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Abstract

In this paper, an effective technique is proposed to determine the numerical
solution of nonlinear Volterra-Fredholm integral equations (VFIEs) which is
based on interpolation by the hybrid of radial basis functions (RBFs) including
both inverse multiquadrics (IMQs), hyperbolic secant (Sechs) and strictly pos-
itive definite functions. Zeros of the shifted Legendre polynomial are used as
the collocation points to set up the nonlinear systems. The integrals involved in
the formulation of the problems are approximated based on Legendre-Gauss-
Lobatto integration rule. This technique is so convenience to implement and
yields very accurate results compared with the other basis.
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1 Introduction

In many sciences such as economics, biology, physics and engineering, a
major problem is assigned to find the numerical solution of linear and
nonlinear integral equations (IEs). Different basis functions have been
used to estimate the solution of recent equations such as wavelets, hybrid
Taylor and block-pulse functions, [12,14,1,19]. Yalinbas in [19] applied
Taylor polynomial method to solve nonlinear integral equations. Razzaghi
et al. solved these equations using Legendre wavelets method [14].

Recently, RBFs have been used to approximate the solution of a class
of mixed two-dimensional nonlinear VFIEs [1]. Now in this paper, we
concentrate on an idea which is based on the interpolation of hybrid of
RBFs to approximate the solution of the nonlinear VFIEs. This method
is included the hybrid of IMQs and sechs called briefly HISFs and the hy-
brid of strictly positive definite functions called briefly SPDFs. It should
be noted that, IMQs and sechs have shape parameter and the stability
interval of shape parameter is [0, 2], therefore we show the fact that the
hybrid of these functions made a good accuracy. We denote SPDFs can
combine and result a good accuracy as well.

Shape parameter is the most important factor for increasing the accu-
racy of the numerical solution. The optimal choice of shape parameter
was researched in [4,9,18,11,5] and this problem is still an open problem
and under intensive investigation. We organized this paper as follows:
In Section 2, we describe Bochner’s theorem, details of RBFs, Legendre-
Gauss-Lobatto nodes and weights. We develop the proposed method to
approximate the solution of nonlinear VFIEs in Section 3. In Section
4, we establish the convergence of the proposed method. Finally, we re-
port our numerical results which demonstrate the application of hybrid
of RBFs to approximate the solution of VFIEs.
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2 Strictly positive definite functions

Definition 2.1 A function φ on X is said to be positive definite if for any
set of points x1, x2, . . . , xN in X then an N ×N matrix Aij = φ(xi− xj)
is nonnegative definite, i.e.

u∗Au =
N∑
i=1

N∑
j=1

ūiujAij ≥ 0, (2.1)

for all nonzero u ∈ CN .
If u∗Au > 0 whenever the points xi are distinct and u 6= 0, then we say
that φ(x) is an strictly positive definite functions, [8 − 10]. If φ(x) is a
strictly positive definite function on a linear space, then the eigenvalues
of A are positive and its determinant is positive.
Theorem 2.1 (Bochner’s Theorem): Let a nonnegative Borel func-
tion be on R, if 0 <

∫
R f < ∞, then f̂ is an strictly positive definite

functions, where f̂ is the Fourier transform of function f , i.e.

f̂(x) =
∫ ∞
−∞

f(y)eixydy, (2.2)

we can find many strictly positive definite functions by using this theo-
rem. Thus for any set of distinct points x0, x1, . . . , xN on [a, b], the matrix
Aij = f(||xi − xj||2) is an SPDF, [5,2].

2.1 Definition of RBFs

Let R+ = {x ∈ R, x ≥ 0} be the nonnegative half-line and let φ : R+ →
R be a continuous function with φ(0) ≥ 0. RBFs on Rd are functions of
the form

φ(||x− xi||), (2.3)

in which x, xi ∈ Rd, and ||.|| denotes the Euclidean distance between x
and xi’s. If one chooses N points {xi}Ni=1 in Rd then by custom

y(x) '
N∑
i=1

λiφ(||X −Xi||), λi ∈ R, (2.4)
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is called the RBFs, [3,10].

