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 ABSTRACT 

 The present article deals with the study of propagation of plane waves in isotropic generalized 
thermoelastic diffusion with voids under initial stress. It is found that, for two dimensional model 
of isotropic generalized thermoelastic diffusion with voids under initial stress, there exists four 
coupled waves namely, P wave, Mass Diffusion (MD) wave, thermal (T) wave and Volume 
Fraction (VF) wave. The phase propagation velocities and attenuation quality factor of these plane 
waves are also computed and depicted graphically. In addition, the fundamental solution of system 
of differential equations in the theory of initially stressed thermoelastic diffusion with voids in 
case of steady oscillations in terms of elementary functions has been constructed. Some basic 
properties of the fundamental solution are established and some particular cases are also 
discussed. 
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1    INTRODUCTION 

HERE are a number of theories which describe mechanical properties of porous materials, and one of them is a 
Biot consolidation theory of fluid-saturated porous solids [1,2]. These theories reduce to classical elasticity 

when the pore fluid is absent. Goodman and Cowin [3] established a continuum theory for granular materials, whose 
matrix material (or skeletal) is elastic and interstices are voids. They formulated this theory from the formal 
arguments of continuum mechanics and introduced the concept of distributed body, which represents a continuum 
model for granular materials (sand, grain, powder, etc.) as well as porous materials (rock, soil, sponge, pressed 
powder, cork, etc.). The basic concept underlying this theory is that the bulk density of the material is written as the 
product of two fields, the density field of the matrix material and the volume fraction field (the ratio of the volume 
occupied by grains to the bulk volume at a point of the material). This representation of the bulk density of the 
material introduces an additional kinematic variable in the theory. This idea of such representation of the bulk 
density was employed by Nunziato and Cowin [4] to develop a non-linear theory of elastic material with voids. 
Later on Cowin and Nunziato [5] developed a theory of linear elastic materials with voids for the mathematical 
study of the mechanical behaviour of porous solids. Iesan [6, 7] has developed a linear theory of thermoelastic 
material with voids by generalizing some ideas of the papers [8, 5, 9]. The theory of initially stressed thermoelastic 
material with voids is also given by Iesan [10]. 

During the last three decades, non-classical theories of thermoelasticity so called generalized thermoelasticity 
have been developed in order to remove the paradox of physically impossible phenomenon of infinite velocity of 
thermal signals in the conventional coupled thermoelasticity. Lord-Shulman theory [11] and Green-Lindsay theory 
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[12] are important generalized theories of thermoelasticity that become center of interest of recent research in this 
area. The Lord and Shulman [11] theory of generalized thermoelasticity was further extended to homogeneous 
anisotropic heat conducting materials recommended by Dhaliwal and Sherief [13]. All these theories predict a finite 
speed of heat propagation. Nowacki [14-17] developed the theory of thermoelastic diffusion by using coupled 
thermoelastic model. Sherief and Saleh [18] investigated the problem of a thermoelastic half-space in the context of 
the theory of generalized thermoelastic diffusion with one relaxation time. Singh discussed the reflection phenomena 
of waves from free surface of a thermoelastic diffusion elastic solid with one relaxation time in [19] and with two 
relaxation times in [20]. Various authors [21-28] discussed different types of problems in thermoelastic diffusion. 
Aouadi [29] gives a theory of thermoelastic diffusion material with voids. 

Initial stresses are developed in the medium due to many reasons, resulting from difference of temperature, 
process of quenching, shot pinning and cold working, slow process of creep, differential external of forces, gravity 
variations, etc. The Earth is supposed to be under high initial stresses. It is therefore of great interest to study the 
effect of these stresses on the propagation of stress waves. During the last five decades, considerable attenuation has 
been directed towards this phenomenon. Biot[30] depicted that the acoustic propagation under initial stresses would 
be fundamentally different from that under stress free state. Hetnarski [31, 32] was the first to study the fundamental 
solutions in the classical theory of coupled thermoelasticity. Iesan[33] presented the fundamental solution in the 
theory of thermoelasticity without energy dissipation. The fundamental solutions in the micro continuum fields 
theories were constructed by Svanadze [34-38]. The information related to fundamental solutions of differential 
equations is contained in the books of Hörmander [39, 40]. 
In this article, two dimensional wave propagation in isotropic generalized thermoelastic diffusion with voids under 
initially stress has been investigated. The phase propagation velocity and attenuation quality factor of plane waves 
have been computed and presented graphically. The fundamental solution of system of equations in the case of 
steady oscillations has also been considered in terms of elementary functions. 

