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Abstract

A numerical implementation of an expansion method is developed for solving
Abel’s integral equations. The solution of such equations may demonstrate a
singular behaviour in the neighbourhood of the initial point of the interval of
integration. The suggested method is based on the use of Taylor series expan-
sion to overcome the singularity which leads to approximating the unknown
function and it’s derivatives in terms of Chebyshev polynomials of the first
kind. Some numerical examples are included to clarify the accuracy and ap-
plicability of the presented method which indicate that proposed method is
computationally very attractive.
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1 Introduction

Numerical methods are widely applied for approximating the solution of
weakly singular Volterra integral equations (see, [1-15] ). In the present
paper, we focus on weakly singular Volterra integral equations of the first
and second kind given by

g(x) = λ
∫ x

0

f(t)

(x− t)α
dt, (1.1)

f(x) = g(x) + λ
∫ x

0

f(t)

(x− t)α
dt, (1.2)

where, 0 ≤ t < x ≤ 1, and 0 < α < 1. Also, g(x) ∈ L2(R) on the in-
terval 0 ≤ x ≤ 1, α, λ and the function g(x) are given and the solution
f(x) to be determind. For 0 < α < 1, weakly singular integral equa-
tion (1.1) and (1.2) called Abel’s integral equation of the first and second
kinds, respectively. We assume that (1.1) and (1.2) have a unique solu-
tion. Abel’s equation is one of the integral equations derived directly from
a concrete problem of mechanics or physics (without passing through a
differential equation). Historically, Abel’s problem is the first one to lead
to the study of integral equations and have applications in different fields,
e. g., stereology of spherical particles, inversion of seismic travel times,
cyclic voltametry, water wave scattering by two surface-piercing barriers,
percolation of water, astrophysics, theory of superfluidity, heat transfer be-
tween solids and gases under nonlinear boundary conditions, propagation
of shock-waves in gas fields tubes, subsolutions of a nonlinear diffusion
problem, etc [10]. Several analytical and numerical methods have been
recommended for solving Abel’s integral equations such as Jacobi spectral
collocation scheme [1], rational basis [2], Bernstein polynomials [3], frac-
tional calculus [4], Adomian decomposition method [5], Nonpolynomial
spline collocation method [6], product integration methods [7], analyt-
ical solution [8], modified Tau method [9], operational Muntz-Galerkin
approximation [10], product integration approach based on new orthogo-
nal polynomials [11], operational Haar wavelet method [12], Block-Pulse
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Functions [13], Hybrid Block Pulse Functions and Bernstein polynomials
[14], Legendre wavelets [15] and so forth.
In this paper we use Taylor series expansion of function f(t) to over-
come the singularity of Abel’s integral equations (1.1) and (1.2). Also
we approximate the unknown solution f(t) and it’s derivations in terms
of Chebyshev polynomials of the first kind which reduces Abel’s integral
equations to a set of linear algebraic equations.

2 Chebyshev polynomials of the first and second kind

Chebyshev polynomials of the first and second kind are solutions to the
Chebyshev differential equations

(1− x2)y′′ − xy′ + n2y = 0, |x| < 1,

and

(1− x2)y′′ − 3xy
′
+ n(n+ 2)y = 0, |x| < 1,

respectively. The Chebyshev polynomials of the first kind is denoted by
Tn(x) and is given by the formula

Tn(x) = cosnθ, x = cos θ

and satisfies the recursive formula

Tn+1(x) = 2xTn(x)− Tn−1(x), T1(x) = x, T0(x) = 1,

where the subscript n is the degree of these polynomials and the second
kind Chebyshev polynomials is denoted by Un(x) and is given by the
formula

Un(x) =
sin(n+ 1)θ

sin(θ)
, x = cos θ.
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Now with simplicity we can write

Un(x)− Un−2(x) =
sin(n+ 1)θ − sin(n− 1)θ

sin θ

=
2 cosnθ sin θ

sin θ
= 2 cosnθ

= 2Tn(x). (2.1)

Where i is odd, by taking summation of the both side of (2.1) for n =
2, 3, ..., i(n odd) we get

Ui(x)−U1(x) = 2(T3(x)+T5(x)+...+Ti(x)), U1(x) =
sin 2θ

sin θ
= 2 cos θ = 2T1(x),

so

Ui(x) = 2(T1(x) + T3(x) + T5(x) + ...+ Ti(x)). (2.2)

