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 ABSTRACT 

 In the present study, a spectral finite element method is developed for free and forced 

transverse vibration of Levy-type moderately thick rectangular orthotropic plates based 

on first-order shear deformation theory. Levy solution assumption was used to convert 

the two-dimensional problem into a one-dimensional problem. In the first step, the 

governing out-of-plane differential equations are transformed from time domain into 

frequency domain by discrete Fourier transform theory. Then, the spectral stiffness 

matrix is formulated, using frequency-dependent dynamic shape functions which are 

obtained from the exact solution of the governing differential equations. An efficient 

numerical algorithm, using drawing method is used to extract the natural frequencies. 

The frequency domain dynamic responses are obtained from solution of the spectral 

element equation. Also, the time domain dynamic responses are derived by using 

inverse discrete Fourier transform algorithm. The accuracy and excellent performance 

of the spectral finite element method is then compared with the results obtained from 

closed form solution methods in previous studies. Finally, comprehensive results for 

out-of-plane natural frequencies and transverse displacement of the moderately thick 

rectangular plates with six different combinations of boundary conditions are presented. 

These results can serve as a benchmark to compare the accuracy and precision of the 

numerical methods used.                                                                                                           

 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 LATES are two-dimensional plane structures that are widely used in a variety of engineering fields, such as 

mechanical, aerospace, shipbuilding, automotive, nuclear, petrochemical, petroleum and civil engineering. 

Investigating dynamic characteristics of plates and plate structures is necessary to prevent failure and fatigue. 

Dynamic loads may be created by wave impact, wind gusts, moving vehicles, unbalanced rotating machinery, blast 

and seismic loads. In general, methods for solving dynamic problems of plates are divided into two categories, 

namely approximate methods and exact methods. 

The exact analytical methods or closed form solutions (CFS) are of considerable importance because of the exact 

results which they produce. A large number of studies have been carried out using CFS, some of which will be 
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touched upon here. Reddy and Phan [1] used higher-order shear deformation theory (HSDT) and obtained exact 

natural frequencies of isotropic, orthotropic and laminated rectangular plates when all edges are simply supported. 

Xiang and Wei [2] studied free vibration analysis of stepped rectangular Mindlin plates with two opposite edges 

simply supported and the other two edges having any combination of free, clamped or simply supported boundary 

conditions. Numerous studies have been carried out by Hosseini Hashemi et al. [3-9] on free vibration of plates 

including isotropic rectangular plates, functionally graded circular and annular plates, functionally graded 

rectangular plates based on the first-order shear deformation theory (FSDT) and also, isotropic and functionally 

graded rectangular plates based on the third-order shear deformation theory (TSDT). 

Since the above mentioned CFS do not develop a stiffness matrix, their application is not feasible for the 

assembly plates and plate structures. To resolve this limitation, the methods based on stiffness matrix analysis can be 

used in which plates or plate structures are divided into several separate finite strips. The exact finite strip method 

(EFSM), dynamic stiffness method (DSM) and spectral finite element method (SFEM) are the exact methods that 

enjoy this capability and thus have been considered by many researchers. 

Hatami et al. [10-11] developed an exact finite strip method for laminated composite plates and viscoelastic 

plates subjected to in-plane forces, using classical plate theory (CPT). By presenting a set of numerical examples, 

the effect of speed of plate motion and internal supports on the free vibration frequency of the axially moving plates 

was studied. Using dynamic stiffness method, Boscolo and Banerjee [12-14] presented free vibration analysis of 

isotropic rectangular plate assemblies and composite plates based on FSDT. As for the capability of the dynamic 

stiffness method, natural frequencies and mode shapes of L and omega stringer panels and stepped plates are 

obtained in the works. The HSDT is also used for the development of dynamic stiffness matrix of the composite 

plates by Leung and Zhou [15] and Fazzolari et al. [16]. Kolarevic et al. [17-18] presented the free vibration analysis 

of plate assemblies based on FSDT and HSDT. The harmonic responses are obtained for out-of-plane and in-plane 

vibration of the orthotropic Kirchhoff plate by Ghorbel et al. [19-20]. 

Spectral finite element method is a combination of dynamic stiffness method and spectral analysis method. The 

SFEM provides dynamic responses in frequency domain due to the use of dynamic shape functions. In the SFEM, 

the dynamic responses are being obtained from superposition of a finite number of wave modes corresponding to 

several discrete frequencies based on the discrete Fourier transform (DFT) theory. In many sciences, including civil 

engineering, mechanical, soil, hydraulic structures, fluids, etc. the SFEM is used for the analysis of the dynamic 

behavior of various structures. A set of works carried out by Doyle et al. could be found in Doyle [21]. The SFEM 

was formulated for the isotropic plates subjected to point and distributed dynamic loads by Lee and Lee [22], axially 

moving plates with constant speed subjected to uniform in-plane axial tension by Kim et al. [23], composite 

structures by Chakraborty and Gopalakirshnan [24] and axially moving beam-plates subjected to sudden external 

thermal loads by Kwon and Lee [25] based on CPT. Wang and Unal [26] developed an efficient and accurate 

solution to free vibration of stepped thickness rectangular plates with various boundary conditions, which were not 

limited to Levy-type plates. In their study, the Kantorovich method reduces partial differential equations to a set of 

linear algebraic equations and provides an analytical approximation solution form for the analysis of structures. 

Hajheidari and Mirdamadi [27-28] investigated the free and forced vibration symmetric and non-symmetric 

cross-ply laminated composite plates based on classical laminated plate theory. The spectral-dynamic stiffness 

method (S-DSM) was extended to free vibration analysis of the orthotropic composite plates assemblies based on 

classical lamination plate theory (CLPT) [29-30] and isotropic plates with arbitrary boundary conditions based on 

CPT [31]. Park and Lee [32] proposed the spectral element model for the symmetric laminated composite plates 

based on CLPT. Finally, the SFEM was developed for transverse vibration of the moderately thick rectangular plates 

under impact and moving loads by Shirmohammadi et al. [33] and annular Levy-type plates subjected to impact 

loads by Bahrami et al. [34]. 

