
 

© 2011 IAU, Arak Branch. All rights reserved.                                                                                                    

 

Journal of Solid Mechanics Vol. 3, No. 4 (2011) pp. 346-352 

Third Order Formulation for Vibrating Non-Homogeneous 
Cylindrical Shells in Elastic Medium 

M. Gheisari1,*, H. Molatefi2, S.S. Ahmadi3 
1Faculty of Engineering, Khomein Branch, Islamic Azad University, Khomein, Iran
2Railway Engineering School, Iran University of Science and Technology, Narmak, Tehran, Iran 
3Department of Mechanical Engineering, Iran University of Science and Technology, Arak Branch, Arak, Iran 

Received 28 October 2011; accepted 8 December 2011 

 ABSTRACT 

 Third order shear deformation theory of cylindrical shells is employed to investigate the vibration 
characteristics of non-homogeneous cylindrical shells surrounded by an elastic medium. The 
kinematic relations are obtained using the strain-displacement relations of Donnell shell theory. 
The shell properties are considered to be dependent on both position and thermal environment. A 
suitable function through the thickness direction is assumed for the non-homogeneity property. 
The Winkler-Pasternak elastic foundation is used to model the elastic medium. Analytical 
solutions are presented for cylindrical shells with simply supported boundary conditions. From the 
numerical studies, it is revealed that, the natural frequencies are affected significantly by the 
elastic foundation coefficients and environmental temperature conditions. 
                                                                                  © 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 YLINDRICAL shells have many applications in different engineering disciplines such as mechanical, civil, 
aerospace and marine engineering. Unexpected frequencies due to various loads might cause a serious damage 

for these types of structures. In many cases, these structures are located on a foundation. Cylindrical shells 
surrounded by an elastic medium can be found in many engineering applicants especially in man-made structural 
components. The non-homogeneity of materials can be created due to various problems such as production 
techniques, radiation effect, and thermal polishing processes. In recent years, interest on non-homogeneous shell 
structures has raised. However, a few studies have focused on the vibration behavior of non-homogeneous 
cylindrical shells on elastic foundation.  

Paliwal and Bhalla [1] presented the non-linear static analysis of a cylindrical shell on a Pasternak foundation 
using the variational principles and Galerkin techniques. Ng and Lam [2] examined the effects of elastic foundation 
on the instability regions of the cylindrical shell for transverse, longitudinal, and circumferential modes. The large 
deflection analysis of axisymmetric shells and plates on a non-linear tensionless elastic foundation and the behaviour 
of shallow spherical shells subjected to a central concentrated load on tensionless linear elastic foundations are 
studied by Hong et al. [3]. 
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Sheng and Wang [4] examined the effect of thermal load on vibration, buckling and dynamic stability of 
functionally graded (FG) cylindrical shells embedded in an elastic medium, based on the first-order shear 
deformation theory considering rotary inertia and the transverse shear strains. They formulated the elastic foundation 
of the Winkler type- that reacts in compression as well as in tension. Shen and his co-workers employed a singular 
perturbation technique associated with a higher order shear deformation theory to study the post-buckling response 
of a FG cylindrical shell in thermal environments surrounded by an elastic medium subjected to axial compression 
[5] and internal pressure [6]. In their analysis, the surrounding elastic medium is modeled as a tensionless Pasternak 
foundation that reacts in compression only. Sofiyev et al. [7] investigated the free vibration of non-homogenous 
truncated conical shells on a Winkler foundation. They investigated the effects of the variation of truncated conical 
shell characteristics, non-homogeneity and a Winkler foundation on lowest values of the dimensionless frequency 
parameter. 

To the author’s knowledge there is no analytical solution for non-homogeneous cylindrical shells on elastic 
foundation based on higher order shear deformation theories. In this paper, natural frequencies of cylindrical shells 
with non-homogeneous properties across the thickness direction are studied using the third order shear deformation 
theory of cylindrical shells. The Donnell shell theory assumptions are used to determine of strain-displacement 
relations. The shell properties are dependent on both position and thermal environments. The Winkler-Pasternak 
mathematical model is employed to simulate the reaction of elastic medium on shell. Analytical solutions are 
presented for cylindrical shells with simply supported ends. The shear elastic foundation modulus and environmental 
temperature conditions have played significant roles on the lowest frequencies of shell in elastic medium. 

