = an¥1)llun = pll + BallBlll|zn — 2l + €nllpl])?
200 (f(2n) — Ap, Tns1 — p)
= (1= Bu¥2 — an1)?lun = plI? + (Ba)IIBIP 120 — 2nl® + (€n)?[Ipl1?
+2(1 = B2 — an1)Bal| Bllllun — pllllzn — znll

+2(1 = Bny2 — anY)enl|pllllun — pll + 28nen|| Blll|pll[|2n — 2n||

+2O‘n<7f($n) — Ap, Tnt+1 — p>
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< (1= B2 — anW1)*(|on = plI? + ra(rn — 2a)[|May, — Mpl|* + ra(rn — 28)|| Nz, — Np|?)
+(Bn) I BIPlzn — znll” + (en)?lIplI* + 2(1 = Bue — 1) Bull Bllllun — pll|an — 2nl|
+2(1 = B2 — anT1)enl Pl lun — pll + 2Bnenl Bll[pll 120 — 20l
+200 (7 f (2n) — Ap, Tni1 — p)

< wn = plI* + (Bay2 + any)* |z — pl|?
+(1 = B2 — anT1)*(ra(rn — 2a)[|May, — Mp||* 4 ro(rn — 28) [Nz, — Np|?)
+(Bn) I BIPl|zn — zll” + (en)?lIplI* + 2(1 = Bue — 1) Bull Bllllun — plllan — 2nl|
+2(1 = B2 — anY1)enl Pl lun — pll + 2Bnenl Bll[pll 120 — 20l

+2an<7f($n) — Ap,Tpt1 — p>'
By (C3), we can write

(1= B2 — an¥1)? (rn (26 — 1) | M — Mpl|* + 700(28 — 1) [ N2y — Np|?)

< llen = plI? = llonts = plI? + (Ba2 + an¥1) 2 — plI? + (Ba) 21 BIPllzn — 2nll* + (an)?[1pII?
+2(1 = Buy2 — an¥1)Bull Bl [[un = pllllzn — 2nll + 2(1 = Buy2 — anF)ewnlpll[lun — pl|
+2Bnenl| BlllIplllzn — 2znll + 2an{vf (20) — Ap, &ni1 — p)

< (lzn = pll + lzn41 = pID#n — znsall + (B2 + an¥1)?lzn — plI* + (Ba) 2 B2 — 20
+(an)?[Ipl* +2(1 = Bu¥2 — an¥1)Bull Blllun = pllll2n — 2nll
+2(1 = Bny2 — anY)an|[plllun — pll + 2Bnenl| Blll|pll[|2n — 2nll

+2O‘n<7f($n) — Ap, Tnt+1 — p>'

Bya, — 0, ||zp+1 —2xn|| — 0and ||z, — z,|| — 0, then we obtain | M x,, — Mp|| — 0and | Nz, — Np|| = 0 asn — oo.

P4: Since p € © = Fix(T') N GEPP, we can obtain
lun = plI* < llzn = plI* = llun — zall® + 2rn|lun — 20| (M@0 — Mp|| + [Nz — Npl)),

. It followes from (3.9) that
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[2n1 = plI> < (1= Bu¥2 — an¥1)?[lun — pI* + (Ba)? [ BIP[|2n — 2nll* + (en)?[IpI1?
+2(1 = B2 — an¥1) Bull Bllllun — pllllzn — 24|
+2(1 = B2 — an¥1)en|pllllun — pll + 2Bnenl| Bll[[pll|[2n — 20l
+2an (v f(2n) — Ap, Tnt1 — p)
< (1= B2 — an¥1)*(|lzn — 2l = llun — za?
+2rp||un — zo|([| M2y — Mpl| + | Ny, — Npl|)) + (Ba)* | BII* 20 — 2nl|®
+(en)? [P + 2(1 = Buy2 — 1) Bull Bllllun — pllll2n — zul]
+2(1 = B2 — an¥1)en|pllllun — pll + 2Bnenl| Bll[[pll|[2n — 20l

+2ay <7f(xn) — Ap, Tn+1 — p)'

