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Abstract

So far, many methods have been presented to solve the first-order differential
equations. But, not many studies have been conducted for numerical solution
of high-order fuzzy differential equations. In this research, First, the equation
by reducing time, we transform the first-order equation. Then we have ap-
plied Adams-Moulton multi-step methods for the initial approximation of one
order differential equations. Finally, we examine the accuracy of method by
presenting examples.
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1 Introduction

Fuzzy differential equations are very useful indifferent sciences such as
physics, chemistry, biology and economy. It should be noted, that if the
equations that appear to be uncertain, then take help of fuzzy logic at
these equations. Considering that most of the time analytic solution of
such equations and finding an exact solution has either high complexity
or cannot be solved, we applied numerical methods for the solution. The
topics of fuzzy differential equations have been rapidly growing in recent
years.

The theory of fuzzy differential equations was treated byBuckley and Feur-
ing [9], Kaleva [24, 25], Nieto [29], Ouyang andWu [32], Roman-Flores and
Rojas- Medar [36], Seikkala [37], also recently there appeared the papers
of Bede [7], Bede and Gal [8], Diamond [15, 16], Georgiou et al., [20] Nieto
and Rodriguez-Lopez [29]. In the following, we have mentioned some nu-
merical solution which have proposed by other scientists. Abbasbandy and
Allahviranloo have solved fuzzy differential equations by Runge-Kutta and
Taylor methods[1, 2]. Also, Allahviranloo et al. solved differential equa-
tions by predictor-corrector and transformation methods[4, 5, 6].

Ghazanfari and Shakerami developed Runge-Kutta like formulae of order
4 for solving fuzzy differential equations[19]. Nystrom method has been
introduced for solving fuzzy differential equations[26]. Mosleh and Otadi
(2012) simulated and evaluate fuzzy differential equations by fuzzy neu-
ral network[28]. Pederson and Sambandham (2008) applied Runge-Kutta
method for solving hybrid fuzzy differential equations [34]. Runge-Kutta
method has been used for solving fuzzy differential equations by Palligki-
nis et al. (2009)[33]. Also, Kim and Sakthivel could solve hybrid fuzzy
differential equations using improved predictor-corrector method [27].

The paper is organized as follows. Section 2 includes preliminaries. In
Section 3, we can see the main idea of this paper. In Section 4, the proposed
method is illustrated by examples. The conclusion is in Section 5.
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2 Required definitions and basic concepts

First, we review some initial basic notations and results about symmetric
fuzzy numbers and fuzzy-number-valued functions.

Definition 2.1 [17] A fuzzy number is a map u : R1 → [0, 1] which sat-
isfies the following conditions

(i) u is upper semicontinuous on R,
(ii) u(x) = 0 outside some interval [c, d] ⊂ R,

(iii) There exist real numbers a, b such that c ≤ a ≤ b ≤ d where
(1) u(x) is monotonic increasing on [c, a],
(2) u(x) is monotonic decreasing on [b, d],
(3) u(x) = 1, a ≤ x ≤ b.

The set of all such fuzzy numbers is represented by E1.

Definition 2.2 [17] An arbitrary fuzzy number in parametric form is an
ordered pair functions (u(r), u(r)), r ∈ [0, 1], which satisfies the following
requirements:

(i) u(r) is a bounded monotonic increasing left continuous function over
[0, 1],

(ii) u(r) is a bounded monotonic decreasing left continuous function over
[0, 1],

(iii) u(r) ≤ u(r), r ∈ [0, 1].

A crisp number α is simply represented by u(r) = u(r) = α, 0 ≤ r ≤ 1.