In a similar manner, where i is even, we get

Ui(x)−U0(x) = 2(T3(x)+T5(x)+...+Ti(x)), U0(x) =
sin θ

sin θ
= 1 = T0(x),

so

Ui(x) = T0(x) + 2(T2(x) + T4(x) + T6(x) + ...+ Ti(x)). (2.3)

For evaluating T ′i (x) in terms of Ti(x) by using Ti(x) = cos iθ, x = cos θ
we may proceed as follows

T ′i (x) =
d(Ti(x))

dx

=
d(cos iθ)

dx

=
d(cos iθ)

dθ

dθ

dx

=
−i sin iθ

− sin θ

=
i sin iθ

sin θ
= iUi−1(x). (2.4)
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Now using (2.2)-(2.4) yields:
where i is odd

T ′i (x) = i(T0(x) + 2T2(x) + 2T4(x) + ...+ 2Ti−1(x))

= 2i(
1

2
T0(x) + T2(x) + T4(x) + ...+ Ti−1(x)), (2.5)

and where i is even

T ′i (x) = i(2T1(x) + 2T3(x) + 2T5(x) + ...+ 2Ti−1(x))

= 2i(T1(x) + T3(x) + T5(x) + ...+ Ti−1(x)). (2.6)

Summarily, if we expand T ′i (x) in terms of Chebyshev polynomials as

T ′i (x) =
i−1∑
k=0

αkTk(x)

we have
where i is odd:

α0 = i, α2p = 2i, p = 1, 2, ...,
i− 1

2
, α2p+1 = 0, p = 0, 1, ...,

i− 3

2

and where i is even:

α2p = 0, p = 0, 1, ...,
i

2
− 1, α2p+1 = 2i, p = 0, 1, ...,

i

2
− 1.

For expanding T ′′i (x) in terms of Chebyshev polynomials, by using (2.5)-
(2.6), we may proceed as follows:
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for odd k

T ′′i (x) =
i−1∑
k=1

αkT
′
k(x)

=
i−1∑
k=1

αk.2k(
1

2
T0(x) + T2(x) + ...+ Tk−1(x))

= 2
i−1∑
k=1

kαk

k−1
2∑

i1=0

′ T2i1(x)

= 2
i−1∑
k=1

k−1
2∑

i1=0

′ kαk T2i1(x), (2.7)

(where now, and in all future occurrences, the notation
∑ ′ denotes a sum

with the first term halved)
for even k

T ′′i (x) =
i−1∑
k=1

αkT
′
k(x)

=
i−1∑
k=1

αk.2k(T1(x) + T3(x) + ...+ Tk−1(x))

= 2
i−1∑
k=1

kαk

k
2∑

i1=1

T2i1−1(x)

= 2
i−1∑
k=1

k
2∑

i1=1

kαk T2i1−1(x). (2.8)

Similarly, for evaluating T
(3)
i (x) in terms of Chebyshev polynomials by

taking derivative of (2.7)-(2.8) and using (2.5)-(2.6) we obtain:
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for odd k

T
(3)
i (x) = 2

i−1∑
k=1

k−1
2∑

i1=0

′ kαkT
′
2i1

(x)

= 2
i−1∑
k=1

k−1
2∑

i1=0

′kαk.2(2i1)(T1(x) + T3(x) + ...+ T2i1−1(x))

= 22
i−1∑
k=1

k−1
2∑

i1=0

′kαk(2i1)
i1∑
i2=1

T2i2−1(x)

= 22
i−1∑
k=1

k−1
2∑

i1=0

′
i1∑
i2=1

kαk(2i1)T2i2−1(x), (2.9)

and for even k

T
(3)
i (x) = 2

i−1∑
k=1

k
2∑

i1=1

kαkT
′
2i1−1(x)

= 2
i−1∑
k=1

k
2∑

i1=1

kαk.2(2i1 − 1)(
1

2
T0(x) + T2(x) + ...+ T2i1−2(x))

= 22
i−1∑
k=1

k
2∑

i1=1

kαk(2i1 − 1)
i1−1∑
i2=0

′ T2i2(x)

= 22
i−1∑
k=1

k
2∑

i1=1

i1−1∑
i2=0

′ kαk(2i1 − 1)T2i2(x). (2.10)

In general, for evaluating T
(r)
i (x) for r = 1, 2, ..., i (T

(r)
i (x) = 0 for r > i) in

terms of Chebyshev polynomials, by repeated use of (2.5)-(2.6) we obtain:
for odd k :
where r is odd:

T
(r)
i (x) = 2r−1

i−1∑
k=1

k−1
2∑

i1=0

′


i1∑
i2=1

i2−1∑
i3=0

′...
ir−2∑
ir−1=1

kαk(

r−1
2∏

p=1

2i2p−1)(

r−3
2∏

p=1

(2i2p − 1))T2ir−1−1(x),


(2.11)
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and where r is even:

T
(r)
i (x) = 2r−1

i−1∑
k=1

k−1
2∑

i1=0

′


i1∑
i2=1

i2−1∑
i3=0

′...
ir−2−1∑
ir−1=0

′ kαk(

r
2
−1∏
p=1

2i2p−1)(

r
2
−1∏
p=1

(2i2p − 1))T2ir−1(x).


