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Abstract

In this paper, we consider the concepts co-farthest points in normed linear
spaces. At first, we defi ne farthest points, farthest orthogonality in normed
linear spaces. Then we de fine co-farthest points, co-remotal sets, co-uniquely
sets and co-farthest maps. We shall prove some theorems about co-farthest
points, co-remotal sets. We obtain a necessary and coeficient conditions about
co-farthest points and dual spaces.
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1 Introduction

A kind of approximation, called best co-approximation was introduced by
Franchettei and Furi in 1972 [12]. Some results on best co-approximation
theory in linear normed spaces have been obtained by P. L. Papini and I.
Singer [35]. In this section we consider co-proximinality and co-remotality
in normed linear spaces.

Definition 1.1 Let (X, ‖.‖) be a normed linear space, G a non-empty
subset of X and x ∈ X. We say that g0 ∈ G is a best co-approximation
of x whenever ‖g− g0‖ ≤ ‖x− g‖ for all g ∈ G. We denote the set of all
best co-approximations of x in G by RG(x).
We say that G is a co-proximinal subset of X if RG(x) is a non-empty
subset of G for all x ∈ X. Also, we say that G is a co-Chebyshev subset
of X if RG(x) is a singleton subset of G for all x ∈ X.

Definition 1.2 Let (X, ‖.‖) be a normed linear space, A a subset of X,
x ∈ X and m0 ∈ A. We say that m0 is co-farthest to x if ‖m0 − a‖ ≥
‖x−a‖ for every a ∈ A. The set of co-farthest points to x in A is denoted
by

CA(x) = {a0 ∈ A : ‖a0 − a‖ ≥ ‖x− a‖ for every a ∈ A\{a0}}.

The set A is said to be co-remotal if CA(x) has at least one element for
every x ∈ X. If for each x ∈ X, CA(x) has exactly one element in A,
then the set A is called co-uniquely remotal. We define for a0 ∈ A,

CA
−1(a0) = {x ∈ X : ‖a0 − a‖ ≥ ‖x− a‖ for every a ∈ A}.

CA
−1(a0) is a closed set and a0 ∈ CA

−1(a0). Note that if x ∈ A, then
x ∈ CA(x).

Example 1.1 Suppose X = R and A = [1, 2]
⋃{3}\{1}. We set x = 1

and a0 = 3. Then a0 ∈ CA(x).
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2 Co-Proximinality, co-Chebyshevity and co-Remotality

In this section we consider co-proximinality and co-Chebyshevity and
co-remotality in normed linear spaces.

Theorem 2.1 Let (X, ‖.‖) be a normed linear space and A a subset of
X.

a) If for every x ∈ X and for every a ∈ A, a ∈ Hdx, then A is co-
proximinal.

b) If for every x ∈ X and for every a ∈ A, there exists a unique b ∈
H

⊕
‖x−a‖, then A is co-Chebyshev.

Proof. a) Suppose x ∈ X, for every a ∈ A there exists a0 ∈ A such that
a− a0 ∈ B[0, dx]. Therefore for every a ∈ A

‖a− a0‖≤ dx
≤‖x− a‖.

That is a0 ∈ RA(x) so A is co-proximinal.

b) Suppose x ∈ X, a ∈ A and there exists an unique b ∈ H
⊕
‖x−a‖, by part

(a), RA(x) is non-empty. The set A is co-proximinal.

For each x ∈ X if there exist a1, a2 ∈ RA(x), then for a ∈ A we have
‖ai−a‖ ≤ ‖x−a‖ for i = 1, 2. Therefore for a ∈ A, ai−a ∈ B[0, ‖x−a‖],
and for a ∈ A, we have ai ∈ H

⊕
‖x−a‖ . This is a contraction. It follows

that A is co-Chebyshev.

Theorem 2.2 Let (X, ‖.‖) be a normed linear space and A a subset of
X.

a) If for every x ∈ X and for every a ∈ A, a ∈ Kδx, then A is co-remotal.
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b) If for every x ∈ X and for every a ∈ A, there exists a unique b ∈
K

⊕
‖x−a‖, then A is co-uniquely remotal.

