

Vol. 12, No.1, (2018), 117-126

On co-Farthest Points in Normed Linear Spaces

H. Mazaheri ^{a,*}, S. M. Moosavi b, Z. Bizhanzadeh ^a , M. A. Dehghan ^b

^aFaculty of Mathematics, Yazd University, Yazd, Iran b Faculty of Mathematics, Vali-e-asr University of Rafsanjan, Rafsanjan, Iran

Received 17 March 2018; accepted 24 Augest 2018

Abstract

In this paper, we consider the concepts co-farthest points in normed linear spaces. At first, we defi ne farthest points, farthest orthogonality in normed linear spaces. Then we de fine co-farthest points, co-remotal sets, co-uniquely sets and co-farthest maps. We shall prove some theorems about co-farthest points, co-remotal sets. We obtain a necessary and coeficient conditions about co-farthest points and dual spaces.

Key words: Farthest points, Co-farthest points, Co-farthest map.

2010 AMS Mathematics Subject Classification : 46A32, 46M05, 41A17.

∗ Corresponding author's E-mail: hmazaheri@yazd.ac.ir

1 Introduction

A kind of approximation, called best co-approximation was introduced by Franchettei and Furi in 1972 [12]. Some results on best co-approximation theory in linear normed spaces have been obtained by P. L. Papini and I. Singer [35]. In this section we consider co-proximinality and co-remotality in normed linear spaces.

Definition 1.1 Let $(X, \|\cdot\|)$ be a normed linear space, G a non-empty subset of X and $x \in X$. We say that $g_0 \in G$ is a best co-approximation of x whenever $||g - g_0|| \le ||x - g||$ for all $g \in G$. We denote the set of all best co-approximations of x in G by $R_G(x)$.

We say that G is a co-proximinal subset of X if $R_G(x)$ is a non-empty subset of G for all $x \in X$. Also, we say that G is a co-Chebyshev subset of X if $R_G(x)$ is a singleton subset of G for all $x \in X$.

Definition 1.2 Let $(X, \|\cdot\|)$ be a normed linear space, A a subset of X, $x \in X$ and $m_0 \in A$. We say that m_0 is co-farthest to x if $\|m_0 - a\| \ge$ $||x-a||$ for every $a \in A$. The set of co-farthest points to x in A is denoted by

$$
C_A(x) = \{a_0 \in A : ||a_0 - a|| \ge ||x - a|| \text{ for every } a \in A \setminus \{a_0\}\}.
$$

The set A is said to be co-remotal if $C_A(x)$ has at least one element for every $x \in X$. If for each $x \in X$, $C_A(x)$ has exactly one element in A, then the set A is called co-uniquely remotal. We define for $a_0 \in A$,

$$
C_A^{-1}(a_0) = \{ x \in X : ||a_0 - a|| \ge ||x - a|| \text{ for every } a \in A \}.
$$

 $C_A^{-1}(a_0)$ is a closed set and $a_0 \in C_A^{-1}(a_0)$. Note that if $x \in A$, then $x \in C_A(x)$.

Example 1.1 Suppose $X = \mathbb{R}$ and $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cup \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. We set $x = 1$ and $a_0 = 3$. Then $a_0 \in C_A(x)$.

118

2 Co-Proximinality, co-Chebyshevity and co-Remotality

In this section we consider co-proximinality and co-Chebyshevity and co-remotality in normed linear spaces.

Theorem 2.1 Let $(X, \|\cdot\|)$ be a normed linear space and A a subset of X .

a) If for every $x \in X$ and for every $a \in A$, $a \in H_{d_x}$, then A is coproximinal.

b) If for every $x \in X$ and for every $a \in A$, there exists a unique $b \in X$ $H_{\parallel x}^{\bigoplus}$ $\mathbb{E}_{x-a\parallel}^{\mathbf{\nabla}}$, then A is co-Chebyshev.

Proof. a) Suppose $x \in X$, for every $a \in A$ there exists $a_0 \in A$ such that $a - a_0 \in B[0, d_x]$. Therefore for every $a \in A$

$$
||a - a_0|| \le d_x
$$

$$
\le ||x - a||.
$$

That is $a_0 \in R_A(x)$ so A is co-proximinal.

b) Suppose $x \in X$, $a \in A$ and there exists an unique $b \in H_{\mathbb{R}^n}^{\bigoplus}$ $\mathbb{E}_{\|x-a\|}$, by part (a), $R_A(x)$ is non-empty. The set A is co-proximinal.