In the present study, an SFEM is developed for free vibration and forced vibration analysis of moderately thick 

rectangular orthotropic plates having two opposite edges simply supported and remaining edges with any arbitrary 

boundary conditions (i.e. Levy-type rectangular plates) based on FSDT. The natural frequencies of moderately thick 

rectangular plates are presented for six combinations of classical boundary conditions, namely CC, CS, FC, FF, FS 

and SS. The mode shapes for transverse and rotational displacements are plotted. The convergence of the dynamic 

responses of the plate under dynamic loads for the contribution of the various numbers of half-wavelengths in y-

direction and sampling time interval is presented. The dynamic responses to both periodic and impulsive loads in 

frequency domain and time domain are obtained. The obtained natural frequencies and dynamic responses are 

compared with available analytical solutions to confirm the validity and exactness of the results. 
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2    EQUATIONS OF MOTION 

Deriving governing differential equations of motion is the first step in the development of spectral finite element 

matrix for a continuous elastic system. This can be accomplished through various methods such as Newton’s second 

law, the principle of virtual work or Hamilton’s principle. Since only transverse (out-of-plane) vibration is of 

interest, we can just consider inertia forces associated with the transverse translation of the plate without taking into 

account the inertia forces associated with in-plane translation. Consider a moderately thick rectangular plate of 

length yL , width xL  and uniform thickness h, as shown in Fig. 1. The displacement fields of plate in x-direction, y-

direction and z-direction are represented by ( , , , ), ( , , , )u x y z t v x y z t and ( , , , )w x y z t , respectively. The displacement 

fields for moderately thick rectangular plates on the basis of the FSDT, assuming no motion in the membrane 

0 0( , 0)u v   may be expressed as: 

 

0( , , , ) ( , , )   ,     ( , , , ) ( , , )   ,     ( , , , ) ( , , )x yu x y z t z x y t v x y z t z x y t w x y z t w x y t     (1) 

 

where x  and y  are the rotational displacements about the y and x axes at the middle surface of the plate, 

respectively, 0w  is the transverse displacement and t is the time variable.  

 

 
Fig.1 

Displacement field, denoted forces and moments and distributed transverse load for a moderately thick rectangular plate. 

 

 

The governing differential equations of motion are obtained using the Hamilton’s principle [35] as follows: 
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(2) 

 

where the comma followed by x or y parameter denotes differentiation with respect to the x or y, respectively. Also 

0
I ph and 

3

2
/12I ph  are the mass moments of inertia of the plate and  is the mass density of plate material. 

The moments and transverse forces resulting from internal stress according to sign conventions shown in Fig. 1 are 

defined as follows [35]. 
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where K is the shear correction factor, which was obtained by Reissner  as 5/6 [36]. Also, the plate stiffnesses 

,
ij ij

A D  are defined by 

 
33 3 3

6611 12 22

44 44 55 55 11 12 22 66
, , , , ,

12 12 12 12

Q hQ h Q h Q h
A Q h A Q h D D D D       

 

(4) 

 

where 
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(5) 

 

where 
11

E  is the elastic modulus in the fiber direction, 
22

E  the elastic modulus in the direction perpendicular to the 

fiber, 
12

v  and 
21

v  the Poisson’s ratios, 
12 13

,G G  and 
23

G  the shear modulus of each single orthotropic lamina. 

Substituting Eqs. (3) into Eqs. (2), governing differential equations of motion in terms of displacements 
0
,

x
w   and 

y
  can be expressed as: 
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(6) 

3    SPECTRAL FINITE ELEMENT FORMULATION 

The main difficulty using the spectral finite element formulation for the plate is transforming the 2-D problem into a 

1-D problem. In this paper, Levy-type solution is used to create a 1-D problem when at least two parallel opposite 

edges of the plate have simple supports as seen in Fig. 1. The figure shows a Levy-type plate in which two opposite 

edges ( 0y  and 
y

L ) are simply supported and the remaining edges ( 0x  and 
x

L ) of the plate can have any 

arbitrary boundary conditions. The plate behavior in the longitudinal direction (y axis), according to exact analytical 

solution method, can be represented in the form of a single Fourier series. It should be noted that these functions 

must satisfy the boundary conditions along two parallel edges at 0y  and 
y

L . For the Levy-type plates, the simply 

supported boundary conditions on the two edges 0y  and 
y

L are defined as follows: 

 

0 0
( ,0, ) ( , , ) 0 , ( ,0, ) ( , , ) 0 , ( ,0, ) ( , , ) 0

y x x y yy yy y
w x t w x L t x t x L t M x t M x L t        (7) 

 

From now on, we only need to formulate a 1-D problem (along x axis) in SFEM. Now, displacements of the 

moderately thick rectangular plate are defined as follows: 

 

0

1 1 1

( , , ) ( , )sin( ) , ( , , ) ( , )cos( ) , ( , , ) ( , )sin( )
x xm ym y ym ym m ym

m m m

x y t x t k y x y t x t k y w x y t W x t k y 
  

  

        
 

(8) 

 

where /
ym y

k m L and m is the number of half-wavelengths in direction y axis corresponding to terms of Fourier 

series. Also 
m

W  is modal transverse displacement and 
xm

  and 
ym

  are modal rotational displacements about the y 

and x axes, respectively. Similarly, the resultant bending and twisting moments and transverse shear forces are 

written as: 
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1 1 1

( , , ) ( , )sin( ) , ( , , ) ( , )cos( ) , ( , , ) ( , )sin( )
xx xxm ym xy xym ym x xm ym

m m m

M x y t M x t k y M x y t M x t k y Q x y t Q x t k y
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  

      
 

(9) 