2.2 Function approximation by hybrid functions

Let Φ(x) and Θ(x) be n−vectors of RBFs, the expansion of y(x) in terms
of RBFs can be defined as follows

y(x) ' ∑N
i=1[λiφi(x) + µiθi(x)]

= CTΨ(x),

where Ψ(x) =
[
Φ(x) Θ(x)

]T
is a 2n−vector and the ith element of

Φ(x) and Θ(x) can be considered in the following cases

Case(I):

φi(x) = φ(x− xi) = e−|x−xi|,

θi(x) = θ(x− xi) = e−(x−xi)
2/4,

Case(II):

φi(x) = φ(‖x− xi‖) = sech(c
√
‖x− xi‖),

θi(x) = θ(‖x− xi‖) = 1√
‖x−xi‖2+c2

,

and

Φ =
[
φ1(x) φ2(x) . . . φN(x)

]T
,

Θ =
[
θ1(x) θ2(x) . . . θN(x)

]T
,

Λ =
[
λ1(x) λ2(x) . . . λN(x)

]T
,

M =
[
µ1(x) µ2(x) . . . µN(x)

]T
,

C =
[

Λ M

]T
,
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x is input and {λi}Ni=1, {µi}Ni=1 are the set of constant coefficients of φi’s
and θi’s, respectively, which can be determined.

2.3 Legendre-Gauss-Lobatto nodes and weights

Let HN [−1, 1] denotes the space of algebraic polynomials of degree ≤ N

(Pi, Pj) =
2

2j + 1
δij,

Here (., .) represents the usual L2[−1, 1] inner product and {Pi}i≥0 are
the well-known Legendre polynomials of order i which are orthogonal
with respect to the weight function w(x) = 1 on the interval [−1, 1], and
satisfy the following formula

p0(x) = 1, p1(x) = x,

pi+1(x) = (
2i+ 1

i+ 1
)xpi(x)− i

i+ 1
pi−1(x),

for each i ∈ {1, 2, 3, ...}.

Next, we let {xj}Nj=0 denote the zeros of

(1− x2)Ṗ (x),

with

−1 = x0 < x1 < x2 < ... < xN = 1,

where Ṗ (x) is the first derivative of P (x). No explicit formula for the
nodes {xj}N−1j=1 is known. However, they are computed numerically using
the existing subroutines [7,8].

Now, we assume f ∈ H2N−1[−1, 1], we have

∫ 1

−1
f(x) dx '

N∑
j=0

wjf(xj), (2.5)
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where wj’s are the Legendre-Gauss-Lobatto weights given in [17,13]

wj =
2

N(N + 1)
× 1

(PN(xj))2
· (2.6)

3 Numerical solution of VFIES using HISFs and SPDFs

Consider a nonlinear VFIE as follows:

y(x) = f(x) + λ1

∫ x

0
k1(x, t)G1(t, y(t))dt+ λ2

∫ 1

0
k2(x, t)G2(t, y(t))dt,

(3.1)
where 0 ≤ x ≤ 1, λ1 and λ2 are constants, f(x) and the kernels k1(x, t)
and k2(x, t) are known functions assumed to have nth derivatives on
the interval 0 ≤ x, t ≤ 1. Let G1(t, y(t)) = F1(y(t)) and G2(t, y(t)) =
F2(y(t)), where F1(y(t)) and F1(y(t)) are given continuous functions
which are nonlinear with respect to y(t).