For each $x \in X$ if there exist $a_1, a_2 \in R_A(x)$, then for $a \in A$ we have $||a_i-a|| \le ||x-a||$ for $i = 1, 2$. Therefore for $a \in A$, $a_i-a \in B[0, ||x-a||]$, and for $a \in A$, we have $a_i \in H_{\mathbb{R}}^{\bigoplus}$ $\mathbb{E}_{x-a\parallel}$. This is a contraction. It follows that A is co-Chebyshev.

Theorem 2.2 Let $(X, \|\cdot\|)$ be a normed linear space and A a subset of X.

a) If for every $x \in X$ and for every $a \in A$, $a \in K_{\delta_x}$, then A is co-remotal.

$$
119 \\
$$

b) If for every $x \in X$ and for every $a \in A$, there exists a unique $b \in$ $K_{\mathbb{I}_r}^{\bigoplus}$ $\mathbb{E}_{\|x-a\|}^{\mathbf{\nabla}}$, then A is co-uniquely remotal.

Proof. a) Suppose $x \in X$ and $a \in A$. Suppose there exists an $a_0 \in A$ such that $a - a_0 \in B^c[0, \delta_x]$. Therefore for every $a \in A$

$$
||a - a_0|| \ge \delta_x
$$

$$
\ge ||x - a||.
$$

That is $a_0 \in C_A(x)$ so A is co-remotal.

b) If $x \in X$ and $a \in A$ if there exists an unique $b \in K^{\bigoplus}_{\mathbb{R}_r}$ $\mathbb{E}_{x-a\parallel}^{\mathbf{\nabla}}$, then $C_A(x)$ is non-empty. The set A is co-remotal.

For $x \in X$ if there exist $a_1, a_2 \in C_A(x)$, then for $a \in A$ we have $||a_i-a|| \leq$ $||x - a||$ for $i = 1, 2$. Therefore for $a \in A$, $a_i - a \in B^c[0, ||x - a||]$, and for $a \in A$, we have $a_i \in K^{\bigoplus \n}$ $\mathbb{E}_{x-a\parallel}$. This is a contraction. It follows that A is co-uniquely remotal. Let \tilde{W} be a non-empty bounded subset of a normed linear space $(X, \|\cdot\|)$. If there exists a point $\omega_0 \in W$ such that $\delta(x, W) = \sup\{\|x - \omega\| : \omega \in W\} = \|x - \omega_0\| \text{ for } x \in X. \text{ Then } \omega_0 \text{ is }$ called farthest point in W from x. The set of all such $\omega_0 \in W$ is denoted by $F_W(x)$.

Theorem 2.3 Let A be a bounded subset of a normed linear space, $A +$ $A = A$, $-A = A$ and $0 \in A$,

(i) If $a_0 \in A$, then $C_A^{-1}(a_0) = -a_0 + C_A^{-1}(0)$,

(*ii*)
$$
C_A(x) = (-x + C_A^{-1}(0)) \cap A
$$
.

(iii) If $a_0 \in A$, then $x \in C_A(a_0)$ if and only if $x - a_0 \in C_A^{-1}(a_0)$

Proof. (i)

$$
120\,
$$

$$
x \in C_A^{-1}(a_0) \Leftrightarrow a_0 \in C_A(x)
$$

\n
$$
\Leftrightarrow ||a_0 - a|| \ge ||x - a|| \text{ for every } a \in A \setminus \{a_0\}
$$

\n
$$
\Leftrightarrow ||u|| \ge ||x - a_0 - u|| \text{ for every } u \in A \text{ since } A + A = A
$$

\n
$$
\Leftrightarrow x + a_0 \in C_A^{-1}(0)
$$

\n
$$
\Leftrightarrow x \in -a_0 + C_A^{-1}(0).
$$

(ii)

$$
a_0 \in C_A(x) \Leftrightarrow x \in C_A^{-1}(a_0)
$$

\n
$$
\Leftrightarrow x + a_0 \in C_A^{-1}(0)
$$

\n
$$
\Leftrightarrow a_0 \in -x - C_A^{-1}(0) \text{ and } a_0 \in A.
$$

(iii) Suppose $x - a_0 \in C_A^{-1}(a_0)$, then

$$
||a|| \ge ||x - a_0 - a||.
$$

Since $A + A = A$ and $-A = A$, then $a - a_0 \in A + A$. Then

$$
||b|| \ge ||x - a_0 - b|| \quad b \in A,
$$

Therefore $x - a_0 \in C_A^{-1}(a_0)$.

Theorem 2.4 Let A be a bounded subset of a normed linear space, then the following statements are equivalent:

 (i) A is co-remotal,

(ii) $X = -A + C_A^{-1}(0)$.