 

where 
xxm

M  is modal bending moment about the y axis, 
xym

M  is modal twisting moment and 
xm

Q  and 
ym

Q , modal 

transverse shear forces. On the other hand, based on the Levy-type solution, linear transverse load ( , )
z

q y t  (in 

direction y axis) can be written as a set of half-wavelengths by using single Fourier series, as follows: 

 

1

( , ) ( )sin( )
z zm ym

m
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(10) 

 

where 
zm

q  is modal linear transverse load and is obtained as follows: 

 

0

2
( ) ( , )sin( )d

yL

zm z ym

y

q t q y t k y y
L

   
 

(11) 

3.1 Governing equations in the frequency domain 

To obtain frequency-dependent dynamic shape function, it is necessary first to transform governing partial 

differential equations of motion from the time domain into the frequency domain by DFT. Then the spectral stiffness 

matrix using dynamic shape function by the force-displacement relation method is achieved. Based on DFT theory, 

modal displacements ,
m xm

W  and 
ym

  expressed in Eqs. (8) are represented in spectral form as follows: 
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(12) 

 

where 1i    is the imaginary unit, N number of samples in the time domain and 2 /
n

n T  is nth discrete 

frequency, where T is sampling time window. ,
nm xnm

W  and 
ynm

 are the spectral components (or Fourier 

coefficients) related to the modal displacements. Similarly all modal force and moments in the spectral forms can be 

expressed as follows. 
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(13) 

 

where ,
xnm xxnm

Q M and 
xynm

M are the spectral components (or Fourier coefficients) related to the modal moments and 

force. Also, based on DFT theory, DFT pair for external applied load ( )
zm

q t is defined by Eqs. (14-15). 
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(15) 

 

where 
znm

q is the DFT coefficients related to the periodic load ( )
zm r

q t  and 
r

t r t  . In addition, /t T N  is 

uniform time interval. Substituting Eqs. (8) and (12) into Eqs. (6) yields a set of coupled ordinary differential 

equations in the frequency domain as: 
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(16) 

 

Also by substituting Eqs. (8), (12) and Eqs. (9), (13) into the corresponding relations of the plate (Eqs. 3), the 

force-displacement relationships in the frequency domain can be expressed as follows. 
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(17) 

3.2 Spectral element equation 

3.2.1 General solution of spectral-modal displacements 

The dynamic (frequency-dependent) shape functions are obtained from general solution of the governing differential 

equations. By removing external force ( 0
znm

q  ) from Eqs. (16), the homogeneous equations (in other words, free 

vibration problem) could be obtained. 
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Assume the general solutions of Eqs. (18) is as follows. 
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where 
xnm

k are wavenumbers in direction x axis and 
nm

b  the constant coefficient. Substituting Eqs. (19) into Eqs. 

(18) an eigenvalue problem is obtained. 
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The algebraic Eq. (20) has a nontrivial solution, which is obtained by setting determinant of the coefficients 

matrix as zero. Hence, after simplification, it yields a six order polynomial in terms of wavenumbers. 
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4
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KA h h D h k D D k h k

m
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     

 
 
      
   
      
      

        2 3 2 2 3 2 2 4 2 2 2

55 66 22 44 22

1
12 12 12 12 12

144
ym n n n ym ym ym n

KA D k h h h D k KA D k h k h             
 

 

 

 

 

 

 

 

(23) 

 

 

Eq. (22) is known as the dispersion relation or spectrum relation. The roots (i.e. wavenumbers) of this equation 

are obtained as follows. 

 

1,2 1 3,4 1 5,6 1

1 1 1 3 1 3 1 1 3 1 3
  ,       ,      

3 3 2 2 3 2 2
xnm xnm xnm

i i i i
k b I J k b I J k b I J

   
                

 

(24) 

 

where 

 

   

32

3 1 1 2 32 4 2 1

1 2 3

1 1 1

3 2 3 23 3

2 9 273
, , , ,

9 27

1 1
4 , 4

2 2

m b b b bm m b b
b b b p q

m m m

I q p q J q p q

 
    

       

 

 

 

(25) 

 

 

The coefficients  and   corresponding to each wavenumber obtained from Eqs. (20) are as follows. 

 

 

  

 

2 2 3 2 2
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2 2 2 2
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1
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xnmi ym n xnmi

i
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i
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k K A A D D KA k h KA k

K A k KA k KA k h D k KA D k h

 


 

   



      
 

    
 

      

 

  

2

2 2 2 2
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n

ym xnmi ym xnmi xnmi ym n
K A A k k k k D D KA k KA k h 

  
  
  

    
 

 

 

 

 

 

(26) 

 

Finally, the general solutions of Eqs. (18) is presented as follows. 
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6 6
T T

1 1

6
T

1

( , ) , ( , )

( , )

xnmi xnmi

xnmi

k x k x

xnm nmi nm n nm ynm i nmi nm n p nm

i i

k x

nm i nmi nm n p nm

i

b e E x b b e E x b

W b e E x a b

   

 

 



     

 

 


 

 

 

(27) 

 

where 

 

 

1 2 3 4 5 6T

T

1 2 3 4 5 6

( , ) xnm xnm xnm xnm xnm xnmk x k x k x k x k x k x

nm n

nm nm nm nm nm nm nm

E x e e e e e e

b b b b b b b

    



 

 

(28) 

 

and 

 

   1 2 3 6 1 2 3 66 6 6 6
diag[ ] diag , diag[ ] diag

p i p i
           

 
     (29) 

3.2.2 Spectral-modal nodal DOFs vector 

For a spectral finite element shown in Fig. 2(b), the geometric boundary conditions must be satisfied at the element 

nodes (
1

x x and 
2

x x ). The geometric boundary conditions include the transverse displacement and rotational 

displacements about the y and x axes. The spectral-modal nodal degrees of freedom (DOFs) for the moderately thick 

rectangular plate element are specified in Fig. 2(b). 

The spectral-modal nodal DOFs vector 
nm

d  can be defined by applying the geometric boundary conditions, as 

follows. 

