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 ABSTRACT 

 A model is provided for crack problem in a functionally graded semi-infinite plate under 
an anti-plane load. The characteristic of material behavior is assumed to change in a linear 
manner along the plate length. Also the embedded crack is placed in the direction of the 
material change. The problem is solved using two separate techniques. Primary, by 
applying Laplace and Fourier transformation, the governing equation for the crack 
problem is converted to the solution of a singular integral equation system. Then, finite 
element technique is employed to analyze this problem by considering quadrilateral eight 
nodded singular element near the crack tips. The effects of material non-homogeneity and 
crack length on the stress intensity factor are studied and the results of two methods are 
judged against each other.  

                                                   © 2014 IAU, Arak Branch.All rights reserved. 

 Keywords:  Functionally graded material; Stress intensity factor; Linear material 
properties 

1    INTRODUCTION 

 UNCTIONALLY Graded Materials (FGM) are designed in a way that it combines strength and thermo-
mechanical properties of dissimilar medias to enhance material behaviors in practice especially, in elevated 

temperature applications. In any FGMs media, existence of non-homogeneity has a pronounced effect on the 
mechanical behavior of the continuum, particularly when it contains crack. Therefore, in design of any FGM 
structure the study of fracture behaviors will be an essential part of analysis.  

Numerous investigators have studied extensively the problem of a crack behavior in a media made of FGMs. 
Erdogan et al.[1] have considered the mode I fracture around a crack placed between two bonded isotropic and non-
homogeneous half-planes. Erdogan and Ozaturk [2] in their paper reported the mixed boundary value problem for a 
non-homogeneous medium bonded to a rigid subspace. Sometimes later Wang [3] has analyzed mode III fracture in 
FG piezoelectric medium containing one crack or multi cracks. Chue and Ou [4] have analyzed the mode III crack in 
two bonded FG piezoelectric materials. In this research, the crack is assumed to be perpendicular to the interface. Hu 
et al. [5] have studied the mode III fracture in FG piezoelectric strip located between two different semi-infinite 
homogeneous plates under mechanical and electric loadings. Ou and Chue [6] in their studies have reported the 
fracture behavior of an eccentric crack in a strip made of FGP material. Ma et al. [7] have investigated on a FG 
magneto-electro-elastic strip behavior with an inner crack and lip crack. In another work, Ma and Wu [8] have 
described a problem for an inner crack normal to the interface of a FG strip bonded to homogeneous substrate 
structure. Yong and Zhou [9] have studied the behavior of an eccentric crack in FG piezoelectric material layer 
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located between two different piezoelectric half-planes. Li et al. [10, 11] have considered a crack in a FGM strip 
with the material behavior varying in an exponential manner bonded to another substrate with the material behavior 
varying in a linear manner. Hus and Chue [12] in their reported work have investigated the fracture behavior of 
angled crack in a functionally graded piezoelectric strip connected to a homogeneous piezoelectric semi-infinite 
plate. Torshizian and Kargarnovin [13] have analyzed the mode III stress intensity factor at the tips of a crack with 
arbitrary orientation in a FG strip located between two different half-planes. The effects of orientation and position 
of the crack and also the variation of material properties on the SIFs have been discussed. Torshizian et al. [14] 
considered a two-dimensional functionally graded material with an inner crack subjected to an anti-plane external 
load. The mechanical material properties were assumed to change exponentially in two planar directions and crack 
orientation was taken to be arbitrary. Kargarnovin et al. [15] studied the fracture mechanics in an FG strip with 
embedded crack. The material properties were assumed to vary in a linear fashion perpendicular to crack surface 
under an anti-plane external load.  

However, because of involved mathematical complication that could raise due to variation of properties in three 
directions, almost all of the previous works have considered either an exponential functions for the continuous 
gradation of the material characteristic properties or have assumed a linear function with gradient of the material 
properties perpendicular to the crack surface.  

In the present study, the anti-plane problem of a crack in a functionally graded semi-infinite plate has been 
considered. The material characteristic have been considered to change in a linear fashion and crack is considered to 
be parallel to the direction of which the material properties change. The basic partial differential equations have 
been inferred and by employing the Laplace and Fourier integral transforms, these equations were reduced into a 
system of singular integral equations. The values of stress intensity factor (SIF) have been obtained numerically. 
Then, in a same trend, finite element method has been used to obtain SIFs. Finally, the effects of the length of crack 
and variation of material properties on the SIFs have been discussed and the obtained results from these two 
methods have been compared. To the best of author’s knowledge for the first time the value of mode III stress 
intensity factors are computed in a semi-analytical method in an FGM plate with the material properties varying in a 
linear way where the crack is placed in a direction parallel to the direction of material properties.  

2    FORMULATION AND PROBLEM DESCRITION 

A functionally graded semi-infinite plate containing an embedded crack with length 2C under an external anti-plane 

shear load is considered (Fig. 1). 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1  
A crack embedded in a functionally graded semi-infinite plate. 