Proof. a) Suppose x ∈ X and a ∈ A. Suppose there exists an a0 ∈ A
such that a− a0 ∈ Bc[0, δx]. Therefore for every a ∈ A

‖a− a0‖≥ δx
≥‖x− a‖.

That is a0 ∈ CA(x) so A is co-remotal.

b) If x ∈ X and a ∈ A if there exists an unique b ∈ K
⊕
‖x−a‖, then CA(x)

is non-empty. The set A is co-remotal.

For x ∈ X if there exist a1, a2 ∈ CA(x), then for a ∈ A we have ‖ai−a‖ ≤
‖x − a‖ for i = 1, 2. Therefore for a ∈ A, ai − a ∈ Bc[0, ‖x − a‖], and

for a ∈ A, we have ai ∈ K
⊕
‖x−a‖ . This is a contraction. It follows that

A is co-uniquely remotal. Let W be a non-empty bounded subset of a
normed linear space (X, ‖.‖). If there exists a point ω0 ∈ W such that
δ(x,W ) = sup{‖x − ω‖ : ω ∈ W} = ‖x − ω0‖ for x ∈ X. Then ω0 is
called farthest point in W from x. The set of all such ω0 ∈ W is denoted
by FW (x).

Theorem 2.3 Let A be a bounded subset of a normed linear space, A+
A = A, −A = A and 0 ∈ A,

(i) If a0 ∈ A, then CA
−1(a0) = −a0 + CA

−1(0),

(ii) CA(x) = (−x+ CA
−1(0))

⋂
A.

(iii) If a0 ∈ A, then x ∈ CA(a0) if and only if x− a0 ∈ C−1A (a0)

Proof. (i)
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x ∈ CA−1(a0)⇔ a0 ∈ CA(x)

⇔‖a0 − a‖ ≥ ‖x− a‖ for every a ∈ A\{a0}
⇔‖u‖ ≥ ‖x− a0 − u‖ for every u ∈ A since A+ A = A

⇔x+ a0 ∈ CA−1(0)

⇔x ∈ −a0 + CA
−1(0).

(ii)

a0 ∈ CA(x)⇔x ∈ CA−1(a0)
⇔x+ a0 ∈ CA−1(0)

⇔ a0 ∈ −x− CA−1(0) and a0 ∈ A.

(iii) Suppose x− a0 ∈ C−1A (a0), then

‖a‖ ≥ ‖x− a0 − a‖.

Since A+ A = A and −A = A, then a− a0 ∈ A+ A. Then

‖b‖ ≥ ‖x− a0 − b‖ b ∈ A,

Therefore x− a0 ∈ C−1A (a0).

Theorem 2.4 Let A be a bounded subset of a normed linear space, then
the following statements are equivalent:

(i) A is co-remotal,

(ii) X = −A+ CA
−1(0).

Proof. (i) → (ii). Suppose A is co-remotal and x ∈ X, there exists
a a0 ∈ A such that a0 ∈ CA(x). Then u0 = x + a0 ∈ CA

−1(0), and
x = −a0 + u0 ∈ −A+ CA

−1(0).

(ii)→ (i). if X = −A + CA
−1(0) and x ∈ X. Then there exist a a0 ∈ A

such that x+ a0 ∈ CA−1(0). Thus a0 ∈ CA(x) and A is co-remotal.

Theorem 2.5 Let A be a co-remotal subset of a normed linear space,
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A = A+A and 0 ∈ A, then there exists an element z ∈ X\{0} such that
0 ∈ CA(z).

Proof. Suppose x ∈ X\A, since A is co-remotal, there exists a0 ∈ CA(x)
and so z = x+ a0 ∈ CA−1(0). Hence 0 ∈ CA(z), z 6= 0.

Theorem 2.6 Let (X, ‖.‖) be a normed linear space, A a bounded subset
of X, x ∈ X, A = A+ A and 0 ∈ A. If 0 ∈ CA(x), then A⊥Fx.

Proof. If 0 ∈ CA(x) and a ∈ A. Then ‖a‖ ≥ ‖x− a‖, therefore A⊥Fx.