Therefore

(1= B2 — anh)[[un — a1

< wn = plI* = [2n41 = plI* + (Ba¥2 + anh1)?|lzn — p|?
+2r(1 = BuAe — anh1)?|[up — xo|([|Mzn — Mp|| + | N2y — Npl) + (82)[| Bl — 2l
+(en)?lpl1* + 2(1 = Baz — an¥1)Bull Blllun = plll|lzn — 2nl|
+2(1 = Bn¥2 — an1)enlplllun — pll + 2Bnenl| Bl[[pll|n — zull
2o (vf(xn) — Ap, Xpt1 — p)

< (lzn = pll + llznsr = P20 = zatill + (Ba¥2 + an¥1)? |z — pl|®
+2r(1 = BuAe — anh1)?|[up — xo|([|Mzn — Mp|| + | N2y — Npl) + (82)[| Bl — 2l
+(en)?Ipl1* + 2(1 = Baz — an¥1)Bull Blllun = pllllzn — 2all
+2(1 = BnY2 — anY1)enlplllun — pll + 2Bnenl| Bl[[pll|2n — zull

+2an<7f(xn) - Ap, Tn+1 — p)‘

Since o, — 0, || Zp41 — x| — 0, || Mx,, — Mp|| — 0, |Nxy, — Np|| — 0 and ||z, — 2z,]| - 0asn — oo and
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we obtain

lim ||z, — | = 0. (3.10)

n—oo
Using (3.8) and (3.10), we obtain

Iz — unll < ||2n — zn|| + |20 — un|| — 0, as n — oo. Then lim,,, ||z, — un|| = 0.
4 Strong Convergence Algorithm
Theorem 4.1. The Algorithm defined by (3.1) convergence strongly to = € Fix(T) N GEPP, which is a unique
solution in of the variational inequality
(vf—A)z,y—2) <0, Vye O =Fix(T)NGEPP.
proof: Lets = Pg. We get
ls(f = A+7f)(@) =s(I = A+ )W <[ -A+~v/)(z) - T - A+
<= Allllz =yl + A1l (@) = FW)
< (@ =)z = yll +velz -yl

=1 =M —ya)lz -yl

Then s(I — A + ~f) is a contraction mapping from H into itself. Therefore by Banach contraction principle,
there exists 2 € H such that z = s(I — A+ vf)z = Prixr)nepp({ — A +7f)2.

We show that ((vf — A)z,z, — z) < 0. To show this inequality, we choose a subsequence {z,,} of {z,} such
that

limsup((vf — A)z,z, — 2) = lim ((vf — A)z, Tn, — Z). (4.1)

n—00 i—00

Since {x,, } isbounded, there exists a subsequence {x,, i } of {x,,, } which converges weakly to some w € C. Without
loss of generality, we can assume that z,,, — w. Now, we prove that w € Fix(S) N GEPP. Let us first show that
w € Fix(S). From ||z,, —uy|| — 0, we obtain u,,, — w. On the other hand lim,,_,, ||z;, —u,|| = 0 and by Lemma 2.1,
I—Tisdemiclosed at 0. Thus, we obtain w € Fix(7T"). We show that w € GEPP. Since u,, = T}, (, — (M +N)z,).
we have 1

F(un,y) + (M 4+ N)zp,y — up) + —(y — U, uy, — ) > 0, vy € C.

n

It follows from the monotonicity of F' that

1

n
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which implies that

1
<(M+ N)vavy - unz> + T(y — Un;, Un; — xnz> > F(yvum)7 Vy eC.

ng

Letu; =ty + (1 —t)wforallt € (0,1]. Sincey € C and w € C, we get u; € C. It follows that
(ut — Unyy (M + N)ug) > (ug — up;, (M + N)ug) — (up — tp,,, (M + N)xzp,)

Un; —Tn;
_<ut — Un,;, Trs

7

)+ F(ug, up,)

= (ut — Up;, (M + N)ug — (M + N)uy,)
+(ug — Up,;, (M 4+ N)up, — (M + N)xy,)
—(uy —uni,u”%f"ﬂ + F(ug, un,)

= (ut — Un,;, Mug — Mup,,) + (ug — upn;, Nug — Nuy,)

+(ut — n,, Mup, — Mxzp,,) + (us — up,, Nup, — Nzp,)

Un; —Tn;

— (Ut — Unp,, )+ F(ug, up,).