Definition 2.3 [37] For arbitrary u = (u(r), u(r)), v = (v(r), v(r)), 0 ≤
r ≤ 1 and λ ∈ R, we define equality, addition and scalar product by λ as:

(i) u = v if and only if u(r) = v(r) and u(r) = v(r),
(ii) u+ v = (u(r) + v(r), u(r) + v(r)),

(iii) λu =

(λu(r), λu(r)), λ > 0,

(λu(r), λu(r)), λ < 0.
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Definition 2.4 [8] The Hausdorff metric of two fuzzy numbers given by
D : R× R→ R+ ∪ {0}, is defined as follows

D(u, v) = sup
r∈[0,1]

max {|u(r)− v(r)| , |u(r)− v(r)|}

= sup
r∈[0,1]

{dH([u]r, [v]r)} ,

where [u]r = [u(r), u(r)] and [v]r = [v(r), v(r)].

We denote ‖.‖ = D(., 0).

Definition 2.5 [37] Let I be a real interval. A mapping x : I → E is
called a fuzzy process and it’s r-level set is denoted by

[x(t)]r = [x1(t; r), x2(t; r)], t ∈ I, r ∈ (0, 1],

and the derivative x′(t) of a fuzzy process x(t) is defined by

[x′(t)]r = [x′1(t; r), x
′
2(t; r)], t ∈ I, r ∈ (0, 1].

3 Adams-Moulton methods for solving fuzzy differential equa-
tions

Let us consider the nth-order fuzzy ordinary differential equations of the
following form

dnx
dtn

= f

(
t, x, dx

dt
, d

2x
dt2
, d

3x
dt3
, . . . , d

n−1x
dtn−1

)
, t ∈ [t0, T ]

x(t0) = x0, x
′(t0) = x′0, x

′′(t0) = x′′0, . . . , x
(n−1)(t0) = x

(n−1)
0 .

(3.1)
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Eq. (3.1) of order n can be reduced to a system of n first-order simulta-
neous fuzzy differential equations

dy0
dt

= y1 = f1(t, y0, y1, y2, . . . , yn−1),

dy1
dt

= y2 = f2(t, y0, y1, y2, . . . , yn−1),

, t ∈ [t0, T ],

dyn−1

dt
= yn = fn(t, y0, y1, y2, . . . , yn−1),

x(t0) = y0,0, x
′(t0) = y1,0, . . . , x

(n−1)(t0) = yn,0,

(3.2)

where y0,0, y1,0, . . . and yn,0 are fuzzy numbers. Assume that Eqs. (3.3) and
(3.4) are the exact and approximate solutions of Eq. (3.2), respectively

[y0(t)]r = [y0,1(t; r), y0,2(t; r)],

[y1(t)]r = [y1,1(t; r), y1,2(t; r)],
...

[yn−1(t)]r = [yn−1,1(t; r), yn−1,2(t; r)]

(3.3)

and

[w0(t)]r = [w0,1(t; r), w0,2(t; r)],

[w1(t)]r = [w1,1(t; r), w1,2(t; r)],
...

[wn−1(t)]r = [wn−1,1(t; r), wn−1,2(t; r)].

(3.4)

By using the Adams-Moulton method, the approximate solution is calcu-
lated as follows

wj,1(ti+1; r) = aj,m−1wj,1(ti; r) + aj,m−2wj,1(ti−1; r) + · · ·+ aj,0wj,1(ti+1−m; r)

+h

[
bj,m−1f̃j

(
ti+1, w0(ti+1; r), w1(ti+1; r), . . . , wn−1(ti+1; r)

)
+bj,m−2f̃j

(
ti, w0(ti; r), w1(ti; r), . . . , wn−1(ti; r)

)
+ . . .

+bj,0f̃j
(
ti+1−m, w0(ti+1−m; r), w1(ti+1−m; r), . . . , wn−1(ti+1−m; r)

)]
,

(3.5)
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and

wj,2(ti+1; r) = aj,m−1wj,2(ti; r) + aj,m−2wj,2(ti−1; r) + . . .