Theorem 2.7 Let (X, ‖.‖) be a normed linear space and x, y ∈ X. Then
the following statements are equivalent:

(i) A⊥Fx or 0 ∈ CA(x),
(ii) For every m ∈ A, there exists an f ∈ X∗ such that f satisfies
‖f‖ = 1 and |f(m)| ≥ δ(x,A).

Proof. (i) → (ii). Suppose A⊥Fx then for m ∈ A, m⊥Fx. That is
‖m‖ ≥ δ(x.A). By Hahn-Banach Theorem, there exists an f ∈ X∗ such
that ‖f‖ = 1 and |f(m)| = ‖m‖ ≥ δ(x,A).
(ii)→ (i). Suppose there exists an f ∈ X∗ such that f satisfies ‖f‖ = 1
and |f(m)| ≥ δ(x,A). For m ∈ A, we have

‖m‖= ‖f‖‖m‖
≥ |f(m)|
≤ ‖x−m‖.

Therefore m⊥Fx and A⊥Fx.

Theorem 2.8 Let (X, ‖.‖) be a normed linear space and x ∈ X.

(i)If a nonempty bounded set A in X is co-remotal then

A
⋂

(
⋂
g∈X

C‖x−a‖) 6= ∅,
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where C‖x−a‖ = A
⋂
Bc[g, δx].

(ii) For every x ∈ X, if A
⋂

(
⋂
g∈X C‖x−a‖) 6= ∅. Then A is co-remotal.

Proof. (i) Suppose A is co-remotal and x ∈ X. Then there exists a a0 ∈ A
such that ‖g − a0‖ ≥ ‖g − x‖ for every g ∈ A. Therefore a0 ∈ C‖x−a‖ for
every g ∈ A, it follows that a0 ∈

⋂
g∈X C‖x−g‖, and A

⋂
(
⋂
g∈X C‖x−g‖) 6= ∅.

(ii) Suppose x ∈ X, since A
⋂

(
⋂
g∈X C‖x−g‖) 6= ∅. There exists a a0 ∈ A

such that a0 ∈ (
⋂
g∈X C‖x−g‖). Therefore ‖a0 − g‖ ≥ ‖x − g‖ for every

g ∈ A\{a0}. Therefore A is co-remotal.

Theorem 2.9 Let (X, ‖.‖) be a normed linear space and A a co-remotal
subset of X, A = A + A and 0 ∈ A. If CA

−1(0) is singleton, then A is
co-uniquely remotal.

Proof. Suppose x ∈ X and a1, a2 ∈ CA(x). Then x ∈ CA−1(ai) for i =
1, 2. Therefore x−ai ∈ CA−1(0) for i = 1, 2. It follow that x−a1 = x−a2
and a1 = a2. Thus A is co-uniquely remotal.

Theorem 2.10 Let (X, ‖.‖) be a normed linear space, and A be a bounded
subset. Then CA

−1(a0) is convex.

Proof. If x1, x2 ∈ CA−1(a0) and 0 < λ < 1. Since ‖a0 − a‖ > ‖x1 − a0‖
and ‖a0 − a‖ > ‖x2 − a0‖, for every a ∈ A\{a0}. Then

‖λx1 + (1− λ)x2 − a‖= ‖λ(x1 − a) + (1− λ)(x2 − a)‖
≤λ‖x1 − a‖+ (1− λ)‖x2 − a‖
≤λ‖a0 − a‖+ (1− λ)‖a0 − a‖,

for every a ∈ A\{a0}. Therefore λx1 + (1 − λ)x2 ∈ CA−1(a0). It follows
that CA

−1(a0) is convex.

Theorem 2.11 Let (X, ‖.‖) be a normed linear space, A a subset of X,
−A = A, A = A+A and 0 ∈ A. If A is co-remotal, then A is co-uniquely
remotal.
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Proof. Suppose x ∈ X and g1, g2 ∈ CA(x) by g1 6= g2. Since g1, g2 ∈
CA(x), We have x + g1, x + g2 ∈ CA

−1(0). Also −g2 − x ∈ CA
−1(0),

therefore
1

2
[g1 − g2] =

1

2
[g1 + x − x − g2] ∈ C−1A (0). That is, for every

a ∈ A\{0},
‖1

2
[g1 − g2]− a‖ 6 ‖a‖.