Proof. (i) \rightarrow (ii). Suppose A is co-remotal and $x \in X$, there exists a $a_0 \in A$ such that $a_0 \in C_A(x)$. Then $u_0 = x + a_0 \in C_A^{-1}(0)$, and $x = -a_0 + u_0 \in -A + C_A^{-1}(0).$

 $(ii) \rightarrow (i)$. if $X = -A + C_A^{-1}(0)$ and $x \in X$. Then there exist a $a_0 \in A$ such that $x + a_0 \in C_A^{-1}(0)$. Thus $a_0 \in C_A(x)$ and A is co-remotal.

Theorem 2.5 Let A be a co-remotal subset of a normed linear space,

121

 $A = A + A$ and $0 \in A$, then there exists an element $z \in X \setminus \{0\}$ such that $0 \in C_A(z)$.

Proof. Suppose $x \in X \backslash A$, since A is co-remotal, there exists $a_0 \in C_A(x)$ and so $z = x + a_0 \in C_A^{-1}(0)$. Hence $0 \in C_A(z)$, $z \neq 0$.

Theorem 2.6 Let $(X, \|\cdot\|)$ be a normed linear space, A a bounded subset of X, $x \in X$, $A = A + A$ and $0 \in A$. If $0 \in C_A(x)$, then $A \perp_F x$.

Proof. If $0 \in C_A(x)$ and $a \in A$. Then $||a|| \ge ||x - a||$, therefore $A \perp_F x$.

Theorem 2.7 Let $(X, \|\cdot\|)$ be a normed linear space and $x, y \in X$. Then the following statements are equivalent:

(i) $A\perp_F x$ or $0 \in C_A(x)$,

(ii) For every $m \in A$, there exists an $f \in X^*$ such that f satisfies $||f|| = 1$ and $|f(m)| \geq \delta(x, A)$.

Proof. (i) \rightarrow (ii). Suppose $A\perp_F x$ then for $m \in A$, $m\perp_F x$. That is $\|m\| \geq \delta(x.A)$. By Hahn-Banach Theorem, there exists an $f \in X^*$ such that $||f|| = 1$ and $|f(m)| = ||m|| \ge \delta(x, A)$. $(ii) \rightarrow (i)$. Suppose there exists an $f \in X^*$ such that f satisfies $||f|| = 1$

and $|f(m)| \geq \delta(x, A)$. For $m \in A$, we have

$$
||m|| = ||f|| ||m||
$$

\n
$$
\geq |f(m)|
$$

\n
$$
\leq ||x - m||.
$$

Therefore $m\perp_F x$ and $A\perp_F x$.

Theorem 2.8 Let $(X, \|\cdot\|)$ be a normed linear space and $x \in X$.

(i) If a nonempty bounded set A in X is co-remotal then

$$
A\bigcap(\bigcap_{g\in X}C_{\|x-a\|})\neq\emptyset,
$$

where $C_{\|x-a\|} = A \cap B^c[g, \delta_x].$

(ii) For every $x \in X$, if $A \cap (\bigcap_{g \in X} C_{\Vert x-a\Vert}) \neq \emptyset$. Then A is co-remotal.

Proof. (i) Suppose A is co-remotal and $x \in X$. Then there exists a $a_0 \in A$ such that $||g - a_0|| \ge ||g - x||$ for every $g \in A$. Therefore $a_0 \in C_{||x-a||}$ for every $g \in A$, it follows that $a_0 \in \bigcap_{g \in X} C_{\Vert x-g\Vert}$, and $A \cap (\bigcap_{g \in X} C_{\Vert x-g\Vert}) \neq \emptyset$. (ii) Suppose $x \in X$, since $A \cap (\bigcap_{g \in X} C_{\Vert x-g\Vert}) \neq \emptyset$. There exists a $a_0 \in A$ such that $a_0 \in (\bigcap_{g \in X} C_{\Vert x-g\Vert})$. Therefore $||a_0 - g|| \ge ||x - g||$ for every $g \in A \setminus \{a_0\}$. Therefore A is co-remotal.

Theorem 2.9 Let $(X, \|\cdot\|)$ be a normed linear space and A a co-remotal subset of X, $A = A + A$ and $0 \in A$. If $C_A^{-1}(0)$ is singleton, then A is co-uniquely remotal.

Proof. Suppose $x \in X$ and $a_1, a_2 \in C_A(x)$. Then $x \in C_A^{-1}(a_i)$ for $i =$ 1, 2. Therefore $x - a_i \in C_A^{-1}(0)$ for $i = 1, 2$. It follow that $x - a_1 = x - a_2$ and $a_1 = a_2$. Thus A is co-uniquely remotal.