 
All mechanical material coefficients are assumed to change linearly including shear modulus  as following [11]: 

 

 
where   is a non-homogeneous material parameter in x direction and 0  is the shear modulus at 0x  . The 

continuity and boundary conditions for the problem respectively: 

0( , ) (1 )x y x     (1) 

(0, ) 0xz y y       (2) 
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where 0  is a known external anti-plane load effective on the surfaces of crack and ( , )w x y  is the anti-plane 

displacement. Moreover, a and b are x-coordinate of the crack tip locations. The constitutive and equilibrium 
equation in an anti-plane case can be listed, respectively as [3]: 
 

 
By inserting Eqs. (1), (5) and (6) into Eq. (7), the basic partial differential equation will be obtained as: 

 

 
The problem with representation shown in Fig. 1 can be analyzed by decomposing the domain into an infinite 

FGM plate with a crack and a FGM semi-infinite plate without crack. Then the governing relations in each case are 
called. After combining governing relations for two above cases, the main problem can be analyzed. The basic 
differential equations for each of the above mentioned cases are reviewed in the upcoming sub-sections. 

2.1 Analysis of deformation in an infinite FGM plate with crack 

Let us begin by introducing the Laplace transform with respect to y as: 
 

 
By taking the Laplace transform of Eq. (8), one primarily would get: 

 

 
The Eq. (10) will be satisfied if: 

 

Eq. (11) can easily be solved for 1F  as: 
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where 0J  and 0Y  are the zero order first kind and second kind Bessel functions and also ( )A  and ( )C  are 

unknown functions that have to be calculated. Having on hand the 1F  , the anti-plane deformation can be expressed 

as: 
 

 
From Eq. (12), for x    anti-plane deformation must be zero, it can be found that ( ) 0C    and hence, Eq. 

(13) becomes: 
 

2.2 Analysis of deformation in a semi-finite FGM plate with no crack 

Because of the symmetry, it is sufficient to work only on the upper half of the structure, i.e. 0y  . Applying Fourier 

sine transform to Eq. (8), the anti-plane displacement can be calculated as: 
 

 
Substituting Eq. (15) into Eq. (8) yields: 
 

 
Eq. (16) could be satisfied when: 

 

 
Eq. (17) can easily be solved for 2F  as: 

 

 
In which 0 0  and  K  I  are the zero order first kind and second kind modified Bessel functions, and also 

( )B  and ( )D  are some unknown functions ought to be obtained. Having on hand the 2F , the anti-plane 

deformation can be expressed as: 
 

 
From Eq. (19), for x    anti-plane deformation must be zero, it can be found that ( ) 0D    and then Eq. (19) 

can be rewritten as the following: 
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2.3 Analysis of stress and deformation in a cracked FGM semi-infinite plate  

The anti-plane deformation analysis of a cracked semi-infinite FGM plate can be obtained as the sum of the anti-
plane deformation given by Eq. (14) and Eq. (20):  
 

 
After substituting Eq. (21) into Eq. (5) and Eq. (6), the shear stresses and xz yz  can be expressed as: 

 

 
where 1J  and 1K  are the Bessel and modified Bessel functions of first kind and first order, respectively. To 

determine the unknown function ( )A  , the dislocation density function, ( )g x  is defined as [4]: 

 

 
By introducing  (1 ) /t x   , and recalling Eq. (3) it can be deduced that the function ( )g x  must fulfill the 

following single value condition: 
 

 
In Eq. (25) the parameters 1a and 1b are defined as 1 1 /a a    and 1 1 /b b    where a and b are the crack 

tip location, respectively (see Fig. 1). By substituting Eq. (21) into Eq. (24), one could be obtained: 
 

 
By employing the inverse Hankel transform [16] on Eq. (26) the unknown function ( )A   can be obtained as: 

 

 
To determine the unknown function ( )B  , the boundary condition given in Eq. (2) can be applied on the Eq. 

(22). This will yield to: 

 
From Eq. (28) by using inverse Fourier sine transform [17], the unknown function ( )B   could be obtained as: 
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Substituting Eq. (27) into Eq. (29), ( )B  can be obtained  as follows: 
 

 
where the ( , )f t is: 

 

 
Substituting Eq. (27) and Eq. (30) into Eq. (23) the shear stress yz can be expressed as: 

 

 
From Eq. (32) with the boundary condition given in Eq. (4), the following integral equation is obtained: 
 

 
The kernels 1( , )H x t  and 3 ( , )H x t are as following: 

 

 
The kernel 1( , )H x t is an even function and could be rewritten as the following form: 
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The function ( , , )h x t can be broken into two “singular” and “non-singular” parts as [18]: 
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By adding and subtracting ( , , )h x t  to and from the integrand, the kernel 1( , )H x t , would be determined as: 

 

 
where in which the function 2 ( , )H x t is defined as: 

 

 
Substituting Eq. (40) into Eq. (33), the following singular integral equation could be obtained: 