Let G1(t, y(t)) = yp(t), G2(t, y(t)) = yq(t), where p and q are nonnegative
integers. In this paper, we propose a meshless collocation method based
on both HISFs and SPDFs. We used two cases I and II to approximate
the solution of nonlinear VFIEs as follows

ΨT (x)C = f(x) + λ1
∫ x
0 k1(x, t)G1(t,Ψ

T (t)C)dt

+λ2
∫ 1
0 k2(x, t)G2(t,Ψ

T (t)C)dt,
(3.2)

for 0 ≤ x ≤ 1. Now, we collocate Eq.(3.2) at points {xi}Ni=1 which are
chosen as the zeros of Legendre polynomials given in Subsection 2.3

ΨT (xi)C = f(xi) + λ1
∫ xi
0 k1(xi, t)G1(t,Ψ

T (t)C)dt

+λ2
∫ 1
0 k2(xi, t)G2(t,Ψ

T (t)C)dt.
(3.3)

We first transform the integrals over [0, xi], [0, 1] into the integral over
[−1, 1] by using the following transformations, respectively.
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η1 =
2

xi
t− 1, t ∈ [0, xi],

η2 = 2t− 1, t ∈ [0, 1]. (3.4)

Let

P (xi, t) = k1(xi, t)G1(t,Ψ
T (t)C), (3.5)

and

Q(xi, t) = k2(xi, t)G2(t,Ψ
T (t)C), (3.6)

by substituting Eqs.(3.4)-(3.6) in Eq.(3.3), we get

ΨT (xi)C = f(xi)+λ1
xi
2

∫ 1

−1
P (xi,

xi
2

(η1+1))dη1+
λ2
2

∫ 1

−1
Q(xi,

1

2
(η2+1))dη2.

(3.7)
By using the Legendre-Gauss-Lobatto integration rule, we can rewrite
Eq.(3.7) as follows

ΨT (xi)C = f(xi)+λ1
xi
2

r1∑
j=0

w1jP (xi,
xi
2

(η1j+1))+
λ2
2

r2∑
j=0

w2jQ(xi,
1

2
(η2j+1)),

(3.8)
for i = 1, . . . , N . Eq.(3.8) generates a system of 2N equations and 2N
unknowns which can be solved by MATLAB software for the constant
coefficients {λi}Ni=1 and {µi}Ni=1, respectively.

4 Convergence analysis

Assume (C[J ], ||.||) the Banach space of all continuous functions on J =
[0, 1] with norm ||f(s)|| = max

∀s∈J
|f(s)|. Let k1(x, t) ≤ M1 and k2(x, t) ≤

M2, ∀ 0 ≤ x, t ≤ 1. Suppose the nonlinear term G(u) and F (u) are
satisfied in lipschitz condition such that

|F (u)− F (v)| ≤ L1|u− v|,

|G(u)−G(v)| ≤ L2|u− v|.
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Theorem 4.1 The solution of nonlinear VFIE by using both HISFs and
SPDFs approximation converges if 0 < α < 1.
Proof.

‖yN − ȳ‖= max
∀x∈J
|yN(x)− ȳ(x)|

≤max
∀x∈J

(|λ1|
∫ x

0
|k1(x, t)| |F (yN)− F (ȳ)|dt

+ |λ2|
∫ 1

0
|k2(x, t)| |G(yN)−G(ȳ)|dt)

≤ (λ1M1L1x+ λ2M2L2) max
∀x∈J
|yN(x)− ȳ(x)|

≤αmax
∀x∈J
|yN(x)− ȳ(x)|, (4.1)

where α = λ1M1L1 + λ2M2L2, it implies that (1− α)||yN − ȳ|| ≤ 0 and
choose 0 < α < 1, by increasing n it implies ||yN − ȳ|| → 0 as n → ∞
and this completes the proof. 2

It should be noted that the conditions which were described in Theorem
4.1, are satisfied in the following examples.

5 Numerical examples

In order to illustrate the performance of the proposed method to obtain
the numerical solution of VFIEs and justify the accuracy and efficiency of
the presented method, we consider the absolute error between the exact
solution and the numerical solution defined as

e(x) = |y(x)− ȳ(x)|, x ∈ [0, 1],

where y(x) and ȳ(x) are the exact and approximate solutions, respec-
tively.