2    METHOD 

The cylindrical coordinate system (x,θ,z) is set on the middle surface of the shell (z0). Fig. 1 shows a schematic 
view of the problem studied. The influence of Poisson’s ratio on the deformation is much less than of elasticity 
modulus and mass density. Thus, the Poisson’s ratio 0  is assumed to be constant. The elasticity modulus E and 

mass density  of non-homogeneous cylindrical shell are assumed to vary with respect to thickness coordinate 
according to the following functions [7]; 
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where E0 and 0 denote properties of homogeneous shell, µ is the non-homogeneity parameter satisfying 0≤μ<1, 
and (z) is a continuous function of the variation of material properties. The homogeneous elasticity modulus of 
shell can be expressed as a function of temperature form Reddy and Chin [8]; 
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where T is the environment temperature in Kelvin. The Poisson’ ratio and mass density remain constant by 
increasing the temperature conditions. The Donnell shell theory is employed to obtain the basic relations. Based on 
this theory, the displacement field for the third order shear deformation is expressed as [9]; 
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Fig. 1 
Cylindrical shell surrounded by an elastic medium 
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where  4/(3h2) and u0, v0 and w0 are the displacements of a point on the mid-surface of the cylindrical shell along 

the x-, θ- and z-axes, respectively and u1 and v1 describe the rotations about the θ- and x-axes, respectively. The 
Donnell non-linear strains are defined by the following relations [9]: 
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The force and moment resultants per unit length can be derived by integrating the stress components. 
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The surrounding elastic medium is modeled as Winkler-Pasternak type foundation as follows [10] 
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where q, kw, and kp are the reaction of foundation, vertical spring modulus and shear modulus of foundation, 
respectively. For the case kp0, the foundation reduces to the Winkler-type. The governing equations of motion 
appropriate for the displacement field, Eq. (3), can be derived using the dynamic version of the principle of virtual 
displacement [9] as 
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Solution of equations of motion is expressed as products of undetermined functions and known trigonometric 

functions so as to satisfy identically the simply supported boundary conditions at ends [9] 
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where   denotes the natural frequency, m and n are the axial and circumferential wave numbers and 
,  ,  ,  ,mn mn mn mnU V W X  and mnY  are unknown coefficients. Substitution of relations (10) into Eqs. (8) obtained in 

terms of displacement components, leads to an equation which is called frequency equation. The lowest root of that 
equation is the natural frequency. 

3    NUMERICAL RESULTS AND DISCUSSION 

In this section, numerical results are discussed in details. As mentioned before, natural frequencies are obtained for 
cylindrical shells with non-homogeneous properties and simply supported boundary conditions on Winkler-
Pasternak elastic foundation. The stainless steel (SUS304) is used as homogeneous material with 08166 kg m-3 
and ν0.317756 [8]. The elasticity modulus is dependent on thermal environment as indicated in Eq. (2).  

To investigate the accuracy of the present analysis, comparison studies are presented. Table 1 shows the 
dimensionless frequencies for a homogeneous isotropic cylindrical shell on Winkler-type foundation. The 

dimensionless frequency is considered as 2
0 0 0(1 ) / .R E  = -  The frequencies are obtained for values 

R/h100, L/R2, and kw10-4 N m-3. The results of references [10] and [7] are based on classical shell theory and 
reference [11] is based on first order shear deformation theory. This is the main reason to satisfy the difference 
between the results of references [10] and [7]. A quadratic function is considered for variations of non-homogeneous 
shells across the thickness which is given by  (z)(z/h)2 [7]. This function is plotted in Fig 2. 

