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 ABSTRACT 

 In this paper, the general case of an anisotropic thermo-electro elastic body 

subjected to static biasing fields is considered. The biasing fields may be 

introduced by heat flux, body forces, external surface tractions, and electric 

fields. By introducing proper thermodynamic functions and employing 

variational principle for a thermo-electro elastic body, the nonlinear 

constitutive relations and the nonlinear equation of motion are extracted. The 

equations have the advantage of employing the Lagrangian strain and second 

Piola-Kirchhoff stress tensor with symmetric characteristics. These equations 

are used to analyze the high frequency vibrations of piezoelectric resonators 

under finite biasing fields. A system of three dimensional equations is derived 

for initial and incremental fields on the body. Capability of the equations in 

numerical modelling of temperature-frequency and force-frequency effects in 

quartz crystal is demonstrated. The numerical results compare well with the 

data from experiments. These equations may be used in accurate modelling of 

piezoelectric devices subjected to thermo electro mechanical loads. 

                                © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 piezoelectric resonator usually consists of a piezoelectric crystal equipped with one or more pair of conducting 

metallic electrodes [1]. When the resonator is subjected to external forces, acceleration, temperature change, 

and electric fields, its resonance frequency is changed. These conditions may lead to instabilities of oscillator 

circuits in the electronic devices. Accurate modelling of such environmental effects is essential for the design of 

stable resonators. This problem belongs to the general theory of incremental elastic deformations superposed on 

initial finite deformation [2]. When a solid body is free of initial stresses, the linear theory of elasticity can 

accurately describe the propagation of small amplitude acoustic waves in the body. However, when the solid is 

subject to biasing stresses or strains, the linear theory of elasticity cannot explain the response of the solid to the 

propagation of small elastic waves. This is primarily due to the fact that, at this state, the small increment of stress is 

a function of both infinitesimal increment in local rotation and strain [3]. On the other hand, the shape and size of 
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the body are changed by the application of the biasing fields. Therefore, all quantities referred to unit volume or unit 

area, such as Cauchy stress tensor, are influenced by the continuous change of the volume and surface area. These 

geometric nonlinearities result in a deviation from truly linear behavior [4]. For compensating the geometrical 

nonlinearities in calculations, Lagrangian description can be used. In Lagrangian description, the field variables are 

coordinates of material points in the reference frame. In the reference frame, the material is free of any strain or 

stress, and it has a constant reference temperature [5]. The convenient stress tensors to be used in Lagrangian 

description are the first and second Piola-Kirchhoff stress tensors. These stress tensors are referred to a material 

surface in the reference configuration. Employing these two different stress tensors results in two different sets of 

equations governing the problem of small fields superposed on static biases. The second Piola-Kirchhoff stress 

tensor is symmetric while the first one is not. 

Some researchers have employed the first Piola-Kirchhoff stress tensors for analyzing the high frequency 

vibrations of piezoelectric materials under biasing fields. For example, Tiersten et al. explained the behavior of an 

electrically polarizable, finitely deformable, heat conducting continuum, in interaction with the electric field. They 

introduced a convenient energy function which is scalar invariant under rigid rotations of the deformed and 

polarized body [6]. In other papers, Tiersten et al. derived nonlinear thermo-electro elastic equations, including 

quadratic and cubic terms of small field variables for electro elastic bodies [3, 7]. Yong derived the nonlinear 

equations for small fields superposed on initial biases in thermo-electro elastic bodies. Free vibrations of a linear 

thermo-piezoelectric body were analyzed by Yong and Batra [8]. Other researchers employed the second Piola-

Kirchhoff stress tensor in their analysis. Among them is Lee who developed a systematic method for calculation of 

the frequency shift in piezoelectric resonators subject to initial mechanical biases [9]. In another work, Lee and 

Yong extracted the linear field equations for small vibrations superposed on thermally-induced deformations from 

the nonlinear field equations of the thermo-elasticity in Lagrangian formulation. The initial deformations were 

introduced due to the steady and uniform temperature changes [10]. Yong and Wei revisited the work of Lee and 

involved the piezoelectric effects in their calculations [11]. Wang et al. calculated the frequency shift of a 

piezoelectric resonator subject to initial mechanical biases [12]. They considered the piezoelectricity in their 

formulations. Effects of thermal stresses on the frequency-temperature behavior of piezoelectric resonators were 

analyzed by Yong et al. They employed the Lagrangian equations for small incremental displacements superposed 

on initial thermal stresses and strains. In their work, the temperature derivatives of the material constants were 

incorporated in the constitutive equations for the incremental displacements [13]. 