Tni
Since ||up, — zp,|| — 0, we have | Mu,,, — Mxzy,,| — 0and |Nu,, — Nx,,| — 0. Further from monotonically of M
and N, we obtain

(up — up,;, Muy — Muy,) >0, (up — up,;, Nug — Nuy,) > 0,
so as i — oo from assumption 2, we have (u; — w, (M + N)ug) > F(ug, w).
Therefore
0= F(Ut,Ut) S tF(ut7y) + (1 - t)F(’U,t,’LU)
< tF(u,y) + (1 =) (ur —w, (M + N)ug)
then 0 < F(ut,y) + (1 — t){y — w, (M + N)uy).

Letting t — 0, we obtain 0 < F(w,y) + (y — w, (M + N)w). This implies that w € GEPP.
Now from Lemma 2.7, we have

11msupn~>oo<(7f - A)Z?$7’L - Z> < hmsupz%oo«’yuf - A)Za$m - Z>
=((vf = A)zw=2) (4.2)

<0.
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Now we prove that z,, is strongly convergence to z.It follows from (3.3) that

l2nt1 — 2|7

= an(Vf(zn) — Az, 2ny1 — 2) + Bn(Bxy, — B2, Tpy1 — 2) — €n(2, Tpy1 — 2)
(1 —en)I = BnB — anA)(2n — 2), Tny1 — 2)

< an(y(f(@n) = f(2), 21 — 2) + (W (2) = Az, 201 = 2)) + BullBlll|l2n — 2|l |20 41 — 2]l
—enllzllllzntr — 2l + (1 — en)I — BnB — anAll[[2n — 2zl[|znt1 — 2||

< an(Y(f(@n) = £(2), 21 — 2) + (7 (2) = Az, 201 — 2)) + BullBlll|lzn — 2|20 41 — 2]l
—enllzlllzns1 — 2l + |(1 = en)I = BuB — anAlld(2n, T2)||zn11 — 2]

< an(Y(f(@n) = f(2), Bnir — 2) + (7 (2) = Az, 201 — 2)) + BullBlll|l2n — 2]l |l2n41 — 2]l
—enllzll[|n1 — 2| + [|(1 — en)I = BnB — anA|[H(Tun, Tz)||xnt1 — 2||

< apayl|zn = 2llzntr = 2l + an{vf(2) — Az, @nt1 — 2) + BuBllzn — zll|lznt1 — ||
—enllzllllent1 = 2l + (1 = B2 — an)|2n — 2ll[|2ns1 — 2]

= (1 —an(m — an))llen = 2ll[lent1 — 2l — enllzll[lent1 = 2] + an(yf(2) — Az, 2ny1 — 2)

< Lo (1, — 22+ [[2ngs — 2[12) — enllzll|2ns1 — 2l + an(Vf(2) — Az, 2ppr — 2)

o (5—
< 0 p 2 4 L — 202 = enll2lllentt — 2l + anlrf(2) — Az, zasr - 2).
This implies that
20znar — 27 < (1= an(h —en))lzn — 21 + llznt — 2]
20| z[[[[nt1 — 2]l + 20 (7 (2) — Az, n1 — 2).
Then

Jns1 — 22 < (1= a1 — an)lfen — 21 = 2an]2lznsr — 2]
+2an<7f(z) — Az, Tn+1 — Z> (4.3)
= (1= kp)||zn — 2% + 2anly,

where k, = a,,(71 — ay) and I, = (vf(2) — Az, 2p+1 — 2) — ||2]|[|zn+1 — 2||-
Since lim,, ;o oy, = 0 and X9° v, = 00, it is easy to see that lim,,_, k, = 0, 272 k;, = co and limsup,,_, 1, <O.
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Hence, from (4.2) and (4.3) and Lemma 2.9, we deduce that =, — z, where z = Po(I — A + vf)=.

Remark 4.1. Putting A= B = M = N = 0,y = 1, we obtain methods introduced in Theorem 3.1 [8].

5 Numerical Examples

In this section, we give some examples and numerical results for supporting our main theorem. All the numerical
results have been produced in Matlab 2017 on a Linux workstation with a 3.8 GHZ Intel annex processor and 8
Gb of memory.