The errors and numerical results for examples 5.1-5.4 are shown in Ta-
bles 1-8 for different values of shape parameter, using both HISFs and
SPDFs. xi’s are chosen the zeros of the shifted Legendre polynomials.
The numerical results for examples 5.1-5.4 are plotted in Figures 1-6 as
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well. The computations associated with the examples were performed us-
ing MATLAB on a PC.
Example 5.1 Consider a nonlinear Fredholm integral equation given by
[15]

y(x) =
∫ 1

0
xty2(t)dt− 5

12
x+ 1,

where 0 ≤ x ≤ 1 such that the exact solution is y(x) = 1 + 1
3
x. Errors

are listed in Tables 1-4 and Figures 1 and 2.
Example 5.2 Consider a linear Volterra integral equation given in [6,16]

y(x) = cos(x)−
∫ x

0
(x− t) cos(x− t)y(t)dt,

in which the exact solution is y(x) = 1
3
(2 cos(

√
3x) + 1).

Errors are listed in Tables 5 and 6 and Figures 3 and 4.
Example 5.3 Consider a nonlinear Fredholm integral equation given in
[2,?]

y(x) = sinh(x)− 1

2
+

1

2
cosh(1) sinh(1)−

∫ 1

0
y2(t) dt,

in which the exact solution is y(x) = sinh(x).
Example 5.4 Consider a nonlinear Fredholm integral equation given in
[?]

y(x) = sin(πx) +
1

5

∫ 1

0
cos(πx) sin(πt)(y(t))3 dt,

in which the exact solution is y(x) = sin(πx) = 20−
√
391

3
cos(πx).

Errors for examples 5.3 and 5.4 are listed in Tables 7 and 8 and Figures
5 and 6.
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Table 1
Errors for Example 5.1 with N = 8 and c = 0.1

x IMQ sech HISFs

0.013047 9.139135E −3 4.243228E +14 4.247976E −3

0.067468 1.405161E −2 5.878156E +14 3.391788E −3

0.160295 2.055859E −2 8.670335E +14 1.992636E −3

0.283302 2.097754E −2 1.237529E +15 3.171492E −5

0.425563 1.281974E −2 1.666386E +15 3.470305E −3

0.574437 1.516602E −2 2.115158E +15 4.255340E −3

0.716698 3.082801E −2 2.543520E +15 5.445200E −4

0.839705 4.319414E −2 2.913197E +15 1.598424E −3

0.932532 6.697896E −3 3.191557E +15 1.521770E −3

0.986953 3.454421E −2 3.354451E +15 1.312679E −3

Table 2
Errors for Example 5.1 with N = 8.

x e−|x| e
−x2

4 SPDFs

0.013047 4.814595E −3 5.427293E −5 1.473544E −6

0.067468 1.698740E −3 1.170152E −4 1.952419E −7

0.160295 4.435115E −3 4.251683E −4 3.893693E −7

0.283302 6.803056E −3 8.710090E −4 1.483682E −6

0.425563 7.128748E −3 1.249202E −3 2.014688E −6

0.574437 9.068486E −3 1.639990E −3 2.326591E −6

0.716698 1.273383E −2 2.213368E −3 1.940971E −6

0.839705 1.366459E −2 2.868747E −3 1.577390E −6

0.932532 1.306527E −2 3.371800E −3 1.309427E −6

0.986953 2.380632E −2 3.631618E −3 4.625621E −6
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Table 3
Maximum errors for Example 5.1, using SPDFs method and the method in
[17].

Presented method (SPDFs) Method in [17]

N = 5 N = 8 N = 10 N = 5 N = 15

1.654380E-5 4.625821E-6 6.662324E-6 4.791920E-3 3.607700E-5

Table 4
Maximum errors for Example 5.1, using HISFs method and the method in
[17].