Theorem 2.10 Let $(X, \|\cdot\|)$ be a normed linear space, and A be a bounded subset. Then $C_A^{-1}(a_0)$ is convex.

Proof. If $x_1, x_2 \in C_A^{-1}(a_0)$ and $0 < \lambda < 1$. Since $||a_0 - a|| \ge ||x_1 - a_0||$ and $||a_0 - a|| \ge ||x_2 - a_0||$, for every $a \in A \setminus \{a_0\}$. Then

$$
||\lambda x_1 + (1 - \lambda)x_2 - a|| = ||\lambda(x_1 - a) + (1 - \lambda)(x_2 - a)||
$$

\n
$$
\leq \lambda ||x_1 - a|| + (1 - \lambda)||x_2 - a||
$$

\n
$$
\leq \lambda ||a_0 - a|| + (1 - \lambda)||a_0 - a||,
$$

for every $a \in A \setminus \{a_0\}$. Therefore $\lambda x_1 + (1 - \lambda)x_2 \in C_A^{-1}(a_0)$. It follows that $C_A^{-1}(a_0)$ is convex.

Theorem 2.11 Let $(X, \|.\|)$ be a normed linear space, A a subset of X, $-A = A, A = A+A$ and $0 \in A$. If A is co-remotal, then A is co-uniquely remotal.

$$
123\,
$$

Proof. Suppose $x \in X$ and $g_1, g_2 \in C_A(x)$ by $g_1 \neq g_2$. Since $g_1, g_2 \in C_A(x)$ $C_A(x)$, We have $x + g_1, x + g_2 \in C_A^{-1}(0)$. Also $-g_2 - x \in C_A^{-1}(0)$, therefore $\frac{1}{2}$ $\frac{1}{2}[g_1 - g_2] = \frac{1}{2}[g_1 + x - x - g_2] \in C_A^{-1}(0)$. That is, for every $a \in A \backslash \{0\},\$

$$
\|\frac{1}{2}[g_1 - g_2] - a\| \le \|a\|.
$$

Since $g_1 - g_2 \in A$ and $a = (g_1 - g_2) \in A$. Then

$$
\|\frac{1}{2}[g_1-g_2]+[g_1-g_2]\|\leq \|g_1-g_2\|,
$$

and

$$
\frac{3}{2}||g_1 - g_2|| \le ||g_1 - g_2||
$$

and

$$
\frac{3}{2} \leqslant 1
$$

is contraction. That is, A is co-uniquely remotal.

Theorem 2.12 Let $(X, \|\cdot\|)$ be a normed linear space, A a subset of X and $x \in X$. If A compact(weakly compact) then $C_A(x)$ is compact(weakly c ompact).

Proof. Suppose $\{x_n\}_{n\geq 1}$ is a sequence in $C_A(x)$. Then for every sequence ${a_n}_{n\geq 1}$ in $A \setminus \{x\}$

$$
||x_n - a_n|| \ge ||x - a_n||.
$$

Since A is compact, there exists a convergent subsequence $\{a_{nk}\}\$ and ${x_{nl}}$ in A, x_0 and $a_0 \in A$ such that $x_{nn\geq 1} \longrightarrow x_0$ and $a_{nk} \longrightarrow a_0$. Then $||x_{np} - a_{np}|| \ge ||x - a_{np}||$. Then $||x_0 - a_0|| \ge ||x - a_0||$. Therefore $x_0 \in C_A(x)$ and $x_{np} \longrightarrow x_0$. Therefore $\{x_n\}_{n\geq 1}$ has a subsequence in $C_A(x)$ and $C_A(x)$ is compact (weakly compact).

Theorem 2.13 Let A be a compact subset of a normed linear space $(X, \|\. \|)$. Then

(i) for every $x \in X$, $C_A(x)$,

(ii) C_A is upper semi-continues on $D(C_A)$.

$$
124 \\
$$

Proof. (i) Suppose $\{a_n\}_{n\geq 1}$ is any sequence in $C_A(x)$. Therefore for every $n \geq 1$, $\|a_n - a\| \geq \|x - a\|$ for every $a \in A \setminus \{a_n\}$. Since A is compact, the sequence $\{a_n\}_{n\geq 1}$ has a subsequence $\{a_{n_i}\}\$ such that $a_{n_i} \to a_0 \in A$. Therefore