The review of the literature reveals that the governing nonlinear thermo-electro elastic equations, incorporating 

the second Piola-Kirchhoff stress tensors, have not been developed for the problem of small fields superposed on 

static biases. The aim of this paper is to extract these equations using convenient energy functions. In the first part of 

the paper, the general case of a piezo- and/or pyro-electric body subjected to a finite biasing field is considered. By 

employing two different third order electric Gibs function, the second Piola-Kirchhoff stress tensors, electric 

polarization vector, electric displacement vector, and entropy per unit mass are obtained as a function of Lagrangian 

strain, temperature, and electric field. Moreover, by using generalized Hamilton’s principle the equation of motion is 

extracted. In the second part of the paper, by employing the derived equations, the equations governed for the initial, 

and final state, and for the incremental fields in a piezoelectric resonator subjected to biasing fields are obtained. In 

the final part, the response of a quartz resonator to homogenous thermal and mechanical biases is investigated. The 

force frequency effect in quartz resonator at 78℃ is numerically modeled for the first time. 

2    THE GOVERNING EQUATIONS  

Consider the general case of a piezoelectric body subjected to temperature change, body force, external surface 

traction, and electric field. Due to these biasing fields, the position of a material point is moved from IX   to Iy  (as 

seen in Fig. 1). Hence, the displacement vector and the nonlinear Lagrangian strain are yield in the reference frame 

as Eqs. (1)-(2) [14, 15]. 
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 For the electric field, by using Maxwell’s equations, we have: [16] 

 

,l lW         (3) 

 

where, W is the electric field intensity, and  is the scalar electric potential at the initial state.  

 
  

 

 

 

 

 

 

 

 

Fig.1 

Deformation of a thermo-electro elastic body. 

 

 

According to the principle of conservation of energy for a piezoelectric medium with volume V, surface S, and 

with unit normal vector n, the rate of the energy increase equals to the rate at which work is done by the surface 

traction acting on S minus the outward heat flux from the body to the environment [6, 17]. This concept is 

represented in (4). 
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where,  is the density,   is the internal energy per unit mass, / , M

i i iv dy dt t  is the mechanical surface 

traction, i in q  is the rate of outward flux of thermal energy per unit area,   is the electric polarization per unit 

mass, and  B is the body force. By applying the divergence theorem and Cauchy stress principle (
M

j i ijt n   ), and 

transforming the tonsorial parameters to the reference frame, Eq. (4) can be expressed as: [5] 
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where, 0 , , , , ,LM LM L LT S p W  ,  and   are the initial density of the body, second Piola-Kirchhoff stress tensor, 

Lagrangian strain tensor, electric polarization, electric filed intensity, absolute temperature, and  entropy per unit 

mass, respectively. All these quantities are calculated at the reference frame. In obtaining the Eq. (5), the following 

relations are used: [5] 
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where, J is the Jacobian of deformation, and ij is the caushy stress tensor. According to the Eq. (5), the 

thermodynamic function, , may be expressed as: 

 

, )( ,LM KS p        (7) 

 

According to the principle of material objectivity, defining the thermodynamic function, , as Eq. (7), makes it 

a scalar quantity which is invariant under rigid rotation of the deformed and polarized body [6]. 

2.1 Gibbs electric energy 

Since the aim of this paper is to analyze the behavior of piezoelectric material subjected to the temperature change 

and electric fields, it is more convenient to define the electric Gibbs function   which depends on the temperature 

and electric field. By using the Legendre transformation, we can define this function as: [5] 

 

L LW p         (8) 

 

By employing Eq. (5), the Eq. (8) can be rewritten as: 
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Then, we have: 
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Due to the fact that the variation of temperature, mechanical strain, and electric potential is finite, the variation of 

electric Gibbs function,  ,  can be obtained using the second and third order terms of the Taylor’s expansion. The 

expansion of electric Gibbs function around the state 0( , , ) (0,0, ),E W    up to the third order may be written as: 
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The coefficients in Eq. (11) are the isothermal fundamental material constants of the piezoelectric medium. Thus, 

Eq. (11) may be written in the tensorial form as: 
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Table 1. demonstrates the name of material constants in the Eq. (12). All the coefficients are measured at the 

temperature 0 , when the body is free of strain and electric field. 