 

   
T T

1 1 1 2 2 2 1 1 1 2 2 2
( ) ( ) ( ) ( ) ( ) ( )

nm nm xnm ynm nm xnm ynm nm xnm ynm nm xnm ynm
d W W W x x x W x x x           (30) 

 

 

 
 

        (a) dividing the plate to some elements                                                  (b) spectral finite element 

 

Fig.2 

Sign conventions spectral-modal nodal DOFs and forces. 

 

 

Substituting Eqs. (27) into Eq. (30) yields the relationship as: 

 

( )
nm nm n nm

d G b  (31) 

 

where 
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1 1 2 1 6 1
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1 1 2 1 6 1
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  

  

 
 
 
 

  
 
 

 6 6




 

 

 

 

(32) 

3.2.3 Dynamic shape functions 

By eliminating the constant vector 
nm

b  from Eqs. (27) by using Eq. (31), the general solutions of the governing 

ordinary differential equations of motion in the frequency domain (relations Eqs.(18)) in terms of the spectral-modal 

nodal DOFs vector 
nm

d  are expressed as follows: 

 
T T T, ,

nm Wnm nm xnm xnm nm ynm ynm nm
W N d N d N d

 
      (33) 

 

where T T,
Wnm xnm

N N


and T

ynm
N


 are the dynamic (frequency-dependent) shape functions related to spectral-modal 

displacements ,
nm xnm

w  and 
ynm

 , respectively. They are obtained from the exact solution of the governing 

differential equations and are defined as follows. The dynamic shape functions are 1-by-6 matrices. 

 
T T 1 T T 1 T T 1( , ) , ( , ) , ( , )
Wnm n nm p nm xnm n nm nm ynm n nm p nm

N x E G N x E G N x E G      

 
    (34) 

3.2.4 Spectral-modal nodal forces vector 

Substituting Eqs. (27) into Eq. (17), the force-displacement relationships in the frequency domain can be rewritten 

as follows: 

 

 

 

6 6

11 12 66

1 1

6

55
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ˆ ˆ,

ˆ 1
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i

M b D k D k e M b D k k e

Q b A k e

 



 



        

   

 


 

 

 

(35) 

 

For a spectral finite element shown in Fig. 2(b), the natural boundary conditions at the element nodes (
1

x x and 

2
x x ) must be satisfied. The natural boundary conditions in the frequency domain include the spectral-modal 

transverse shear force 
xnm

Q , spectral-modal bending moment 
xxnm

M  and spectral-modal twisting moment 
xynm

M . 

The spectral-modal nodal force and moments for the moderately thick rectangular plate element are shown in Fig. 

2(b). The spectral-modal nodal forces vector 
nm

f  can be obtained by applying the natural boundary conditions, and 

given the sign conventions used in the theory of the plate (shown in Fig. 1), they are written as follows: 

 

 

 

T

1 1 1 2 2 2

T

1 1 1 2 2 2
( ) ( ) ( ) ( ) ( ) ( )

nm xnm xxnm xynm xnm xxnm xynm

xnm xxnm xynm xnm xxnm xynm

f Q M M Q M M

Q x M x M x Q x M x M x



   

 

 

(36) 

 

Substituting Eqs. (35) into Eq. (36) yields the relationship as: 

 

( )
nm nm n nm

f R b  (37) 
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where 

 

1 1 2 1 6 1

1 1 2 1 6 1

1 1 2 1 6 1

1 2 2 2 6 2

1 2 2 2 6 2

1 2 2 2

1 2 6

1 2 6
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1 2 6
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1 2 6
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A e A e A e

B e B e B e

C e C e C e
R

A e A e A e
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

  

  

  


6 2

6 6

x



 
 
 
 
 
 
 
 
  

 

 

 

 

(38) 

 

and 

 

   55 11 12 66
( 1) , , , 1, 2, ... , 6

i i xnmi i xnmi ym i i ym i xnmi
A A k B D k D k C D k k i           (39) 

3.2.5 Spectral stiffness matrix 

Eliminating the constant coefficients vector 
nm

b  from Eq. (37) using Eq. (31) gives the relationship between the 

spectral-modal nodal forces vector 
nm

f  and the spectral-modal nodal DOFs vector 
nm

d as follows. This relationship 

is known in the literature as spectral element equation. 

 

nm nm nm
f S d  (40) 

 

where 

 
1( )

nm n nm nm
S R G   (41) 

 

The matrix 
nm

S  is known as exact dynamic (frequency-dependent) stiffness matrix. In the literature it is often 

called spectral element matrix or spectral stiffness matrix. Also the matrix 
nm

S  is a six-by-six and symmetric matrix. 

The present spectral stiffness matrix is formulated for the moderately thick rectangular plate element based on 

FSDT. 

4    SPECTRAL ELEMENT ANALYSIS 

4.1 Global spectral stiffness matrix  

The first step in spectral element analysis is dividing the plate into several individual spectral finite elements due to 

boundary conditions, and geometric and mechanical properties of plate material. Also, if any discontinuities exist in 

the external loads applied to the plate, due to loading conditions, a greater number of spectral finite elements may be 

needed. Following that, the spectral-modal nodal DOFs and forces at each node of the spectral finite elements could 

be defined. The spectral element equation explained in Eq. (40) can be assembled by using a method similar to that 

used in the conventional finite element method. Finally, global system equation is given as follows: 

 

( )
gnm gnm n gnm

f S d  (42) 

 

where 
gnm

S  is the global spectral stiffness matrix, 
gnm

d  is the global spectral-modal nodal DOFs vector and 
gnm

f  is 

the global spectral-modal nodal forces vector. Fig. 3 shows six different combinations of boundary conditions, 

namely CC, CS, FC, FF, FS, SS. The boundary conditions of two parallel edges at 0y  and 
y

L  that are simply 

supported are not written for brevity. As a sample, for CC boundary condition, ,
nm xnm

W   and 
ynm

  according to the 

first and end node lines are zero, thus the relevant members are eliminated from 
gnm

S  matrix and from 
gnm

d  and 
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gnm
f  vectors. After applying the associated boundary conditions on the assembled set of equations, the final form of 

the global system equation is obtained. 