(2.12)

In equations (2.11)-(2.12), the sigma notation into curly brackets “{ }”,

that is
∑
ip , for odd p is

∑ip−1−1
ip=0

′ and for even p is
∑ip−1

ip=1 .
For even k :
where r is odd:

T
(r)
i (x) = 2r−1

i−1∑
k=1

k
2∑

i1=1


i1−1∑
i2=0

′
i2∑
i3=1

...
ir−2−1∑
ir−1=0

′ kαk(

r−1
2∏

p=1

(2i2p−1 − 1))(

r−3
2∏

p=1

2i2p)T2ir−1(x),


(2.13)

and where r is even:

T
(r)
i (x) = 2r−1

i−1∑
k=1

k
2∑

i1=1


i1−1∑
i2=0

′
i2∑
i3=1

...
ir−2∑
ir−1=1

kαk(

r
2
−1∏
p=1

(2i2p−1 − 1))(

r
2
−1∏
p=1

2i2p)T2ir−1−1(x).


(2.14)

In equations (2.13)-(2.14) the sigma notation into curly brackets “{ }”,

that is
∑
ip , for even p is

∑ip−1−1
ip=0

′ and for odd p is
∑ip−1

ip=1 .

3 Solution of Abel’s integral equation of the first and second
kind

In this section we numerically solve the Abel’s integral equations of the
form (1.1) and (1.2) using Chebyshev polynomials of the first kind. firstly,
we use Taylor series expansion of the function f(t) about the point t = x
which leads to

f(t) = f(x) +
n∑
r=1

f (r)(x)

r!
(t− x)r +Rn(t, x),
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where Rn(t, x) is the reminder term and defined by

Rn(t, x) =
f (n+1)(η)

(n+ 1)!
(t− x)n+1

for some real number η between x and t. Furthermore, if |f (n+1)(x)| ≤M
on the interval [0, 1] then, with simplicity, it can be shown that |Rn(t, x)| ≤
M

(n+1)!
for arbitrary chosen points t and x on the interval [0, 1], thus for

sufficiently large n reminder term Rn(t, x) tends to zero and can be disre-
garded.
Therefore f(t) can be represented by n + 1 initial terms of Taylor series
as

f(t) = f(x) +
n∑
r=1

f (r)(x)

r!
(t− x)r, (3.1)

which leads to

f(x)− f(t) = −
n∑
r=1

f (r)(x)(−1)r

r!
(x− t)r. (3.2)

Now for solving Abel’s integral equation of the first kind (1.1) by utilizing
(3.2) we may proceed as follows

g(x) = λ
∫ x

0

f(t)

(x− t)α
dt

= −λ
∫ x

0

f(x)− f(t)− f(x)

(x− t)α
dt

= −λ
∫ x

0

f(x)− f(t)

(x− t)α
dt+ λf(x)

∫ x

0
(x− t)−αdt

= λ
n∑
r=1

f (r)(x)(−1)r

r!

∫ x

0
(x− t)r−αdt+ λf(x)

∫ x

0
(x− t)−αdt

= λ
n∑
r=1

f (r)(x)(−1)r

r!

xr−α+1

r − α + 1
+ λf(x)

x1−α

1− α

= λ
n∑
r=1

f (r)(x)Bα,r(x) + λf(x)Aα(x), (3.3)

where

Bα,r(x) =
(−1)r

r!

xr−α+1

r − α + 1
, Aα(x) =

x1−α

1− α
. (3.4)
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Similarly, for solving Abel’s integral equation of the second kind (1.2), by
utilizing (3.2) and (3.4) we get

g(x) = (1− λAα(x))f(x)− λ
n∑
r=1

f (r)(x)Bα,r(x). (3.5)

Now we approximate f(x) by fm(x) in terms of Chebyshev polynomials
as

fm(x) =
m∑
i=0

′fi Ti(x), (3.6)

so for r = 1, 2, ...,m we have

f (r)
m (x) =

m∑
i=0

′fi T
(r)
i (x),

which according to (2.11)-(2.14), f (r)
m (x) can be expressed in terms of

Chebyshev polynomials Ti(x). Therefore, for finding the solution of Abel’s
integral equations of the first and second kind (1.1) and (1.2), we collocate
(3.3) and (3.5) at the points

xk =
1 + cos(kπ

m
)

2
, k = 0, 1, ...,m

which gives a system of m+1 linear algebraic equations and can be solved
for unknown coefficients fi, i = 0, 1, ...,m. So we get the desired approxi-
mation for f(x) by (3.6).