$$
||a_0 - a|| = \lim_{i \to \infty} ||a_{n_i} - a|| \ge ||x - a||,
$$

for every $a \in A \setminus \{a_n\}$, it follows that $a_0 \in C_A(x)$. Thus $C_A(x)$ is compact. (ii) Suppose N is a closed subset of A and $B = \{x \in D(C_A): C_A(x) \cap$ $N \neq \emptyset$. To show that B is closed, if x is a limit point of B. Then there exists a sequence $\{x_n\}_{n\geq 1}$ in B such that $x_n \to x$. Now, $x_n \in B$, implies that there exists a $a_n \in C_A(x_n) \cap N$, and so $||a_n-a|| \ge ||x_n-a||$ for every $a \in A \setminus \{x_n\}$. Since A is compact, there exists a subsequence $\{a_{n_i}\}_{i \geq 1}$ of ${a_n}_{n\geq 1}$ such that $a_{n_i} \to a_0$, and so $||a_{n_i} - a|| \geq ||x_{n_i} - a||$ for every $a \in A \setminus \{a_{n_i}\}.$ Implies that $\|a_0 - a\| \geq \|x - a\|$ for every $a \in A \setminus \{a_0\}.$ Therefore $a_0 \in C_A(x) \cap N$, i.e., $x \in B$, so that B is closed. Therefore C_A is upper semi-continues.

Theorem 2.14 Let A be a compact subset of a normed linear space $(X, \|\. \|)$. Then for every subset B of $D(C_A)$, the subset $C_A(B)$ is compact in A.

Proof. Suppose $\{a_n\}_{n\geq 1}$ is a sequence in $C_A(B)$. Then there exists a $x_n \in B$, such that $a_n \in C_A(x_n)$, so that $||a_n - a|| \ge ||x_n - a||$ for every $a \in A \setminus \{a_n\}.$ Since A is compact, there exists a subsequence $\{a_{n_i}\}_{i \geq 1}$ of $\{a_n\}_{n\geq 1}$ such that $a_{n_i} \to a_0 \in A$. Since $x_{n_i} \in A$, the compactness of B implies that the existence of a subsequence ${x_{i_m}}_{m\geq 1}$ such that $x_{i_m} \to x \in B$. Now, $a_{i_m} \in C_A(x_{i_m}, \text{ implies } ||a_{i_m} - a|| \ge ||x_{i_m} - a||$ for every $a \in A \setminus \{a_{i_m}\}\)$, in limiting case implies $||a_0 - a|| \ge ||x - a||$ for every $a \in A \setminus \{a_0\}$. Therefore $a_0 \in C_A(x) \subseteq C_A(B)$. Hence $C_A(B)$ is compact.

References

- [1] C. Franchetti, M. Furi, Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1045-1048.
- [2] R. C. Buck, Applications of duality in approximation theory, In Approximation of Functions (Proc. Sympos. General Motors Res. Lab.,

125

1964), (1965), 27-42.

- [3] S. Elumalai and R. Vijayaragavan, Farthest points in normed linear spaces, General Mathematics 14 (3) (2006), 9-22.
- [4] C. Franchetti and I. Singer, Deviation and farthest points in normed linear spaces, Rev. Roum Math. Pures et appl, 24 (1979), 373-381.
- [5] O. Hadzic, A theorem on best approximations and applications, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat, 22 (1992), 47-55.
- [6] R. Khalil and Sh. Al-Sharif, Remotal sets in vector valued function spaces, Scientiae Mathematicae Japonicae. (3) (2006), 433-442.
- [7] H. V. Machado, A characterization of convex subsets of normed spaces, Kodai Math. Sem. Rep, 25 (1973), 307-320.
- [8] M. Marti'n and T. S. S. R. K. Rao, On remotality for convex sets in Banach spaces, J. Approx. Theory (162) (2010), 392-396.
- [9] M. Martin and T. S. S. R. K. Rao, On remotality for convex sets in Banach spaces, J. Approx. Theory, (162) (2010), 392-396.
- [10] H . Mazaheri, T. D. Narang and H. R. Khademzadeh, Nearest and Farthest points in normed spaces, In Press Yazd University, 2015.
- [11] T. D. Narang and Sangeeta, On singletonness of uniquely remotal sets, Bull. Belg. Soc. Simon. Stevin, 18 (2011), 113-120.
- [12] P. L. Papini and I. Singer, Best coapproximation in normed linear spaces, Monatshefte fur Mathematik, 88(1) (1979), 27-44.
- [13] Sangeeta and T. D. Narang, A note on farthest points in metric spaces, Aligarh Bull. Math. 24 (2005), 81-85.
- [14] Sangeeta and T. D. Narang, On the farthest points in convex metric spaces and linear metric spaces, Publications de l'Institut Mathematique 95 (109) (2014), 229-238.
- [15] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, New York-Berlin 1970.

126