 

( )
gnm gnm n gnm

f S d  (43) 

4.2 Natural frequency and mode shapes 

By setting 
gnm

f  to zero, the eigenvalue problem for free vibration of the intended plate can be obtained. 

 

( ) 0
gnm n gnm

S d   (44) 

 

By setting the determinant of 
gnm

S to zero, the natural frequencies, 
NAT

 , are determined. 

 

 det ( ) 0
gnm n

S    (45) 

 

 

 
 

Fig.3 

Six combinations of boundary conditions for moderately thick rectangular plate. 

 

 

Eq. (44) is a transcendental eigenvalue problem. Therefore, the traditional procedures for solving the linear 

eigenvalue problem are not applicable. In earlier publications, various methods including Wittrick-Williams 

algorithm and method of trial and error to obtain the natural frequencies of Eq. (45) were suggested. In the present 

paper an efficient numerical algorithm using drawing method described by Hatami et al. [10] is used. In this 

procedure, the variation of stiffness matrix determinant  det
gnm

S  in logarithmic scale versus discrete frequencies 

n
  is plotted for different values of half-wavelengths, m. The points on the horizontal axis in which the logarithmic 

function tends to negative infinity are natural frequencies. Substituting these natural frequencies into Eq. (44), 

corresponding mode shapes can be computed. 

4.3 Frequency Response Functions (FRF) 

To continue the previous formulation, the global spectral-modal nodal DOFs vector 
gnm

d  can be computed form Eq. 

(43) and then the spectral-modal nodal DOFs vector 
nm

d  associated with the spectral finite element with respect to 

gnm
d  can be written as follows: 

 
1

nm gnm gnm gnm
d Ld L S f   (46) 

 

where L is the locator matrix. Substituting Eq. (46) into Eqs. (33), frequency domain dynamic responses are 

obtained as follows: 

 
T T T, ,

nm Wnm gnm xnm xnm gnm ynm ynm gnm
W H f H f H f

 
      (47) 
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with 

 
T T 1 T T 1 T T 1( , ) , ( , ) , ( , )
Wnm n Wnm gnm xnm n xnm gnm ynm n ynm gnm

H x N LS H x N LS H x N LS    

   
    (48) 

 

where T T,
Wnm xnm

H H


 and T

ynm
H


 are the frequency response functions for the spectral-modal displacements ,

nm xnm
W   

and 
ynm

 , respectively. 

4.4 Frequency domain dynamic responses 

The spectral components related to the time domain displacements ,
n yn

W  and 
xn

 can be calculated for each 

specific coordinate (x,y) of the plate as a set of half-wavelengths in direction y axis (single Fourier series). If these 

functions are calculated for the discrete frequencies, they are known as frequency domain dynamic responses, 

which, using Eqs. (47) can be obtained as follows: 

 

1 1

1

( , , ) ( , )sin( ) , ( , , ) ( , )cos( )

( , , ) ( , )sin( )

xn n xnm n ym yn n ynm n ym

m m

n n nm n ym

m

x y x k y x y x k y

W x y W x k y

   

 

 

 





     



 


 

 

 

(49) 

4.5 Time domain dynamic responses 

Lastly, using Eqs. (12) (in other words, inverse DFT algorithm) modal displacements and then using Eqs. (8) (in 

other words, single Fourier series expansion) time domain displacements responses can be obtained. Also, 

combining Eqs. (8) and (12) can be directly used as follows: 

 
1 1

0 1 0 1

1

0

0 1

1 1
( , )sin( ) , ( , )cos( )

1
( , )sin( )

n n

n

N N
i t i t

x xnm n ym y ynm n ym

n m n m

N
i t

nm n ym

n m

x k y e x k y e
N N

w W x k y e
N

 



   



   

   

 

 

   



 


 

 

 

(50) 

5    NUMERICAL RESULTS AND DISCUSSION 

The proposed SFEM is programmed in the environment of Mathematica to obtain the natural frequencies, mode 

shapes and dynamic responses in the frequency and time domain. The accuracy and excellent performance of the 

SFEM against the results available in the literature are investigated. 

5.1 Free vibration 

At first, exact frequencies of free transverse vibration of Levy-type rectangular plates are calculated based on FSDT 

with various boundary conditions. For this purpose, an isotropic rectangular plate ( 2
x y

L L ) with width to 

thickness ratio of 10 ( / 10
x

L h  ) is considered and the shear correction factor and Poisson’s ratio are assumed 

as13/15 and 0.3, respectively. Fig. 4 shows the variation of Log(Abs(Det[ ( , )
gnm ym n

S k  ])) with respect to frequency 

parameter   for different values of half-wavelengths along y-direction, m. As mentioned in Section 4.2, the points 

on the horizontal axis in which the logarithmic function tends to negative infinity are natural frequencies. 

The subscript m in 
mn

  is the number of half-wavelengths in the y-direction and the subscript n is the root 

number in the characteristic function of Eq. (45). It should be mentioned that there is an infinite number of roots for 

this function. As shown in Fig. 4(a), for CC boundary condition, the first, the second and the third frequency 
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parameters correspond to a single sinusoidal wave in direction of y axis ( 1m  ); and the fourth and the fifth 

frequency parameters are associated with double wave ( 2m  ). 

In Table 1., the first nine frequency parameters are compared with the results of exact closed form solution 

offered by Hosseini Hashemi and Arsanjani [3] based on FSDT for different boundary conditions (CC, CS, FC, FF, 

FS, SS). Maximum of two finite elements in x-direction are used to obtain the results of spectral finite element 

formulation. As it could be observed, proposed SFEM with a minimum number of finite elements produces exact 

results, compared with other exact analytical methods available. Therefore, this procedure could effectively be used 

for the purpose of modeling plate structures with more than one finite element (for example, multi-span plates, 

stepped thickness plates and plates with internal support). 