Three thermal environmental conditions are considered. The natural frequencies (Hz) of non-homogeneous 
cylindrical shells are given in Tables 2-4. for three different temperature changes. Results are calculated for 
R/h100, L/R5. It is found that for room temperature (T300K) the values of natural frequencies for non-
homogeneous cylindrical shell in elastic medium are slightly lower than isotropic cylindrical shells. However, as 
listed in Table 2. for high temperatures the difference becomes more. 
 
 
 
Table 1 
Dimensionless frequency parameter for a cylindrical shell resting on a Winkler foundation 
n Ref. [10] Ref. [7] Ref. [11] Present 
1 0.67882 0.67921 0.58306 0.56828 
2 0.36394 0.36463 0.34931 0.32517 
3 0.20526 0.20804 0.23491 0.19419 
4 0.12745 0.13824 0.19019 0.13059 
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Quadratic variations of elasticity modulus for non-
homogeneous shell. 
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Table 2 
Natural frequencies (Hz) of non-homogeneous cylindrical shells in an elastic medium for three environmental temperature 
conditions (kw=kp=1×106 N m-3) 

µ T=300 K T=500 K T=900 K 
0 10235.027 10036.417 8830.661 

0.1 10231.841 10033.169 8826.974 
0.2 10228.707 10029.973 8823.345 
0.3 10225.622 10026.827 8819.774 
0.4 10222.586 10023.731 8816.259 
0.5 10219.598 10020.684 8812.798 
0.6 10216.656 10017.685 8809.391 
0.7 10213.760 10014.731 8806.036 
0.8 10210.907 10011.822 8802.732 
0.9 10208.099 10008.958 8799.478 

 
 
Table 3 
Effects of shear modulus of foundation on natural frequencies (Hz) of non-homogeneous cylindrical shells in thermal 
environments (kw= 1×106 N m-3) 

µ kp T=300 K T=500 K T=700 K 
0 1×104 9847.294 9640.743 9166.315 
 1×105 9883.249 9677.466 9204.930 
 1×107 13183.628 13026.839 12671.238 

0.3 1×104 9847.143 9640.588 9166.151 
 1×105 9882.224 9676.418 9203.826 
 1×107 13114.005 12956.531 12599.358 

0.5 1×104 9847.046 9640.489 9166.045 
 1×105 9881.567 9675.747 9203.120 
 1×107 13069.205 12911.283 12553.083 

0.7 1×104 9846.952 9640.392 9165.943 
 1×105 9880.931 9675.097 9202.436 
 1×107 13025.634 12867.272 12508.061 
 
 
Table 4 
Effects of vertical modulus of foundation on natural frequencies (Hz) of non-homogeneous cylindrical shells in thermal 
environments (kp=1×106 N m-3, T=500 K, µ=0.5) 

m n kw=1×104 kw=1×105 kw=1×107 
1 1 10018.016 10018.256 10044.903 
 2 7497.056 7497.607 7558.048 

2 1 24076.484 24076.607 24090.039 
 2 14349.184 14349.472 14381.173 
 
 
 

It can be concluded that for quadratic distribution of material properties, the non-homogeneous cylindrical shells 
in elastic medium vibrate earlier than isotropic cylindrical shells. The frequencies are also decreased for higher 
thermal environmental conditions. It should be interesting to note that this increasing becomes more as the 
temperature increases. Tables 3 and 4 shows the effect of vertical and shear elastic foundation moduli on natural 
frequencies of non-homogeneous cylindrical shells. By increasing the values of foundation coefficients kw and kp, 
the natural frequencies are slightly increased. This increase is more visible for higher values of elastic foundation 
coefficients. 

4    CONCLUSIONS 

Third order shear deformation theory is developed to obtain the lowest natural frequencies of non-homogeneous 
cylindrical shells embedded in an elastic medium. The numerical results are presented for different thermal 
environmental an elastic foundation conditions. The results demonstrate that the temperature-dependency of shell 
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property has a significant effect on the vibration behavior for non-homogeneous cylindrical shells in elastic medium, 
especially for shells in high thermal environment. 
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