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Abstract
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1 Introduction

There are many examples of ODEs that have trivial Lie symmetries. In
2001, Muriel and Romero introduced λ-symmetry to find general solu-
tions for such examples. Recently, they [8] presented techniques to ob-
tain first integral, integrating factor, λ-symmetry of second-order ODEs
ü = F (x, u, u̇) and the relationship between them.

In addition, the study of a λ-symmetry method of the ODEs permit us
the determination of an integrating factor and reduce the order of the
ODEs and explain the reduction process of many ODEs that lack Lie
symmetries.

In this paper, first we will recall some of the foundational results about
symmetry and λ-symmetry rather briefly. we present some theorems
about an integrating factor, first integral and reduce the order of the
ODEs. second, we will calculate an integrating factor, first integral and re-
duce of third-order ODEs

...
u = F (x, u, u̇, ü), through λ-symmetry method.

Finally, we comparing Prelle-Singer (PS) method and λ-symmetry method
for third-order differential equations.

2 Symmetries and λ-Symmetries on ODEs

In this section we recall some of the foundational results about symmetry
and λ-symmetry rather briefly [5,11].
Let v be a vector field defined on an open subset M ⊂ X × U . We
denote by M (n) the corresponding jet space M (n) ⊂ X×U (n), for n ∈ N .
their elements are (x, u(n))) = (x, u, u1, ..., un), where, for i = 1, 2, ..., n,
ui denotes the derivative of order i of u with respect to x. Suppose

∆(x, u(n)) = 0, (2.1)

be an ODE defined over the total space M . The latter characterizes a Lie
symmetry of an ODE as a vector filed v = ξ(x, u)∂/∂x + η(x, u)∂/∂u,
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that satisfies

v(n)
[
∆(x, u(n))

]
= 0, if ∆(x, u(n)) = 0,

where v(n) that called n− th prolongation of v is

v(n) = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+

n∑
i=1

η(i)(x, u(i))
∂

∂ui
,

where η(i)(x, u(i)) = Dx

(
η(i−1)(x, u(i−1))

)
−Dx(ξ(x, u))ui, and η(0)(x, u) =

η(x, u), for i = 1, ..., n, whereDx denote the total derivative operator with
respect to x [11].

If an ODE does not have Lie point symmetry, then we using λ-symmetry
method for reduce of order the ODE. λ-symmetry method is as follows[5]:

For every function λ ∈ C∞(M (1)), we will define a new prolongation and
Lie symmetry of v in the following way:

Let v = ξ(x, u)∂/∂x + η(x, u)∂/∂u, be a vector field defined on M , and
let λ ∈ C∞(M (1)) be an arbitrary function. The λ-prolongation of order
n of v, denoted by v[λ,(n)], is the vector field defined on M by

v[λ,(n)] = ξ(x, u) ∂
∂x

+ η(x, u) ∂
∂u

+
∑n
i=1 η

(i)(x, u(i)) ∂
∂ui

where η[λ,(i)](x, u(i)) = (Dx + λ)(η[λ,(i−1)](x, u(i−1)))−
(
(Dxλ)(ξ(x, u))

)
ui

and η[λ,(0)](x, u) = η(x, u), for i = 1, 2, 3, ..., n.
A vector field v is a λ-symmetry of the Eq.(2.1), if there exists function
λ ∈ C∞(M (1)), such that

v[λ,(n)]
[
∆(x, u(n))

]
= 0, if ∆(x, u(n)) = 0.

Note. Suppose vector field v = ∂/∂u be a λ-symmetry of the Eq.(2.1),
then
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v[λ,(n−1)] =
∂

∂u
+ (Dx + λ)(1)

∂

∂u1
+ (Dx + λ)(Dx + λ)(1)

∂

∂u2
+ ...

+(Dx + λ)(Dx + λ)...(Dx + λ)(1)
∂

∂un−1
,

or equivalent

v[λ,(n−1)] =
n−1∑
i=0

(Dx + λ)i(1)
∂

∂ui
. (2.2)

An integrating factor of the Eq.(2.1), is a function µ(x, u(n−1)) such that
the equation µ.∆ = 0 is an exact equation:

µ(x, u(n−1)).∆(x, u(n)) = Dx(G(x, u(n−1))).