Presented method (HISFs) Method in [17]

N = 5, c = 0.2 N = 5, c = 0.3 N = 8, c = 0.1 N = 5

2.257346E-3 1.509883E-3 4.255340E-3 4.791920E-3

Table 5
Errors for Example 5.2 with N = 8 and c = 0.4

x IMQ sech HISFs

0.013047 9.864016E −1 9.867827E −1 1.918793E −2

0.067468 9.285990E −1 9.279337E −1 1.667732E −2

0.160295 8.126207E −1 8.134875E −1 5.901942E −2

0.283302 6.348577E −1 6.342302E −1 8.931348E −2

0.425563 3.883411E −1 3.884240E −1 1.223069E −1

0.574437 8.994568E −2 8.980631E −2 1.832225E −1

0.716698 2.314131E −1 2.306404E −1 1.965060E −1

0.839705 5.300552E −1 5.311744E −1 1.425429E −1

0.932532 7.707179E −1 7.699431E −1 8.442405E −2

0.986953 9.135256E −1 9.139772E −1 4.864761E −2

53



Table 6
Errors for Example 5.2 with N = 8.

x e−|x| e
−x2

4 SPDFs

0.013047 9.515649E −1 9.868128E −1 1.283342E −2

0.067468 9.230834E −1 9.279226E −1 6.178702E −2

0.160295 8.021322E −1 8.134704E −1 1.284306E −1

0.283302 6.204309E −1 6.342426E −1 1.851344E −1

0.425563 3.722676E −1 3.884391E −1 2.091179E −1

0.574437 8.021935E −2 8.979031E −2 1.928978E −1

0.716698 2.356439E −1 2.306551E −1 1.461502E −1

0.839705 5.309179E −1 5.311519E −1 8.832946E −2

0.932532 7.692418E −1 7.699274E −1 3.816246E −2

0.986953 8.832978E −1 9.140216E −1 7.426841E −3
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Table 7
Errors for Examples 5.3 and 5.4 with N = 5

Example 5.3 Example 5.4

x

HISFs (c = 0.2) SPDFs HISFs (c = 0.4) SPDFs

0.013047 8.384882E −3 1.126497E −5 1.401904E −1 2.789338E −4

0.067468 7.617687E −3 1.126491E −5 1.088373E −1 2.729209E −4

0.160295 5.367900E −3 1.126505E −5 3.866894E −2 2.445125E −4

0.283302 1.020434E −3 1.126496E −5 6.905376E −2 1.757075E −4

0.425563 5.410554E −3 1.126503E −5 1.767838E −1 6.469054E −5

0.574437 1.007245E −2 1.126507E −5 2.105485E −1 6.469037E −5

0.716698 7.803156E −3 1.126498E −5 1.629329E −1 1.757076E −4

0.839705 7.692589E −3 1.126489E −5 1.166511E −1 2.445126E −4

0.932532 7.546369E −3 1.126493E −5 9.423770E −2 2.729208E −4

0.986953 7.050005E −3 1.126497E −5 8.471860E −2 2.789340E −4

Table 8

Maximum errors for Examples 5.3 and 5.4, using e−|x|, e−
x2

4 and SPDFs and
the method in [10] with N = 5.

the presented method method in [10]

e−|x| e−x
2/4 SPDFs e−|x| 1

1+x2

Exa 5.3 8.784853E −2 2.498559E −4 1.126507E −5 6.0E −3 2.0E −3

Exa 5.4 1.038136E −1 7.286141E −4 2.789349E −4
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Fig. 1. Errors for Example 5.3 with N = 5 and c = 0.2 using HISFs, and
SPDFs.

Fig. 2. Errors for Example 5.1 with N = 8 and c = 0.1 using IMQs, sechs and
HISFs.

Fig. 3. Errors for Example 5.1 with N = 8 using e−|x|, e−
x2

4 and SPDFs.
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Fig. 4. Errors for Example 5.2 with N = 8 and c = 0.4 using IMQs, sechs and
HISFs.

Fig. 5. Errors for Example 5.2 with N = 5 using e−|x|, e−
x2

4 and SPDFs

Fig. 6. Errors for Example 5.4 with N = 5 and c = 0.4 using HISFs, and
SPDFs.
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6 Conclusion

In this paper, we developed the application of interpolation by hybrid
of RBFs including both HISFs and SPDFs for solving nonlinear VFIEs.
This technique is based on the zeros of Legendre-Gauss-Lobatto as col-
location points. In addition through the comparison with exact solution,
we denoted that this method has good reliability and efficiency.
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