 
Table 1 

The fundamental material constants. 

IJKL
C  Second order elastic constant 

IJKLMNC  Third order elastic constant 

IJKLC






 

First temperature derivative of second order elastic constant 

IJPe  Piezoelectric constant 

IJPe






 

First temperature derivative of piezoelectric constant 

IJ  Thermo-elastic constant 

IJ






 

First temperature derivative of thermoelastic constant 

IJx  Second order electric permeability 

IJPx  Third order electric permeability 

IJx






 

First temperature derivative of second order electric permeability 

I  Pyroelectric constant 

I






 

First temperature derivative of Pyroelectric constant 

  A coefficient related to the specific heat 








 

First temperature derivative of   

IJKLPd  First odd electro elastic constant 

IJPQb  Electrostrictive constant 

 

The material constants presented in Table 1. are called the fundamental material constants [17, 4]. 

2.2 Other form of the electric Gibbs energy 

The term of electric energy in Eq. (4) can be expressed in terms of the product of electric displacement and electric 

field. Accordingly, the law of conservation of energy may be written in the form of: [1] 
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In which, U is the internal energy. Following a similar procedure as stated above, for the internal energy in the 

reference frame, we may have: 
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where,   is the material form of D in the reference frame that may be obtained by: 
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Consequently, we have: 
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By employing the Legendre transformation, we can define the electric Gibbs function as: 
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which results in: 
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Finally, we have: 
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Similar to Eq. (12), the thermodynamic potential ,  , can be represented by a generalized Taylor’s expansion in 

terms of the independent variables )( , ,LM LS W  . The potential function,
 
 , may be written as: 
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By considering the thermodynamic potential,
 
  the second and third order dielectric permittivity ( ,PQ PQR  ) 

are defined. Employing the potential functions,  and  , the thermodynamic tension or second Piola-Kirchhoff 

stress tensors, electric polarization, entropy, and electric displacement are obtained as [21]: 
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Substituting Eqs. (12) and (20) in the (21) results in: 
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        (22) 

2.3 Equation of motion  

 

The generalized Hamilton’s principle has the form of (23): 
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where K and F are the kinetic energy and potential functions which can be obtained by: [18, 19] 
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and 
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where, ,M

I IT B , and   respectively are the surface traction, body force, and surface charge density in the reference 

configuration. Substituting Eqs. (24) and (25) into (23), and considering Eq. (6), the following relation is obtained: 
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Eq. (26) leads to the following governing equations and initial conditions: 
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         (27) 

 

where, Ni  is the unit outward normal on the undeformed body. The extracted equation of motion is similar to the 

equation of motion for a crystal under pure mechanical biases [10]. It can be concluded that the thermal biases do 

not change the form of the equation of motion. However, the initial thermal biases change the values of initial 

stresses and displacement gradients.  

3    VIBRATION OF RESONATORS UNDER BIASING FIELDS    

The theory of small fileds superposed on finite static bias in a piezoelectric resonator can only be obtained from the 

fully nonlinear theory of thermoelectroelasticity [20]. In this theory, three states are considered for the piezoelectric 

body (see Fig. 2). 

 

      

 

 

 

 

 

 

Fig.2 

Three states of the piezoelectric resonator. 

Natural state 

At the natural state, the material is at rest and free of stress and strain, and has a uniform temperature 0  . A generic 

point at this state is denoted by the Cartesian coordinate of iX . 

Initial state 

At the initial state, the body is subjected to thermal, mechanical, and/or electrical deformations. The temperature 

changes uniformly and steadily from 0  to  . The external forces are applied to the boundary of the body. 