Function G(x, u(n−1)), will be called a first integral of the Eq.(2.1), and

Dx(G(x, u(n−1))) = 0,

is a conserved form of the Eq.(2.1) [7].

Let

un = F (x, u(n−1)), (2.3)

be a nth-order ordinary differential equation, where F is an analytic
function of its arguments. We denote by A = ∂x + u1∂u + u2∂u(1) + ... +
F (x, u(n−1))∂u(n−1) the vector field associated with Eq.(2.3) [5].
Function I(x, u(n−1)) is a first integral [8] of Eq.(2.3), such that A(I) = 0
and an integrating factor of Eq.(2.3), is any function µ(x, u(n−1)) such
that

µ(x, u(n−1))(u(n) − F (x, u(n−1))) = DxI(x, u(n−1)).

By using (2.2), It can be checked that the vector field v = ∂u is a λ-
symmetry of Eq.(2.3), if the function λ(x, u(k)), for some k < n, is any
particular solution of the equation

(Dx + λ)n(1) =
n−1∑
i=0

(Dx + λ)i(1)
∂F

∂ui
. (2.4)
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3 First integral, Integrating factor and λ-symmetry for third-
order ODEs

For n = 3, the corresponding third-order ODEs can be written in explicit
form as particular

...
u = F (x, u, u̇, ü). (3.1)

We denote by A = ∂x + u̇∂u + ü∂u̇ + F (x, u, u̇, ü)∂ü the vector field asso-
ciated with Eq.(3.1). Function I(x, u, u̇, ü) is a first integral of Eq.(3.1)
such that A(I) = 0 and an integrating factor of Eq.(3.1) is any function
µ(x, u, u̇, ü) such that µ(

...
u − F (x, u, u̇, ü)) = Dx(I). By using (2.4), if

λ(x, u, u̇, ü) be any particular solution of

D2
xλ+Dxλ

2 + λDxλ+ λ3 =Fu + λFu̇ + (Dxλ+ λ2)Fü,

then the vector field v = ∂u is a λ-symmetry of Eq. (3.1).

Theorem 3.1 If I(x, u, u̇, ü) is a first integral of Eq. (3.1), then µ(x, u, u̇, ü) =
Iü(x, u, u̇, ü) is a integrating factor of (3.1).

Proof. If I(x, u, u̇, ü) be a first integral of Eq. (3.1), then

0 = A(I) = Ix + u̇Iu + üIu̇ + F (x, u, u̇, ü)Iü,

therefore
Ix + u̇Iu + üIu̇ = −F (x, u, u̇, ü)Iü,

and

DxI = Ix + u̇Iu + üIu̇ +
...
uIü

=−F (x, u, u̇, ü)Iü +
...
uIü

= Iü(
...
u − F (x, u, u̇, ü)).

Hence µ = Iü. 2Note(see [5]). If v[λ,(k)](α) = v[λ,(k)](β) = 0 where
α = α(x, u(k)), β = β(x, u(k)) ∈ C∞(M (k)) then

v[λ,(k+1)]
(
Dxα

Dxβ

)
= 0.
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Theorem 3.2 If I(x, u, u̇, ü) is a first integral of Eq. (3.1), then the
vector field v = ∂u is a λ-symmetry of Eq.(3.1) such that λ is solution
Iu + λIu̇ + (Dxλ+ λ2)Iü = 0 and v[λ,(2)](I) = 0.

Proof. Since for any function λ(x, u, u̇, ü), we have v[λ,(2)] = ∂u+ λ∂u̇+
(Dxλ+ λ2)∂ü, therefore,

v[λ,(2)](I) = Iu + λIu̇ + (Dxλ+ λ2)Iü = 0.

Since functions g(x, u, u̇, ü) = x and I(x, u, u̇, ü) are first integral of v[λ,(2)]

then v[λ,(3)](
DxI

Dxx
) = v[λ,(3)](DxI) = 0, i.e., DxI is an invariant of v[λ,(3)].