4 Illustrative examples

To illustrate the efficiency of the proposed method in this paper we con-
sider several examples whose exact solutions are exist.

Example 4.1 Consider the Abel’s integral equation of the second kind
(see [14])

f(x) = x7(1− 4096

6435

√
x) +

∫ x

0

f(t)√
x− t

dt,

exact solution is f(x) = x7.
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In this example we consider m = n = 7, (m is the number of Chebyshev
polynomials and n is the number of terms in Taylor series expansion) so
according to described method in section 2, for calculating f (r)

m (x) in terms
of Chebyshev polynomials, we need to know the coefficients in expansion
of T

(r)
i (x) in terms of Ti(x) which are listed for r = 1, 2, ..., 7, as below

for r = 1 :
T ′0(x) = 0,
T ′1(x) = T0(x),
T ′2(x) = 4T1(x),
T ′3(x) = 3T0(x) + 6T2(x),
T ′4(x) = 8T1(x) + 8T3(x),
T ′5(x) = 5T0(x) + 10T2(x) + 10T4(x),
T ′6(x) = 12T1(x) + 12T3(x) + 12T5(x),
T ′7(x) = 7T0(x) + 14T2(x) + 14T4(x) + 14T6(x),

for r = 2 :
T ′′0 (x) = T ′′1 (x) = 0,
T ′′2 (x) = 4T0(x),
T ′′3 (x) = 24T1(x),
T ′′4 (x) = 32T0(x) + 48T2(x),
T ′′5 (x) = 120T1(x) + 80T3(x),
T ′′6 (x) = 108T0(x) + 192T2(x) + 120T4(x),
T ′′7 (x) = 336T1(x) + 280T3(x) + 168T5(x),

for r = 3 :
T

(3)
0 (x) = T

(3)
1 (x) = T

(3)
2 (x) = 0,

T
(3)
3 (x) = 24T0(x),

T
(3)
4 (x) = 192T1(x),

T
(3)
5 (x) = 360T0(x) + 480T2(x),

T
(3)
6 (x) = 1728T1(x) + 960T3(x),

T
(3)
7 (x) = 2016T0(x) + 3360T2(x) + 1680T4(x),

for r = 4 :
T

(4)
0 (x) = T

(4)
1 (x) = T

(4)
2 (x) = T

(4)
3 (x) = 0,

T
(4)
4 (x) = 192T0(x),
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T
(4)
5 (x) = 1920T1(x),

T
(4)
6 (x) = 4608T0(x) + 5760T2(x),

T
(4)
7 (x) = 26880T1(x) + 13440T3(x),

for r = 5 :
T

(5)
0 (x) = T

(5)
1 (x) = T

(5)
2 (x) = T

(5)
3 (x) = T

(5)
4 (x) = 0,

T
(5)
5 (x) = 1920T0(x),

T
(5)
6 (x) = 23040T1(x),

T
(5)
7 (x) = 67200T0(x) + 80640T2(x),

for r = 6 :
T

(6)
0 (x) = T

(6)
1 (x) = T

(6)
2 (x) = T

(6)
3 (x) = T

(6)
4 (x) = T

(6)
5 (x) = 0,

T
(6)
6 (x) = 23040T0(x),

T
(6)
7 (x) = 322560T1(x),

for r = 7 :
T

(7)
0 (x) = T

(7)
1 (x) = T

(7)
2 (x) = T

(7)
3 (x) = T

(7)
4 (x) = T

(7)
5 (x) = T

(7)
6 (x) = 0,

T
(7)
7 (x) = 322560T0(x).

Example 4.2 In this example we consider the second kind Volterra inte-
gral equation of Abel’s type (see [4,12])

f(x) =
1

x+ 1
+

2 arcsinh(
√
x)√

x+ 1
−

∫ x

0

f(t)√
x− t

dt,

exact solution is f(x) = 1
x+1

.