Electrical DC bias can be employed to the electrodes. This condition leads to occurrence of a finite and static 

deformation on the piezoelectric body, and the position of a material point is moved, due to static deformation, from 

iX   to .ix   

Final state 

At this state, adiabatic small vibrations are superposed on the deformed body. The temperature change can be 

assumed negligible. [10] As a result of small vibrations, the position of a material point is moved from ix  to iy . 

Due to the infinitesimal deformations in the final state, it is possible to obtain the final state of the body by solving a 

set of linear partial differential equations [20].  
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3.1 Governing equations for the final and initial state 

At the final state, the small amplitude vibrations are superposed on thermally and mechanically induced 

deformations occurred in the initial state. The position of a generic material point is moved from ix  to iy · Thus, 

the displacement vector is i i iu y x   which is called the incremental displacement. As shown in Fig. 2, the total 

displacement from the natural state to the final state can be obtained by: 

 

.i i i i iU y X U u             (28) 

 

where, 
iU is the displacement vector at the final state.  Similarly, for the electric potential, surface traction, and body 

force, we have: [8] 

 
0 1,

,

,

.

M M M

I I I

I I I

I I I

T T

B B b

d

  



 

 

 

   

 
        (29) 

 

where, 
1, ,M

I i   , and id  are the incremental electric potential, surface traction, body force, and electric 

displacement,  respectively. The barred and unbarred uppercase quantities are related to the final state and the initial 

fields, respectively [12, 20]. In the previous section, the governing equations for a body subjected to finite biasing 

fields were extracted. Accordingly, the governing equations for the final state of the resonator are:  
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and 
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For obtaining the third and fourth equation of (30), it is assumed that the temperature variation resulted from the 

incremental displacement was negligible [10]. 
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3.2 The governing equations for the initial state 

Since material properties remain unchanged during the thermal expansion and the incremental vibrations, the 

governing equations of the initial state are the same as Eqs. (30), (31) of the final state. Thus, to obtain the equations 

of the initial state, it is sufficient to replace the barred quantities of Eqs. (30), (31) with unbarred quantities. 

However, due to the static deformation in the initial state, the equation of motion should be changed to: 

 

, , 0( ) 0IJ JK I K J IT T U B            (32) 

3.3 The governing equation for the incremental fields 

By taking the difference between the corresponding field equations in the final and initial states, a set of linear 

equations for small amplitude vibrations superposed on finite biases are obtained. Accordingly, the incremental 

Lagrangian strain is expressed by: 
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and, we have IJ IJ IJs S S   . For the electric field we have: 
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where, Lw  is the incremental electric field.  By inserting the initial and incremental strains and electric fields into 

the third equation of (30), and neglecting the small incremental temperature change [10], the final stress may be 

written as: 
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where, ijt is the incremental stress, and we have: 
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By comparing Eqs. (35) and (36) it may be concluded that: 

 

IJ IJ IJT T t           (37) 

 

By substituting the Eq. (28), the third equation of (29), and Eq. (37) into the first equation of (31), the 

incremental equation of motion is obtained as: 
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As it can be seen in Eq. (38), the initial stress bias and displacement gradient appear in the incremental equation 

of motion. Thus, the frequency response of the piezoelectric material will be affected by the initial thermo-

electromechanical biases. To obtain the incremental electric displacement, the initial electric displacement is 

subtracted from the final electric displacement. The incremental electric displacement is obtained as: 
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In a similar manner, for the boundary conditions, we obtain: 
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where,   is the incremental surface charge density. Finally, by substituting fourth equation of (29) into the second 

equation of (32), the incremental charge equation is obtained: 

 

, 0p pd           (41) 

 

The Eqs. (33), (36), (38), (39), (40), and (41) are the three dimensional governing equations and boundary 

conditions for the incremental fields. By solving these equations, the frequency shift in piezoelectric resonators due 

to finite initial biases is obtained.  

4    RESULTS AND DISCUSSION   

The derived equations for the initial and incremental fields in resonators enable us to simulate the force and 

temperature frequency effects in quartz resonators. The change in the resonance frequency of quartz resonators 

resulted from the change in the temperature, and insertion of the diametrical forces are referred to as the temperature 

frequency and force frequency effects [17]. These effects may lead to the frequency instabilities in the quartz 

resonators [1]. Researchers have measured the temperature frequency and force frequency effects in quartz [15, 21]. 