By applying v[λ,(3)] to identity µ(
...
u − F (x, u, u̇, ü)) = Dx(I), we obtain

v[λ,(3)]
(
µ(

...
u − F )

)
= v[λ,(3)](Dx(I))

v[λ,(3)]
(
Iü(

...
u − F )

)
= 0

v[λ,(3)](Iü)
(

...
u − F

)
+ Iüv

[λ,(3)]
(

...
u − F

)
= 0.

Therefore Iüv
[λ,(3)]

(
...
u − F

)
= 0, when

...
u = F (x, u, u̇, ü), since Iü 6= 0,

hence the vector field v = ∂u is a λ-symmetry of Eq.(3.1). 2

Theorem 3.3 If µ(x, u, u̇, ü) is an integrating factor of Eq. (3.1), then
there is a first integral I(x, u, u̇, ü) of Eq. (3.1), such that µ(x, u, u̇, ü) =
Iü(x, u, u̇, ü).

Proof. If µ(x, u, u̇, ü) is an integrating factor of Eq. (3.1), then

µ(x, u, u̇, ü)(
...
u − F (x, u, u̇, ü)) = Dx(I) = Ix + u̇Iu + üIu̇ +

...
uIü,

for some function I(x, u, u̇, ü) then µ(x, u, u̇, ü) = Iü(x, u, u̇, ü) also, we
have

−µF = −IüF = Ix + u̇Iu + üIu̇,

therefore Ix+ u̇Iu+ üIu̇+F (x, u, u̇, ü)Iü = 0, i.e. A(I) = 0. 2The vector
field v = ξ(x, u)∂x + η(x, u)∂u is a λ-symmetry of Eq. (3.1) if and only if
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[v[λ,(2)], A] = λv[λ,(2)] + τA where τ = −(A+ λ)(ξ(x, u)). When v = ∂u is
a λ-symmetry of Eq.(3.1) if and only if [v[λ,(2)], A] = λv[λ,(2)].(see [5])

Theorem 3.4 If v = ∂u is a λ-symmetry of Eq.(3.1) for some function
λ(x, u, u̇, ü), then there is a first integral I(x, u, u̇, ü) of Eq.(3.1) such that
v[λ,(2)](I) = 0.

Proof. If v = ∂u is a λ-symmetry of Eq.(3.1) for some function λ(x, u, u̇, ü),
then

[v[λ,(2)], A] = λv[λ,(2)].

Therefore {v[λ,(2)], A} is an involutive set of vector fields in M (2) and there
is function I(x, u, u̇, ü) such that v[λ,(2)](I) = 0 and A(I) = 0. 2

Theorem 3.5 A system of the form

Ix = µ
(

Ψu̇−Hü− F
)

Iu = −µΨ

Iu̇ = µH

Iü = µ

(3.2)

where Ψ = λH +Dxλ+ λ2, is compatibly for some function λ(x, u, u̇, ü)
, µ(x, u, u̇, ü) and H(x, u, u̇, ü), if and only if µ is an integrating factor
of Eq.(3.1) and v = ∂u is a λ-symmetry of Eq.(3.1). In this case I is a
first integral of Eq.(3.1).

Proof. If I be a first integral of Eq.(3.1) then µ = Iü is an integrating
factor of Eq.(3.1) and if v = ∂u be a λ-symmetry of Eq.(3.1) then A(I) =
0 and v[λ,(2)](I) = 0, i.e.

Ix =−u̇Iu − üIu̇ − FIü = −u̇Iu − üIu̇ − Fµ,
Iu =−λIu̇ − (Dxλ+ λ2)Iü = −λIu̇ − (Dxλ+ λ2)µ.

If Iu̇ = µH, where H(x, u, u̇, ü) is arbitrary function, then system (3.2)
is compatible. We are going to prove that, when (3.2) is compatible
necessarily v = ∂u is a λ-symmetry. Suppose (3.2) is compatible,i.e.,
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Ixu = Iux,Ixu̇ = Iu̇x,Ixü = Iüx,Iuu̇ = Iu̇u ,Iuü = Iüu,Iu̇ü = Iüu̇. Obviously
that Ixü = Iüx ,Iuü = Iüu,Iu̇ü = Iüu̇, implies that

µx = (Iü)x = (Ix)ü = µü

(
Ψu̇−Hü− F

)
+ µ

(
Ψu̇−Hü− F

)
ü
,

µu = (Iü)u = (Iu)ü = −µüΨ− µΨü, (3.3)

µu̇ = (Iü)u̇ = (Iu̇)ü = µüH + µHü.