+aj,0wj,2(ti+1−m; r) + h

[
bj,m−1f̃j

(
ti+1, w0(ti+1; r),

w1(ti+1; r), . . . , wn−1(ti+1; r)
)

+ bj,m−2f̃j
(
ti, w0(ti; r),

w1(ti; r), . . . , wn−1(ti; r)
)

+ · · ·+ bj,0f̃j
(
ti+1−m,

w0(ti+1−m; r), w1(ti+1−m; r), . . . , wn−1(ti+1−m; r)
)]
,

(3.6)
where

f̃j
(
ti + ., w0(ti + .; r), w1(ti + .; r), . . . , wn−1(ti + .; r)

)
=fj,1

(
ti+., w0(ti+.; r), w1(ti+.; r), . . . , wn−1(ti+.; r)

)
, bj,. > 0

fj,2
(
ti+., w0(ti+.; r), w1(ti+.; r), . . . , wn−1(ti+.; r)

)
, bj,. < 0

(3.7)

that

fj,1
(
ti+., w0(ti+.; r), w1(ti+.; r), . . . , wn−1(ti+.; r)

)
=

min{fj(t, u0, u1, . . . , un−1|u0 ∈ [w0,1(ti+.; r), w0,2(ti+.; r)],

u1 ∈ [w1,1(ti+.; r), w1,2(ti+.; r)], . . . , un−1 ∈ [wn−1,1(ti+.; r), wn−1,2(ti+.; r)]}
(3.8)

and

fj,2
(
ti+., w0(ti+.; r), w1(ti+.; r), . . . , wn−1(ti+.; r)

)
= max fj(t, u0, u1, . . . , un−1|u0 ∈ [w0,1(ti+.; r), w0,2(ti+.; r)]

, u1 ∈ [w1,1(ti+.; r), w1,2(ti+.; r)], . . . , un−1 ∈ [wn−1,1(ti+.; r), wn−1,2(ti+.; r)]

(3.9)
where j = 0, 1, . . . , n− 1, i = 0, 1, ..., N .
Using of some lemmas (see lemmas 5.7 and 5.8 in [12]), we can show that
the approximate solution converges to the exact solution as the following
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form

lim
h→0

w0,1(t; r) = y0,1(t; r), lim
h→0

w0,2(t; r) = y0,2(t; r),

lim
h→0

w1,1(t; r) = y1,1(t; r), lim
h→0

w1,2(t; r) = y1,2(t; r),

...
...

lim
h→0

wn−1,1(t; r) = yn−1,1(t; r), lim
h→0

wn−1,2(t; r) = yn−1,2(t; r).

(3.10)

Definition 3.1 The fuzzy function f(t, y0, y1, . . . , yn−1) defined on the set

D = {(t, u0, u1, . . . , un−1)|a ≤ t ≤ b, −∞ < ui <∞, ∀i = 1, 2, . . . , n−1},

is said to satisfy a Lipschitz condition on D in the variables u0, u1, . . . , un−1
is a constant L > 0 exists with

D (f(t, u0, u1, . . . , un−1), f(t, v0, v1, . . . , vn−1)) ≤ L
n−1∑
i=0

D(ui, vi),

for all (t, u0, u1, . . . , un−1) and (t, v0, v1, . . . , vn−1) in D.

Theorem 1 Suppose that

D = {(t, u0, u1, . . . , un−1)|a ≤ t ≤ b, −∞ < ui <∞, ∀i = 1, 2, . . . , n−1},

and let fi(t, u0, u1, . . . , un−1), for each i = 1, 2, . . . , n−1, be continuous and
satisfies a Lipschitz condition on D. The system of first order differential
equations (3.2), subject to the initial conditions, has a unique solution
u0(t), u1(t), . . . , un−1(t), for each a ≤ t ≤ b.

Proof. see [12]

4 Numerical experiments

In order to illustrate the performance and accuracy of the Adams-Moulton
method in solving the high order linear fuzzy differential equations, we
present two numerical examples. In Figures 1 to 2, the approximate solu-
tions and the exact solutions are compared and are found to be in high
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agreement. All numerical computations were done on the computer using
Mathematica software package.

Example 4.1 Let us consider the following fuzzy differential equation

x′′ − 4x′ + 4x = 0, t ∈ [0, 1]

with the initial conditions x(0) = (2 + r, 4− r), x′(0) = (5 + r, 7− r) and
the exact solution is

x(t; r) = −e2t(rt− r − t− 2),

x(t; r) = e2t(rt− r − t+ 4).