4.1 Finite element simulation procedure   

In this research the multi-physics software COMSOL was used for the finite element modelling of the 

abovementioned effects in the resonator. This software gives the user the required flexibility to write his/her own 

partial differential equations and modify the equation of motion [1]. Since the quartz crystal has anisotropic 

characteristics, and its governing equations are nonlinear, the default feature of the FEA software cannot be 

employed. Therefore, the extracted nonlinear equations of the initial and the incremental models were converted to 

weak form expressions, and were assembled in the software environment to run sequentially. We used global 

variables (displacement gradient ,i jU , initial Strain, ijS , and initial stress ijT ) to link the initial model to the 

incremental model in the resonance domain. This provides a one-way bridge of information to solve the initial and 

incremental models in sequence [22].  

The finite element model includes two sub-models, the initial model and the incremental model. These two sub-

models link three distinct sequential states of the quartz resonator. By employing the Lagrangian formulation, the 

displacements of all three states are referred to a single reference frame corresponding to the natural state of the 

resonator. 

The initial model solves for the displacement, strain, and stress due to the external thermal or mechanical loading 

of the resonator. This model does not, however, contain the frequency response due to piezo electrically driven 

vibrations, so no piezoelectric factor is included in the initial model. The initial stresses, strains, and displacements, 
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which can be derived by the stationary study of quartz in the initial model, are considered as the incremental model 

inputs. 

The incremental model solves for the incremental response of the resonator, including only the displacement, 

strain, and stress of piezoelectric vibrations. The final state of the resonator is then defined as the superposition of 

the initial and incremental response of the resonator [23]. Eigen-frequency investigation in the incremental model 

was considered to be harmonic. Hence, the motion equation takes the form of: 
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t
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u in V      
        (42) 

 

where,    is the resonance frequency. As seen, the initial displacement gradients and stresses are appeared in Eq. 

(42). In this paper, the AT-Cut quartz resonators have been selected for the model. AT-Cut quartz crystal is 

anisotropic, and it has monoclinic crystallographic system. AT-Cut of quartz is obtained by rotating Y-cut of quartz 

about x1 axis by the angle of 35.25  [1].  

The material constants of quartz, including second order elastic constants and their temperature derivatives [1],  

third order elastic constants [1, 24] , second and third order dielectric permittivity piezoelectric constants [1, 25], 

thermoelastic constants [1] , electro elastic constants [26] and Electrostrictive constants [25] are employed in the 

numerical model. It should be noted that the electro elastic tensor was implemented using extended partially 

symmetric tensor proposed by Kittinger [26]. This partially symmetric tensor includes 20 independent electro elastic 

coefficients. In the published literature, when the constants were measured for alpha quartz, the constants are 

changed under rotation of the axis for AT-Cut quartz crystal.  All the calculated constants are applied in the finite 

element model to simulate the force and temperature frequency effects in AT-Cut quartz.  

4.2 Response of quartz resonator to thermal biases (temperature-frequency effect) 

As mentioned before, AT-cut quartz crystals are less sensitive to temperature around room temperature compared to 

other cuts of quartz. In this part, the temperature frequency behavior of AT-cut quartz crystals are investigated, and 

the simulation results are compared with the available experimental results [10]. According to Lee and Yong [10], 

we investigate a square blank of AT-cut quartz with resonance frequency of 10 MHz and thickness of 0.1660 mm in 

temperature range of 25℃ to 100℃. The biasing thermal strains are simulated by the initial model. Then, according 

to the proposed model, the resultant stresses, strains, and displacement gradients are used as the incremental model 

input values. Finally, the Eigen-frequency investigation is performed under the initial temperature biases.  The final 

results are shown in Fig. 3. As it can be observed, the FEM results using the nonlinear formulation are in good 

agreement with the Yong and Lee results. 

 

      

 

 

 

 

 

 

 

 

 

 

Fig.3 

Temperature frequency effect in an AT-Cut quartz resonator. 