The compatibility of system (3.2) , i.e. Ixu = Iux, Ixu̇ = Iu̇x, Iuu̇ = Iu̇u ,
and by using of (3.3) implies that

A(Ψ) = +Fu + (Fü +H)Ψ,

A(H) =−Fu̇ +HFü +H2 + Ψ, (3.4)

A(µ) =−µFü − µH.

By using (3.4) we have

0 =µ
[
A(λH +Dxλ+ λ2)− Fu − (Fü +H)(λH +Dxλ+ λ2)

]
= ...

=µ
[
D2
xλ+Dxλ

2 + λDxλ+ λ3 − Fu − λFu̇ − (Dxλ+ λ2)Fü

]
.

Hence,

µ
[
D2
xλ+Dxλ

2 + λDxλ+ λ3 − Fu − λFu̇ − (Dxλ+ λ2)Fü

]
= 0,(3.5)

when µ 6= 0, (3.5) implies that v = ∂u is a λ-symmetry. 2

Corollary 3.1 A procedure to find an integrating factor µ(x, u, u̇, ü) and
consequently a first integral I(x, u, u̇, ü) of Eq.(3.1), by λ-symmetry method,
is as follows:

• First, we find a function λ of Eq.(3.1). The function λ(x, u, u̇, ü) is
any particular solution of the equation

D2
xλ+Dxλ

2 + λDxλ+ λ3 = Fu + λFu̇ + (Dxλ+ λ2)Fü, (3.6)
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• Second, we find an integrating factor µ of Eq.(3.1). The integrating
factor µ(x, u, u̇, ü) and function H(x, u, u̇, ü) are particular solutions
of the system


A(Ψ)− Fu − (Fü +H)Ψ = 0

−A(H)− Fu̇ +HFü +H2 + Ψ = 0

A(µ) + µFü + µH = 0

(3.7)

where Ψ = λH +Dxλ+ λ2.
• Finally, we find a first integral I of Eq.(3.1). The first integral I(x, u, u̇, ü)

is any particular solution of the system



Ix = µ
(

Ψu̇−Hü− F
)

Iu = −µΨ

Iu̇ = µH

Iü = µ.

(3.8)

Therefor, we have µ(
...
u − F ) = Dx(I).

Example Consider the third-order differential equation

...
u − 2x

x2 + 1
ü− 3x2

x2 + 1
= 0, (3.9)

where F (x, u, u̇, ü) =
2x

x2 + 1
ü +

3x2

x2 + 1
is an analytic function of its

arguments. It can be checked that λ =
1

x
is a particular solution of (3.6).

Substituting F (x, u, u̇, ü) =
2x

x2 + 1
ü +

3x2

x2 + 1
and λ =

1

x
into (3.7) and

solving them, we obtain H = 0 and µ = x2 + 1. Therefore, by using of
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system (3.8), we have 

Ix = −µF = 2xü+ 3x2

Iu = 0

Iu̇ = 0

Iü = µ = x2 + 1.

(3.10)

A solution of this system is I(x, u, u̇, ü) = (x2 + 1)ü + x3. Therefore, by

using of (2.2), i.e. (x2+1)
(

...
u − 2x

x2 + 1
ü− 3x2

x2 + 1

)
= Dx

(
(x2+1)ü+x3

)
,

implies that, we reduce the order of equation
...
u − 2x

x2 + 1
ü− 3x2

x2 + 1
= 0

to the equation (x2 + 1)ü+ x3 = 0.