Table 2. shows the dimensionless natural frequencies of the Levy-type square orthotropic plate obtained by the 

spectral finite element method based on FSDT. These plate having the mechanical properties 6

11
20.83 10E   , 

6 6 6 6

22 12 13 23 12
10.94 10 , 6.10 10 , 3.71 10 , 6.19 10 , 0.23E G G G v         . For confidence, these results are 

compared with the results reported in Ref. [1] according to FSDT, HSDT and 3D elasticity theory. 

 

                      1m                                2m   

 
 

         
11

      
12

   
13

                       
21

     
22

   
23

  

(a) CC 

                 3m                                       4m   

 
 

 

(b) SS 

Fig.4 

Natural frequencies extraction of moderately thick square isotropic plate for boundary conditions CC and SS. 

 

 
Table 1 

Comparison of the dimensionless natural frequencies 2 /
n y
L h D    a Levy-type isotropic plate when / 10

x
L h  , / 2

x y
L L  , 

0.3, 13 /15.v K   

B.C. Method Mode sequences 

  1 2 3 4 5 6 7 8 9 

CC EFSM 

(m,n) 

12.3152 

(1,1) 

19.7988 

(1,2) 

29.9258 

(1,3) 

33.8397 

(2,1) 

39.2032 

(2,2) 

41.7813 

(1,4) 

47.2796 

(2,3) 

54.8076 

(1,5) 

57.3380 

(2,4) 

CFS [3] 12.3152 19.7988 29.9258 33.8397 39.2032 41.7813 47.2796 54.8076 57.3380 

CS EFSM 

(m,n) 

11.8061 

(1,1) 

18.6005 

(1,2) 

28.3427 

(1,3) 

33.7085 

(2,1) 

38.7801 

(2,2) 

40.0930 

(1,4) 

46.5758 

(2,3) 

53.1956 

(1,5) 

56.4568 

(2,4) 

CFS [3] 11.8061 18.6005 28.3427 33.7085 38.7801 40.0930 46.5758 53.1956 56.4568 

FC EFSM 

(m,n) 

9.6782 

(1,1) 

13.9934 

(1,2) 

21.5678 

(1,3) 

31.6896 

(1,4) 

32.0545 

(2,1) 

35.3839 

(2,2) 

41.5112 

(2,3) 

43.6674 

(1,5) 

49.9152 

(2,4) 

CFS [3] 9.6782 13.9934 21.5678 31.6896 32.0545 35.3839 41.5112 43.6674 49.9152 

FF EFSM 

(m,n) 

9.1061 

(1,1) 

10.7218 

(1,2) 

15.5826 

(1,3) 

23.2429 

(1,4) 

31.6538 

(2,1) 

32.8922 

(2,2) 

33.4360 

(1,5) 

37.2004 

(2,3) 

43.8579 

(2,4) 

CFS [3] 9.1061 10.7218 15.5826 23.2429 31.6538 32.8922 33.4360 37.2004 43.8579 

FS EFSM 

(m,n) 

9.5902 

(1,1) 

13.3463 

(1,2) 

20.3423 

(1,3) 

30.1061 

(1,4) 

32.0344 

(2,1) 

35.1634 

(2,2) 

41.0123 

(2,3) 

41.9810 

(1,5) 

49.1758 

(2,4) 

CFS [3] 9.5902 13.3463 20.3423 30.1061 32.0344 35.1634 41.0123 41.9810 49.1758 

SS EFSM 

(m,n) 

11.3961 

(1,1) 

17.5055 

(1,2) 

26.7944 

(1,3) 

33.5896 

(2,1) 

38.3847 

(1,4) 

38.3847 

(2,2) 

45.8969 

(2,3) 

51.5392 

(1,5) 

55.5860 

(2,4) 

CFS [3] 11.3961 17.5055 26.7944 33.5896 38.3847 38.3847 45.8969 51.5392 55.5860 
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Table 2 

Comparison of the dimensionless natural frequencies 6/ 23.2 10
n
h    Levy-type square orthotropic plate with boundary 

condition SS when / 10, 5 / 6.
x

L h K   

(m,n) Present EFSM   CFS [1] 

 FSDT  FSDT HSDT 3D Elasticity Theory 

(1,1) 0.0474  0.0474 0.0474 0.0474 

(2,1) 0.10315  0.1032 0.1033 0.1033 

(1,2) 0.11870  0.1187 0.1189 0.1188 

(2,2) 0.16915  0.1692 0.1695 0.1694 

(3,1) 0.18835  0.1884 0.1888 0.1888 

(1,3) 0.21771  0.2178 0.2184 0.2180 

(3,2) 0.24688  0.2469 0.2477 0.2475 

(2,3) 0.26187  0.2619 0.2629 0.2624 

(4,1) 0.29583  0.2959 0.2969 0.2969 

 

To draw mode shapes of the moderately thick plate, use is made of dynamic shape functions ( T T,
Wnm xnm

N N


 

and T

ynm
N


) corresponding to spectral-modal displacement ( ,

nm xnm
W  and 

ynm
 ), as presented in Section 3.2.3. The 

mode shapes for the second mode ( 2m  ) and the second root of the stiffness matrix ( 2n  ) are plotted. Figs. 5(a)-

5(c) show mode shapes for the transverse displacement, rotational displacement about the x axis and rotational 

displacement about the y axis, respectively. It should be noted that according to Eqs. (8), variation of 
nm

W  and 
xnm

  

along the y axis is in sine form and variation of 
ynm

  is in cosine form. 

 

 

 
                              (a) 

nmv
W                                                                             (b) 

xnm
                                              (c) 

ynm
  

 

Fig.5 

Mode shapes (2, 2) of the Levy-type square plate with boundary conditions SS. 