Fig. 1. Numerical results for AM2 method and Exact solution at t = 0.2 of
Example 4.1

In this example, the exact and the approximate solutions of the equation
were obtained by using Adams-Moulton 2-step and the system of the first
differential equations was constructed for t=0.2 and h=0.1. The above
ODE of order 2 is equivalent to the following system

y′1 = y2
y′2 = 2y1.
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Table 1
Comparison between the exact and approximate solution of Example 4.1

Exact Exact AM2 AM2 Absolute error Absolute error

r x(0.2, r) x(0.2, r) w0,1(0.2, r) w0,2(0.2, r) |x− w0,1| |x− w0,2|
0.0 3.28201 5.66893 3.28234 5.66909 3.278×10−4 1.53×10−4

0.1 3.40136 5.54959 3.40168 5.54975 3.191×10−4 1.617×10−4

0.2 3.52071 5.43024 3.52102 5.43041 3.103×10−4 1.705×10−4

0.3 3.64005 5.31090 3.64035 5.31108 3.016×10−4 1.792×10−4

0.4 3.75940 5.19155 3.75969 5.19174 2.928×10−4 1.88×10−4

0.5 3.87874 5.07220 3.87903 5.07240 2.841×10−4 1.967×10−4

0.6 3.99809 4.95286 3.99837 4.95306 2.754×10−4 2.054×10−4

0.7 4.11744 4.83351 4.11770 4.83373 2.666×10−4 2.142×10−4

0.8 4.23678 4.71417 4.23704 4.71439 2.579×10−4 2.229×10−4

0.9 4.35613 4.59482 4.35638 4.59505 2.491×10−4 2.317×10−4

1.0 4.47547 4.47547 4.47571 4.47571 2.404×10−4 2.404×10−4

Table 2
Comparison between derivative of the exact and approximate solution of Ex-
ample 4.1

Exact Exact AM2 AM2 Absolute error Absolute error

r x′(0.2, r) x′(0.2, r) w1,1(0.2, r) w1,2(0.2, r) |x′ − w1,1| |x′ − w1,2|
0.0 8.05585 9.84604 8.05659 9.84627 7.357×10−4 2.259×10−4

0.1 8.14536 9.75653 8.14607 9.75678 7.102×10−4 2.514×10−4

0.2 8.23487 9.66702 8.23556 9.66730 6.847×10−4 2.769×10−4

0.3 8.32438 9.57751 8.32504 9.57782 6.592×10−4 3.023×10−4

0.4 8.41389 9.48801 8.41453 9.48833 6.337×10−4 3.278×10−4

0.5 8.50340 9.39850 8.50401 9.39885 6.083×10−4 3.533×10−4

0.6 8.59291 9.30899 8.59349 9.30936 5.828×10−4 3.788×10−4

0.7 8.68242 9.21948 8.68298 9.21988 5.573×10−4 4.043×10−4

0.8 8.77193 9.12997 8.77246 9.13040 5.318×10−4 4.298×10−4

0.9 8.86144 9.04046 8.86194 9.04091 5.063×10−4 4.553×10−4

1.0 8.95095 8.95095 8.95143 8.95143 4.808×10−4 4.808×10−4

The initial conditions of original equation are equivalent to the following
initial conditions to the first order system

y1(0) = (2 + r, 4− r), y2(0) = (5 + r, 7− r).

The exact solution, approximate solution and their derivative have been
shown in Tables 1 and 2 respectively.
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We only show a few of the approximate results for t = 0.2, obtained by the
Adams Moulton two-step method in Figure 1.

Example 4.2 Consider the following fuzzy differential equation

x′′ − 2x′ = 0, t ∈ [0, 1]

with the initial conditions x(0) = (r, 2− r), x′(0) = (2 + r, 4− r) and the
exact solution is

x(t; r) =
1

2

(
re2t + r + 2e2t − 2

)
,

x(t; r) =
1

2

(
r
(
−e2t

)
− r + 4e2t

)
.