4 The Prelle-Singer (PS) method

The PS procedure has many attractive features. For a large class of inte-
grable systems, this procedure provides the integrals of motion/general
solution in a straightforward way. In fact this is true for any order. The PS
method not only gives the first integrals but also the underlying integrat-
ing factors. Further, like Lie-symmetry analysis and Noether’s theorem
the PS method can also used to solve linear as well as nonlinear ODEs.
In addition to the above, the PS procedure is applicable to deal with
both Hamiltonian and non-Hamiltonian systems.

Prelle and Singer introduced construct a method to integrating factor of
first-order ODEs and higher-order ODEs (see [2],[3]). The main charac-
teristic its as follows:

Let us consider a class of third order ODEs of the form

...
u =

P (x, u, u̇, ü)

Q(x, u, u̇, ü)
, (4.1)

where over dot denotes differentiation with respect to x and P and Q are
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polynomials in x, u, u̇ and ü. Let us assume that the ODE (4.1) admits a
first integral I(x, u, u̇, ü) = c, such that c constant on the solutions ODEs
(4.1), so that the total differential gives

dI = Ixdx+ Iudu+ Iu̇du̇+ Iüdü = 0. (4.2)

where subscript denotes partial differentiation with respect to that vari-
able. Rewriting equation (4.1) of the form

P

Q
dx− dü = 0. (4.3)

The existence of the functions Si(x, u, u̇, ü), i = 1, 2, such that

S1(x, u, u̇, ü)u̇dx− S1(x, u, u̇, ü)du = 0,

S2(x, u, u̇, ü)üdx− S2(x, u, u̇, ü)du̇ = 0.

(4.4)

By adding terms (4.3) and (4.4), we obtain the 1−form

(
P

Q
+ S1u̇+ S2ü

)
dx− S1du− S2du̇− dü = 0. (4.5)

Multiplying (4.5) by some function R(x, u, u̇, ü), we have that

dI =R
[(
F + S1u̇+ S2ü

)
dx− S1du− S2du̇− dü

]
= 0. (4.6)

where F ≡ P

Q
. Comparing equation (4.2) and (4.6), we have the system



Ix = R
(
F + S1u̇+ S2ü

)
Iu = −RS1

Iu̇ = −RS2

Iü = −R.

(4.7)
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The compatibility of system (4.7), Ixu = Iux, Ixu̇ = Iu̇x, Ixü = Iüx,
Iuu̇ = Iu̇u, Iuü = Iüu, Iu̇ü = Iüu̇ , implies that, we obtain the conditions

A(S1) =−Fu + S1(Fü + S2),

A(S2) =−Fu̇ + S2(Fü + S2)− S1, (4.8)

A(R) =−R(Fü + S2),

Rx =−Rü

(
F + S1u̇+ S2ü

)
−R

(
F + S1u̇+ S2ü

)
ü
,

Ru =RüS1 +R(S1)ü ,

Ru̇ =RüS2 +R(S2)ü.

Corollary 4.1 A procedure to find an integrating factor R(x, u, u̇, ü) and
consequently a first integral I(x, u, u̇, ü) of Eq.(3.1), by the PS method,
is as follows:

• First, we find an integrating factor R of Eq.(3.1). The integrating fac-
tor R(x, u, u̇, ü) and functions S1(x, u, u̇, ü) and S2(x, u, u̇, ü) are par-
ticular solutions of the system


A(S1) + Fu − S1(Fü + S2) = 0,

A(S2) + Fu̇ − S2(Fü + S2) + S1 = 0,

A(R) +R(Fü + S2) = 0.

(4.9)

• Finally, we find a first integral I of Eq.(3.1). The first integral I(x, u, u̇, ü)
is any particular solution of the system



Ix = R
(
F + S1u̇+ S2ü

)
Iu = −RS1

Iu̇ = −RS2

Iü = −R.

(4.10)

Therefor, we have R(
...
u − F ) = Dx(I).
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5 Comparing λ-symmetry method and The PS method

As a consequence of section 3 and 4, by comparing λ-symmetry method
and Prelle-Singer (PS) method for third-order differential equations, we
have the following corollary:

Corollary 5.1 If R = −µ, S1 = −Ψ and S2 = H where Ψ = λH+Dxλ+
λ2 then the systems (3.7) and (3.8) are equivalent to systems (4.9) and
(4.10).
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