 

5.2 Forced vibration 

5.2.1 Frequency response functions (FRF) 

For the purpose of drawing the frequency response functions, the value of these functions must be computed for 

each discrete frequency. A square plate having two opposite edges simply supported and remaining edges with any 

arbitrary boundary conditions with geometric and mechanical properties shown in Fig. 6 is considered. Also, these 

plate has the mechanical properties 9

22 11 22 12 22 13 22 23 22 12
5 10 , 14 , 0.5 , 0.5 , 0.2 , 0.25E Pa E E G E G E G E v       .The 

plate is subjected to a concentrated dynamic load at the center of plate. 

The spectral transverse displacements 
n

W  at the center of plate for the contributions of the various numbers of 

half-wavelengths in y-direction are shown in Figs. 7(a)-7(b) for boundary conditions CC and SS, respectively. As 

shown in Fig. 7, to achieve the convergence of dynamic response in higher frequencies, it is required to consider 

greater numbers of half-wavelengths (m). 
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Fig.6 

Levy-type square plate subjected to concentrated load at the 

center of plate. 

 

  

                             :1m                            : 3m                                      : 5m                                      : 7m  

 
 

(a) CC 

 

 
 

(b) SS 

Fig.7 

Frequency response functions (FRF) at the center of the Levy-type square orthotropic plate ( 2, 2
x y

x L y L  ) subjected to a 

concentrated dynamic load. 

5.2.2 Periodic loads 

If the DFT coefficients are calculated for a periodic function, it can be seen that the coefficients in the frequency 

range 
2N n N

    are complex conjugates of values of this transformation in the frequency range 
2

0
n N

   . 

The frequency 
2n N




 is known as the Nyquist frequency. 

 

/2

1
(rad s) or (Hz)

2 2
n N Nq Nq

N N
/ f

T t T t

 
 


    

 
 

 

(51) 

 

If 
max

f  is the highest frequency of an actual signal, to achieve DFT coefficients with sufficient accuracy, the 

Nyquist frequency 1 / 2
Nq

f t   must be equal to or larger than maximum frequency [37]. This condition (in other 

words Nyquist condition) for sampling time interval t  brings about some limitations, as follows: 
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 max
1 2t f   (52) 

 

In the study of dynamic responses of plate under periodic and nonperiodic dynamic loads, the frequency domain 

responses ,
n yn

W   and 
xn

  cannot be directly obtained as the complex conjugates about the Nyquist frequency. 

Therefore, to compute the correct time domain response 
0
,

y
w   and 

x
 by the inverse DFT, it is just enough to 

calculate the DFT coefficients up to the frequency 
2N

 and the frequencies from 
( 2) 1N




 up to 
1N




, with respect to 

Eq. (53). 

 
*

N n n
X X


  (53) 

 

where 
n

X  is the DFT coefficients. The asterisk symbol “*” is used to denote the complex conjugate of a complex 

number. Sometimes, it is possible to arbitrarily consider the sampling time 
s

T  more than the period T of the periodic 

function. However, it should be noted that to prevent the occurrence of Leakage error, sampling time must be an 

integer multiple of the period [37]. Finally, according to Eq. (52), the number of samples required 
req

N  in the time 

domain can be calculated. 

 

max
/ 2

req s s
N T t T f    (54) 

 

It should be noted that, during propagation wave the zero frequency components are undetermined; hence, by 

applying the null initial conditions, these components are obtained as follows [21]. 

 
1 1 1

0 0 0 0

0 1 1

( , ,0) ( , , ) 0 ( , , ) ( , , ) 0
N N N

n n n n n

n n n

w x y W x y W x y W x y W W  
  

  

           
 

(55) 

 

Consider the plate shown in Fig. 6 under a concentrated harmonic load. The variations of harmonic load over the 

time are sinusoidal 
0

( ) sin( )
z

q t Q t where   is circular frequency equal to 100 / secrad . The highest cycle 

frequency of load applied is 
max

2 50f Hz   ; thus the required minimum number of samples with respect to 

Eq. (54) must be larger than 100
req s

N T . In this problem, the sampling time 
s

T  is considered twice the period 

2 0.02T    of the periodic load. Therefore, the choice of the number of samples 16 4
req

N N   satisfies 

Nyquist condition and prevents the leakage error.  

 

                              :1m                                          : 3m     

 
 (a) Time domain 

                   : 5m  

 
(b) Frequency domain 

Fig.8 

Convergence of the transverse displacement of the Levy-type square orthotropic plate center subjected to a concentrated 

harmonic load at the center of plate for case SS. 

 

Dynamic responses of the plate under harmonic load in the frequency domain and time domain for boundary 

conditions SS are presented in Fig. 8. As shown in Fig. 8(b), the DFT provides an accurate frequency spectrum from 

dynamic response of the plate under harmonic load with a unique spectral peak at 50Hz . The spectral peak at 
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350Hz  is complex conjugates of the spectral peak at 50Hz . As seen in Fig. 8(b), there is a nonzero 
nm

W  at zero 

frequency which is due to the satisfaction of the null initial conditions [21]. The time history of the transverse 

displacements w0 at the center of plate for the contributions of the various numbers of half-wavelengths in y-

direction (m: 1, 3, 5) are shown in Figs. 8(a). It should be noted that in order to improve interpolation, more samples 

1000N  are used during the sampling time. Fig. 8(a) shows that with five half-wavelengths in direction y axis, a 

reasonable representation of the dynamic responses is provided. 

 

 

 
 

                                                                                                                Present SFEM (FSDT) 

                                                                                                                CFS (CPT) 

 

 

 

 

 

 

 

 

Fig.9 

Comparison of the transverse displacement of the center of 

Levy-type square orthotropic plate subjected to a concentrated 

harmonic load at the center of plate for case SS. 

 

In Fig. 9, the transverse displacements of the center of the plate calculated by the formulations developed by 

Szilard [38] based on CPT and present SFEM are shown. Szilard use a CFS for the dynamic analysis. The transverse 

displacements shown in the figure have been obtained with the contributions of five half-wavelengths in y-direction. 