 

3    SINGULAR INTEGRAL EQUATION SOLUTION 

It has been reported that Eq. (42) cannot be solved in a closed form way hence; it has to be solved numerically[2]. 
The interval are normalized by suggesting the linear transforms: 
 

 

 
Substituting Eqs. (43)-(47) in Eq. (42) and normalizing the result yields to: 
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where the coefficients nc  are unknown and ( )nT u is the first kind Chebyshev polynomial. By inserting ( )G u into 

Eq.(48) and using following Chebyshev polynomials properties: 
 

 
Eq. (48) can be converted to the following algebraic equation: 
 

 
Also, by employing the orthogonality condition on ( )nT u in conjunction with Eq. (25) it follows that 0 0c   [13]. 

The series of Eq. (51) would be truncated a n N , using the following discrete values of the variables u j [2]: 
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component can be obtained as: 
 

 
The mode III stress intensity factor ( ), ( )K a K b   at the crack tips   ,  x a x b  , respectively could be defined 

as [12]: 
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4    NUMERICAL RESULTS, VERIFICATION AND DISCUSSION 
4.1 Semi-analytical solution  

As previously seen, the mathematical model for the fracture problem of a FGM semi-infinite plate with the 
geometrical representation and loading is shown in Fig. 1. Based on the Fourier and Laplace integral transforms 
techniques a semi-analytical solution is developed. Then, the governing equation of the crack problem is converted 
to a system of singular integral equation, which is subsequently replaced by a set of linear algebraic equation in 
terms of ic . The coefficients ic  in Eq. (51) are calculated by means of a self-developed computer program using 

MATLAB solver. Furthermore, stress intensity factors at the crack tips for the third mode are obtained and the 
effects of non-homogeneous material parameters and crack location on SIFs at crack tips are analyzed. 

Figs. 2 and 3 illustrate the variations of the normalized third mode, stress intensity factors with relative crack 
length /d c  for different gradient parameter c . The results show that the normalized SIFs have higher values at 

the crack tips with higher stiffness. These curves show that for the equal length cracks, ( )IIIK a  decreases and 

( )IIIK b  increases as the c  increases. When the crack is closer to free surface, the difference between ( )IIIK a  and 

( )IIIK b  increases and with increases /d c , the difference between ( )IIIK a  and ( )IIIK b  decreases. Because the 

relative different material property, in the right and left sides of crack tip, becomes smaller with increases /d c . 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2  
Variations of normalized SIFs at crack tip a vs. /d c  
for different c . 
 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3  
Variations of normalized SIFs at crack tip b  vs. 

/d c for different c . 

0 0
1

( ) (1 ) / ) n
n

K b b c  





      
 

(59) 



M.R. Torshizian                   308 

© 2014 IAU, Arak Branch 

4.2 Finite element modeling 

The calculations obtained from the analytical method are verified by comparing the finite element analysis. In finite 
element modeling, a square plate is considered comprising of 720 quadrilateral 8-noded elements (see Fig. 4). 
Notice that in order to get better results, near the crack tips very fine mesh is generated. To model a finite crack in a 
semi-infinite plate, a square plate with side length of 20C is considered. Moreover, the elements around the crack 

are chosen to be the singular types, which simulate suitably the singularity condition at crack tips.  It is assumed that 
an equivalent anti-plane external loading of 0  is directly applied around the crack face surfaces. Once the 

displacement field is determined, the mode III stress intensity factor can be calculated (see Ref. 14). 
 

 
 

 
 
 
 
 
 
 
 
 
Fig. 4  
Finite element model of a FGM square plate with a central 
crack. 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 5  
Variations of normalized SIFs at crack tips vs. c for at 

/ 10d c  . 
 
 

Fig. 5 shows comparison of the normalized stress intensity factors with different gradient parameter c  by the 

analytical method solution with finite element method. The maximum difference between the results using two 
different methods is less than 3% for / 10d c   at 1c  . It shows an excellent agreement between the analytical 

and finite element results.  

5    CONCLUSIONS 

The anti-plane problem of a crack located in a semi-infinite plate made of functionally graded material is 
investigated. The properties of material are assumed to vary in a linear fashion.  The crack direction is parallel to the 
direction of the material properties variation. Fourier and Laplace transformers are used to convert the partial 
differential equations into a singular integral equations system. This integral equation is then solved using Gauss-
Chebyshev polynomials. The same problem has been reworked using finite element method in which around each 
crack tip four singular elements are used. The rest of plate is descretized using 8-noded quadrilateral elements. 
Several different examples are solved and effects of material non-homogeneity and crack location on the values of 
the stress intensity factors are discussed. It is observed that, for the equal length crack, stress intensity factors 
increases if non-homogeneity of the material increases. Because the relative different material property, in the left 
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and right sides of crack tip, becomes greater. When the crack is located closer to the free surface, the difference 
between the third mode stress intensity factors at the right and left sides of the crack tips become more remarkable. 
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