4.3 Response of quartz resonators to thermo-mechanical biases (force-frequency effect at various temperatures) 

The application of diametric forces causes initial static bias on the crystal, and changes the resonance frequency of 

quartz. This effect has been quantified by force frequency coefficient (Kf). The force frequency coefficient is 

calculated by: [27] 
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        (43) 

where, F is the applied force,  
0/f f  is the fractional frequency shift, N is the frequency constant, D is the plate 

diameter, and t is the plate thickness. EerrNisse [21] measured the force frequency coefficient of AT-Cut quartz 

crystals at 25℃ and 78℃ as a function of force azimuth angle   (see Fig. 4). His measurements showed that the 

force frequency coefficients are temperature dependent. The nonlinear equations extracted in this research include 

both the thermal and mechanical biases. Thus, this model is able to calculate the force frequency constants at various 

temperatures. To calculate the force frequency effect at different temperatures, all the material constants should be 

temperature dependent. In addition, the thermal biases should be considered. 

 

      

 

 

 

 

 

 

 

 

Fig.4 

Circular quartz disc subjected to two opposed diametric forces. 

 

We considered a circular AT-cut quartz disc with diameter of 10 mm, thickness of 0.1660 mm, and the 

fundamental first thickness shear frequency of 10 MHz, subjected to two 1N diametrically opposed forces. To 

calculate the force frequency constants at room temperature, at first, the crystal was considered to be in the natural 

state without any biasing deformations, and the natural thickness shear frequency (
0f  in Eq. (43)) is obtained. Then, 

the loads are applied diametrically to the crystal by angle   that causes biasing mechanical deformations which are 

simulated by the initial model to calculate the initial displacement gradients and stresses. These displacement 

gradients and stresses are used as the input values for the incremental model. Finally, the Eq. (42) is solved in the 

incremental model, and the eigen frequencies are obtained. The calculated force frequency coefficients are shown in 

Fig. 5, along with the experimental data. The final finite element model involved 3124 Lagrangian quadratic 

elements, including 1246 boundary elements. 

 

      

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Force frequency curve for AT-Cut quartz resonator at 25℃. 

 

For further analyzing the effect of the third order fundamental constants on the force frequency model, we 

neglected the nonlinear parts of the constitutive equations. Then, the force frequency coefficients were calculated 

with a linear model. The result is presented in Fig. 5. As shown, the nonlinearity has a considerable effect on the 

accuracy of the model.   

The calculation of the force frequency coefficients at 78℃ is performed for the first time in this paper. In this 

condition, the resonator undergoes both thermal and mechanical biases. Based on the force frequency experiments, it 

is assumed that the resonator undergoes a homogenous thermal bias due to the temperature increase. Then, by 

application of the mechanical loads, the frequency of the resonator is changed.  The results concerning this condition 

are presented in Fig. 6. 
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Fig.6 

Force frequency curve for AT-Cut quartz resonator at 78℃. 

 

To show the impact of nonlinear material constants on the calculations, all the nonlinear constants in the 

governing equations of the initial and incremental models, are considered to be zero. The results are illustrated in 

Fig. 6. As seen, the nonlinear model yields more accurate and realistic results. 

5    CONCLUSIONS 

In this paper, the governing nonlinear equations for the thermo-electro-elastic body under biasing fields were 

extracted. In the extraction of the nonlinear equations, the nonlinear Lagrangian strain and the second Piola-

Kirchhoff stress tensors were used. The material was considered to have anisotropic characteristics. Also, the 

material can have piezoelectric and pyroelectric characteristics with arbitrary crystallographic symmetry. By 

defining suitable forms of the third order Gibs electric energy, the fundamental linear and nonlinear material 

constants and their temperature derivatives were defined. Accordingly, the second Piola-Kirchhoff stress tensors, 

electric polarization vector, electric displacement vector, and entropy per unit mass, were defined. By using these 

equations, the governing equations for the incremental fields superposed on finite thermo-electromechanical biasing 

fields in piezoelectric resonators were derived. On this basis, the thickness shear vibrations of quartz resonators 

under thermal and mechanical and thermo-mechanical biasing fields were analyzed numerically. The results verified 

the effectiveness of the extracted nonlinear equations in analyzing the nonlinear nature of the temperature and force 

frequency effects in the piezoelectric resonators. The approach, methodology and results of this research assist in 

better understanding of quartz piezoelectric resonators. It is practically can be used for designing quartz resonator 

pressure sensors with more dependable accuracy and performance.  
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