Example 4.3 Consider the Abel’s integral equation with linear singularity

f(x) = x2(1− x)2 − 729

15400
x

14
3 +

243

2200
x

11
3 − 27

400
x

8
3 +

1

10

∫ x

0

f(t)

(x− t) 1
3

dt,

exact solution is f(x) = x4 − 2x3 + x2.

Example 4.4 Consider the Abel’s integral equation of the second kind
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(see [13])

f(x) =
1√
x+ 1

+
π

8
− 1

4
arcsin(

1− x
1 + x

)− 1

4

∫ x

0

f(t)√
x− t

dt,

with exact solution f(x) = 1√
x+1

.

The absolute error |f(x)− fm(x)| for examples 1-4 are included in Table
1 for m = n = 7.

Example 4.5 Consider the Abel’s integral equation of the second kind
(see [4])

f(x) = x+
4

3
x

3
2 −

∫ x

0

f(t)√
x− t

dt,

with exact solution f(x) = x.

Example 4.6 We consider the second kind Volterra integral equation of
Abel’s type (see [4,13])

f(x) = x2 +
16

15
x

5
2 −

∫ x

0

f(t)√
x− t

dt,

with exact solution f(x) = x2.

The absolute error |f(x)− fm(x)| for examples 5-6 are presented in Table
1 for m = 3 and n = 2.

55



Table 1: Absolute error for the examples 1-6
m=n=7 m=3,n=2

t example 1 example 2 example 3 example 4 example 5 example 6

0.0 0.0 3.00× 10−10 3.71× 10−10 0.0 0.0 0.0

0.1 5.40× 10−10 1.42× 10−6 3.00× 10−11 3.62× 10−7 1.00× 10−11 5.00× 10−11

0.2 2.70× 10−10 7.46× 10−7 2.00× 10−11 1.23× 10−7 0.0 5.00× 10−11

0.3 9.20× 10−10 1.81× 10−6 1.00× 10−11 4.68× 10−7 0.0 3.40× 10−10

0.4 2.93× 10−10 8.27× 10−7 2.00× 10−10 1.19× 10−7 0.0 7.00× 10−10

0.5 1.63× 10−9 2.03× 10−6 5.00× 10−10 4.86× 10−7 0.0 9.00× 10−10

0.6 1.50× 10−9 1.92× 10−7 9.00× 10−10 3.68× 10−8 1.00× 10−10 1.10× 10−9

0.7 1.07× 10−9 1.85× 10−6 8.00× 10−10 4.01× 10−7 1.00× 10−10 1.20× 10−9

0.8 2.00× 10−9 7.30× 10−8 1.00× 10−10 4.63× 10−8 1.00× 10−10 1.30× 10−9

0.9 3.10× 10−9 1.10× 10−6 2.40× 10−9 2.39× 10−7 1.00× 10−10 9.00× 10−10

1.0 2.00× 10−9 1.59× 10−8 0.0 8.00× 10−10 1.00× 10−10 4.00× 10−10

Example 4.7 We consider the first kind Volterra integral equation of
Abel’s type (see [4])

2

105

√
x(105− 56x2 + 48x3) =

∫ x

0

f(t)√
x− t

dt,

with exact solution f(x) = x3 − x2 + 1.

For showing the numerical results for the example 7, the exact and ap-
proximate solutions are compared in Figure 1 with m = n = 7. Also, the
absolute error function |f(x)−fm(x)| for this example, is plotted in Figure
2 with m = n = 7.
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Fig. 1. Comparison of the exact and approximate solution for example 7 with
m=n=7

Fig. 2. Plot of the absolute error for example 7 with m=n=7

Example 4.8 Consider the first kind Abel’s integral equation (see [4])

ex − 1 =
∫ x

0

f(t)√
x− t

dt,
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with exact solution f(x) = 1√
π
exerf(

√
x), where erf(x) is the error func-

tion and defined by

erf(x) =
2√
π

∫ x

0
e−t

2

dt.

In Figure 3, the absolute error function |f(x) − fm(x)| for example 8, is
plotted with m = n = 7.

Fig. 3. Plot of the absolute error for example 8 with m=n=7

5 Conclusion

In this paper, a numerical technique is constructed to introduce an approx-
imate solution for Abel’s integral equations of the first and second kind.
The proposed method is consisting of reducing Abel’s integral equations
to a system of linear algebraic equations by expanding the approximate
solution in terms of Chebyshev polynomials with unknown coefficients.
The numerical results demonstrate that good accuracy of the proposed
method is obtaind by taking only a small number of Chebyshev polyno-
mials.
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