The effect of shear deformation on the transverse displacement obtained by SFEM based on FSDT and CPT is 

shown in Fig. 9. Among the advantages of the SFEM compared with CFS, one can mention the development 

capability of this approach for all boundary conditions, the assembly plates, the plate structures and more 

complicated loading conditions. 

5.2.3 Impulsive loads 

Since in the vibration of plates usually we are faced with nonperiodic dynamic loads (i.e. impulsive load), consider 

the plate shown in Fig. 6 under a concentrated impulsive load of rectangular-shape. The duration of impulsive load, 

as shown in Fig. 10(a), is equal 0.1sec
d

t  . To obtain the spectral nodal forces vector, we must transform the load 

applied from the time domain into the frequency domain by DFT, as shown in Fig, 10(b). It should be noted that the 

DFT is symmetric about the middle or Nyquist frequency, but to make the frequency domain responses clearer, only 

a part of the frequency domain is considered. As we know, the highest frequency of the impulsive loads is infinite. 

The sampling time interval required to satisfy the Nyquist conditions is 0t  sec, which is not possible in practice. 

To obtain the appropriate sampling time interval, we should select several highest frequencies to investigate the 

convergence of the dynamic responses. In this example, three values of 100, 250, 500 and 1000 Hz for the maximum 

frequency are selected. Given Eq. (52), the sampling time interval obtained is equal to 0.005, 0.002, 0.001 and 

0.0005 seconds. 

The convergence of the dynamic responses of the plate under impulsive load of rectangular-shape in the time 

domain for boundary conditions SS is presented in Fig. 11. In this figure, the transverse displacements 
0

w  at the 

center of the plate for various values of the sampling time interval ( 0.005,0.002,0.001,0.0005t  ) are shown. Fig. 

11 shows that with the sampling time interval 0.001t  a reasonable representation of the dynamic responses 

could be provided. 

In Fig. 12, the results in frequency domain for sampling time interval 0.0005t  are presented. Along with the 

frequency domain dynamic responses, the variation of dynamic stiffness matrix determinant in logarithmic scale 

with respect to discrete frequencies is plotted. As expressed in Section 5.3, points which tend the logarithmic 

function toward negative infinity represent the natural frequencies of the plate. The frequency peak of frequency 

domain dynamic responses in Fig. 12 represents the resonance of responses in the natural frequency of the plate. 
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(a) Time domain 

 

 
(b) Frequency domain 

Fig.10 

Impulsive load of rectangular shape in the time and frequency domain. 

 

 

                      0.005t                          0.002t                            0.001t                                     0.0005t   

 
 

Fig.11 

Convergence of the transverse displacement of the Levy-type square orthotropic plate center subjected to a concentrated 

impulsive load of rectangular-shape at the center of plate for case SS. 

 

 
 

 

 

 

 

 

 

 

Fig.12 

Transverse displacement of the Levy-type square orthotropic 

plate center subjected to a concentrated impulsive load of 

rectangular-shape at the center of plate for case SS in frequency 

domain. 

 

 

The only solution available to the dynamic responses in the time domain is by using CFS just for simply 

supported boundary conditions on all edges of the plate (Navier’s solution). The time history of the transverse 

displacement w0 at the center of the plate obtained by SFEM based on FSDT and analytical solution (CFS) based on 

CPT is shown in Fig. 13. Comparative results of Reddy [35] are obtained from the solution of the formulation 

presented in this references and programming the algorithm desired in the environment of Mathematica software. 

One of the advantages of the SFEM, compared with CFS, is the capability of this approach for modelling 

complicated loading conditions. This method also has the analytical ability of the stepped thickness plates, plates 

with internal support and plates with discontinuous or irregular mechanical properties. 
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                                                                                                             Present SFEM (FSDT) 

                                                                                                             CFS (CPT) 
 

 

 

 

 

 

 

 

 

 

Fig.13 

Comparison of transverse displacement of the Levy-type square 

orthotropic plate center subjected to a concentrated impulsive 

load of rectangular-shape at the center of plate for case SS. 

 

Since in the SFEM, the dynamic shape functions are obtained from the exact solution of the governing 

differential equations, it is possible to exactly obtain the displacement variables at any moment of vibration for any 

arbitrary point of plate. For example, the transverse displacement of the total surface of the plate is plotted at the 

moment when maximum transverse displacement at point 4, 4
x y

x L y L  of plate occurs in Fig. 14 for the plate 

described above for different boundary conditions. Note that the location of load applied from the center of the plate 

to the point 4, 4
x y

x L y L   of the plate was changed. In Fig. 14, the horizontal axes are given per meters and 

vertical axis per mm. 

 

 
 
                         (a) CC                                                          (b) CS                                                         (c) FC 

 

 
                                                                            

   (d) FF                                                     (e) FS                                    (f) SS  

Fig.14 

Maximum transverse displacement of the Levy-type moderately thick square plate subjected to a concentrated impulsive load of 

rectangular shape at point 4, 4
x y

x L y L  of plate for all boundary conditions. 
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6    CONCLUSIONS 

The transverse vibration of the moderately thick orthotropic rectangular plates of Levy-type by the SFEM based on 

FSDT was modeled. Since the frequency-dependent dynamic shape functions in SFEM is obtained from the exact 

solution of the governing differential equations of motion of the plate, increasing the number of spectral element to 

achieve the exact answers is not required. In this study, the results obtained by the spectral finite element 

formulation use maximum of two finite elements in x-direction. As is noticeable, the proposed SFEM achieves exact 

results with minimal finite elements, compared with CFS. Therefore, it is possible to effectively use this procedure 

for the plate structures and other plates in which more than one finite element is needed for modeling purposes. 

DFT is used to obtain frequency domain and time domain dynamic responses. The dynamic responses to 

impulsive loads were obtained. The extremely high accuracy of the present SFEM was verified by comparing it with 

CFS. The results obtained in the present paper can serve as a benchmark for verifying other analytical and numerical 

methods. 
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