Fig. 2. Numerical results for AM4 method and Exact solution at t = 0.1 of
Example 4.2

In this example, the exact and the approximate solutions of the equation
were obtained by using Adams-Moulton 4-step and the system of the first
differential equations was constructed for t=0.1 and h=0.1. The above
ODE of order 2 is equivalent to the following system

y′1 = y2
y′2 = 2y1.
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Table 3
Comparison between the exact and approximate solution of Example 4.2

Exact Exact AM4 AM4 Absolute error Absolute error

r x(0.1, r) x(0.1, r) w0,1(0.1, r) w0,2(0.1, r) |x− w0,1| |x− w0,2|
0.0 0.221403 2.44281 0.22140 2.44280 2.758×10−6 5.516×10−6

0.1 0.332473 2.33174 0.33247 2.33173 2.896×10−6 5.378×10−6

0.2 0.443543 2.22067 0.44354 2.22066 3.034×10−6 5.241×10−6

0.3 0.554613 2.10960 0.55461 2.10959 3.172×10−6 5.103×10−6

0.4 0.665683 1.99852 0.66568 1.99852 3.310×10−6 4.965×10−6

0.5 0.776753 1.88745 0.77675 1.88745 3.448×10−6 4.827×10−6

0.6 0.887824 1.77638 0.88782 1.77638 3.586×10−6 4.689×10−6

0.7 0.998894 1.66531 0.99889 1.66531 3.724×10−6 4.551×10−6

0.8 1.109960 1.55424 1.10996 1.55424 3.861×10−6 4.413×10−6

0.9 1.221030 1.44317 1.22103 1.44317 3.999×10−6 4.275×10−6

1.0 1.33210 1.33210 1.33210 1.33210 4.137×10−6 4.137×10−6

Table 4
Comparison between derivative of the exact and approximate solution of Ex-
ample 4.2

Exact Exact AM4 AM4 Absolute error Absolute error

r x′(0.1, r) x′(0.1, r) w1,1(0.1, r) w1,2(0.1, r) |x′ − w1,1| |x′ − w1,2|
0.0 2.44281 4.88561 2.44280 4.88560 5.516×10−6 1.103×10−5

0.1 2.56495 4.76347 2.56494 4.76346 5.792×10−6 1.076×10−5

0.2 2.68709 4.64133 2.68708 4.64132 6.068×10−6 1.048×10−5

0.3 2.80923 4.51919 2.80922 4.51918 6.344×10−6 1.021×10−5

0.4 2.93137 4.39705 2.93136 4.39704 6.620×10−6 9.929×10−6

0.5 3.05351 4.27491 3.05350 4.27490 6.895×10−6 9.654×10−6

0.6 3.17565 4.15277 3.17564 4.15276 7.171×10−6 9.378×10−6

0.7 3.29779 4.03063 3.29778 4.03062 7.447×10−6 9.102×10−6

0.8 3.41993 3.90849 3.41992 3.90848 7.723×10−6 8.826×10−6

0.9 3.54207 3.78635 3.54206 3.78634 7.999×10−6 8.550×10−6

1.0 3.66421 3.66421 3.6642 3.6642 8.274×10−6 8.274×10−6

The initial conditions of original equation are equivalent to the following
initial conditions to the first order system

y1(0) = (r, 2− r), y2(0) = (2 + r, 4− r).

The exact solution, approximate solution and their derivative have been
shown in Tables 3 and 4 respectively.
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We can see the computational results for t = 0.1, obtained by the Adams
Moulton 4-step technique in Figure 2.

5 Conclusion

In this paper, the Adams-Moulton method numerically extended to
solve the nth-order fuzzy ordinary differential equations. In this method,
the nth-order of fuzzy differential equations converted to a system of first-
order fuzzy differential equations. Then, these equations were solved by
Adams-Moulton method. This method, which takes advantage of single-
step methods to approximate the point is that new uses previous points.
So we expect the error to a single-stage method is minimally.
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