Since g1 − g2 ∈ A and a = (g1 − g2) ∈ A. Then

‖1

2
[g1 − g2] + [g1 − g2]‖ 6 ‖g1 − g2‖,

and
3

2
‖g1 − g2‖ 6 ‖g1 − g2‖

and
3

2
6 1

is contraction. That is, A is co-uniquely remotal.

Theorem 2.12 Let (X, ‖.‖) be a normed linear space, A a subset of X
and x ∈ X. If A compact(weakly compact) then CA(x) is compact(weakly
c ompact).

Proof. Suppose {xn}n≥1 is a sequence in CA(x). Then for every sequence
{an}n≥1 in A\{x}

‖xn − an‖ ≥ ‖x− an‖.
Since A is compact, there exists a convergent subsequence {ank} and
{xnl} in A, x0 and a0 ∈ A such that xnn≥1 −→ x0 and ank −→ a0.
Then ‖xnp − anp‖ ≥ ‖x − anp‖. Then ‖x0 − a0‖ ≥ ‖x − a0‖. Therefore
x0 ∈ CA(x) and xnp −→ x0. Therefore {xn}n≥1 has a subsequence in
CA(x) and CA(x) is compact (weakly compact).

Theorem 2.13 Let A be a compact subset of a normed linear space
(X, ‖.‖). Then

(i) for every x ∈ X, CA(x),

(ii) CA is upper semi-continues on D(CA).
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Proof. (i) Suppose {an}n≥1 is any sequence in CA(x). Therefore for every
n ≥ 1, ‖an − a‖ ≥ ‖x − a‖ for every a ∈ A\{an}. Since A is compact,
the sequence ‖an}n≥1 has a subsequence {ani

} such that ani
→ a0 ∈ A.

Therefore
‖a0 − a‖ = limi→∞‖ani

− a‖ ≥ ‖x− a‖,
for every a ∈ A\{an}, it follows that a0 ∈ CA(x). Thus CA(x) is compact.
(ii) Suppose N is a closed subset of A and B = {x ∈ D(CA) : CA(x) ∩
N 6= ∅}. To show that B is closed, if x is a limit point of B. Then there
exists a sequence {xn}n≥1 in B such that xn → x. Now, xn ∈ B, implies
that there exists a an ∈ CA(xn)∩N , and so ‖an−a‖ ≥ ‖xn−a‖ for every
a ∈ A\{xn}. Since A is compact, there exists a subsequence {ani

}i≥1 of
{an}n≥1 such that ani

→ a0, and so ‖ani
− a‖ ≥ ‖xni

− a‖ for every
a ∈ A\{ani

}. Implies that ‖a0 − a‖ ≥ ‖x − a‖ for every a ∈ A\{a0}.
Therefore a0 ∈ CA(x)∩N , i.e., x ∈ B, so that B is closed. Therefore CA
is upper semi-continues.

Theorem 2.14 Let A be a compact subset of a normed linear space
(X, ‖.‖). Then for every subset B of D(CA), the subset CA(B) is compact
in A.

Proof. Suppose {an}n≥1 is a sequence in CA(B). Then there exists a
xn ∈ B, such that an ∈ CA(xn), so that ‖an − a‖ ≥ ‖xn − a‖ for every
a ∈ A\{an}. Since A is compact, there exists a subsequence {ani

}i≥1
of {an}n≥1 such that ani

→ a0 ∈ A. Since xni
∈ A, the compactness

of B implies that the existence of a subsequence {xim}m≥1 such that
xim → x ∈ B. Now, aim ∈ CA(xim , implies ‖aim − a‖ ≥ ‖xim − a‖ for
every a ∈ A\{aim}, in limiting case implies ‖a0− a‖ ≥ ‖x− a‖ for every
a ∈ A\{a0}. Therefore a0 ∈ CA(x) ⊆ CA(B). Hence CA(B) is compact.
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