Example 5.1. Let H = R, the set of all real numbers, with the inner product defined by (z,y) = zy, Vz,y € R,
and induced usual norm | . |. Let C = [0,2]; let F': C' x C' — R be defined by F(z,y) = (z — 4)(y — x), Vz,y € C;
let M, N : C — H be defined by M (z) = z and N(z) = 2z, Va € C, such that @ = J and 3 = 1 respectively, and
let for each = € R, we define f(z) = {z, A(z) =2z, B(z) = sz and

<z <
Tw — {af}, 0<z<1

Then there exist unique sequences {x, } C R and {u,} C C generated by the iterative schemes

Un = Tan (T — 0 (M + N)zy); (5.1)
1 1 1 1 1

where a, = &, 8, = -5, €n = 55— and r, = 1. Then {z,,} converges to {1} € Fix(T) N GEPP. It is easy to prove

that the bifunction F satisfy the Assumption 2. Further, f is contraction mapping with constant « = é and A is
a strongly positive bounded linear operator with constant 7, = 1 on R. Therefore, we can choose v = 1 which
satisfies 0 < v < b < v+ L. Furthermore, it is easy to observe that Fix(T) = [0, 1] and GEPP = {1}. Hence
Fix(T) N GEPP = {1} # (. After simplification, schemes (5.3) and (5.4) reduce to

Up =2 — T,

~—

{2—z,}, 0<u, <1 or(1<z,<2
Tu, = 1
{5}7 1<u, <2 OT(O§$n<1

~—

If z, = 2 — x, for x, € [1,2], we have

( LA 1 1 2
Tpa1 = (— —_—t —t — .
+ 8n | 3n2 ' 2n2 —3

If 2, = § for z,, € [0,1), we have

1 1 1 1 1 2
Tpt1 = (% + W)‘rn + .
Following the proof of Theorem 4.1, we obtain that {x, }, {u,} converges strongly to w = {1} € Fix(T') N GEPP.
Figure 1 indicates the behavior of x,, with initial point x; = 0.5, which converges to the same solution, that

is, w = {1} € Fix(S) N GEPP as a solution of this example.

2020, Volume 14, No.1 60 @ Theory of Approximation and Applications



Nonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings

Hamid Reza Sahebi

n

sequence X
-

o5F A/

] 5 10 15 20 25 30 35
lteration steps=30

Figure 1: The graph of {x,,} with initial value z; = 0.5.

Example 5.2. Let H = R, the set of all real numbers, with the inner product defined by (x,y) = zy, Vz,y € R,
and induced usual norm | . |. Let C = [-1,3]; let F : C x C — R be defined by F'(z,y) = 2(y — x), Vz,y € C; let
M,N : C — H be defined by M (z) = 2z and N (z) = 3z, Vz € C, suchthat @ = } and 3 = 1 respectively, and let

for each x € R, we define f(z) = ¢z, A(z) = %, B(z) = {5z and

z <
Tw— {5}, 0<z<3
{0}, -1<2<0

Then there exist unique sequences {x, } C R and {u,} C C generated by the iterative schemes
Un = Tr}:L (T — 0 (M + N)zy); (5-3)

1 1 2 1 1
e = g+ o H (0= @~ B - o

where o,, = ﬁ, B = m, én = % and r, = 1+ L. Then {z,} converges to {0} € Fix(T) N GEPP. It is easy

to prove that the bifunction F satisfy the Assumption 2. Further, f is contraction mapping with constant o = 1

5
and A is a strongly positive bounded linear operator with constant 7; = 1 on R. Therefore, we can choose v = 2

which satisfies 0 < v < B < v+ L. Furthermore, it is easy to observe that Fix(T) = {0} and GEPP = {0}. Hence
Fix(T) N GEPP = {0} # (. After simplification, schemes (5.3) and (5.4) reduce to

- (—4n — 5)
R T
{0}, 15 <un <0 or(0 < 2y < 3)
Tun = —4n—>5
{( A )Ty}, 0<u, <2 or(-1<z,<0)
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If 2, = %xnfor x, € [—1,0], we have

B S S 1 L An b
Tt =g T 10+ 12" 2 10+ 12 20n dn+2

).

If z,, = 0 for z,, € (0, 3], we have
1 1

ol = (3\/6 METICEE 1)2)$”‘
Following the proof of Theorem 4.1, we obtain that {x,}, {u,} converges strongly to w = {0} € Fix(T) N GEPP
. Figure 2 indicates the behavior of z,, with initial point 1 = 0.5, which converges to the same solution, that is,
w = {1} € Fix(S) N GEPP as a solution of this example.

35

251 |

Squence value
N

o 5 10 15 20 25 30 35
Iteration steps

Figure 2: The graph of {z,,} with initial value x; = 0.5.
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