2    BASIC EQUATIONS 

Let x(x1,x2,x3) be the point of the Euclidean three-dimensional space E3, 2 2 2 1/2
1 2 3( ) ,x x x x= + +  

1 2 3( / , / , / )xD x x x= ¶ ¶ ¶ ¶ ¶ ¶  and let t denote the time variable. Following Lord and Shulman [11], Magana and 

Quintanilla [41], Aouadi [42], Iesan [10], the basic equations for homogeneous initially stressed generalized 
thermoelastic diffusion with voids material are: 
Constitutive relations 
 

0 1
, , 1( ) ( ) ( ),ij ijlm jm il l m ijl l ij ij ijt c t u D B T T C C      = + + + - + - +   (1)

 

, , ,i ij j lmi l m i ih A D u f a T = + + -  (2)
 

* * 1
0 , , 1 1 2( ) ( ),ij i j i ig B u f b T T b C C      = - - - - + + + +   (3)

 

* *
0 0 , 0 1 0( ) ( ) ,c

t ij i jT C T T T u aT C C b T      = + + + + +  (4)
 

* 1
, 2 1( ) ( ),ij i jP u b a T T d C C   =- - - + + +   (5)

 

0 , ,i iT q  =-  (6)
 

, ,i iC =-  (7)
 

 
where 0( )  = -  is the volume fraction field and 0  

is the matrix volume fraction at the reference state. T is the 

temperature measured from the absolute temperature 0 0( 0).T T ¹  We assume that 0T and 0 are constants.  

The equation of motion in absence of body force is 
 

, ,i ij ju t =  (8)
 

 
The equation of volume fraction is 

, ,i ih g l   = + +  (9)
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The equation of heat conduction is 
 

0 0 , ,i i ij jq m q k T+ =-  (10)
 

 
The equation of chemical potential is 

 
0 *

0 , ,i i ij jm P   + =-  (11)
 

 

where * *
0 1 2, , , , , , , , , , , , , ,ijlm ijl ij ij i ij i ij ijc D A B f d a b b a k     are the constitutive coefficients,   is the density, ijt  is the 

stress tensor, 0
jmt

 
is the initial stress parameter, iq

 
is the heat flux, C  is the concentration, i  is the mass diffusion 

vector, P is the chemical potential per unit mass, *C  is the specific heat,   is the specific entropy, ih  is the 

equilibrated stress vector,   is the equilibrated inertia, g  is the intrinsic equilibrated body force and l  is the 

extrinsic equilibrated body force. If the material symmetry is of a type that posses a center of symmetry then 
,ijk iD a and if  are identically zero. 

The general system of equations for anisotropic materials in absence of body force and extrinsic equilibrated 
body force are obtained by the substituting Eqs. (1)-(7) into Eqs. (8)-(11), 
 

0 1
, 1 ,[( ) ( ) ( )] ,ijlm jm il l m ij ij ij j ic t u B T T C C u      + + - + - + =   (12)

 

* * 1
, 0 , 1 1 2( ) ( ) ,ij ij ij i jA B u b T T b C C       - - - + + + + =   (13)

 

* *
0 0 0 1 , 0 ,(1 )[ ( ) ( ) ( )] ,c

t ij i j ij ijm C T T T b u aT C C k T
t

     ¶
+ + + + + + =

¶
      (14)

 

* * 1 0
, 2 1 , 0[ ( ) ( )] (1 ) ,ij ij i j iju b a T T d C C m C

t
      ¶

- - - + + + = +
¶

   (15)
 

 

Here, 0 1,  are diffusion relaxation times and 0 1,   are thermal relaxation times. For Lord and Shulman (LS) 

theory 1 0
1 00,  1,  0c

t m m   = = = = = =
 

and for Green and Lindsay (GL) theory 
0 0

0 0,  ,  0,  1.c
t m m   = = = =  The thermal relaxation times 0  and 1  satisfy the inequality 1 0 ³ >  for 

GL-theory only. However, it has been proved by Sturnin [43] that the inequality is not mandatory for 0  
and 1  to 

follow. In the above equations, a superposed dot denotes the derivative with respect to time.  
In case of isotropic medium, we have 

 

* * 0 0

( ), , , , ,

, ,

ijlm ij lm il jm im jl ij ij ij ij ij ij ij ij

ij ij ij ij jm jm

c B B A A

k k t t

            

    

= + + = = = =

= = =
 (16)

 

 
The values of the coefficients from Eq. (16) put in Eqs. (12)-(15), we get 

 

0 1
1( ) ( ) (1 ) (1 ) ,t grad div B grad gard T gard C

t t
        

¶ ¶
+ + + + - + - + =

¶ ¶
u u u  (17)

 

* * 1
0 1 1 2( ) (1 ) (1 ) ,A Bdiv b T b C

t t
      

¶ ¶
- - - + + + + =

¶ ¶
 u  (18)

 

* 0 *
0 0 0 0 0 1(1 ) ( ) ,m

m c mC T aT C T b div k T
t

       
¶

+ + + + =
¶

 u  (19)
 

* * 1 0
2 1[ (1 ) (1 ) ] ,mdiv b a T d C C

t t
     

¶ ¶
- - - + + + =

¶ ¶
u  (20)
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and 
 

0 0 0 0 0
0 0 0 01 , 1 , 1m m

m cm m m
t t t

     ¶ ¶ ¶
= + = + = +

¶ ¶ ¶
 (21)

 

 
where 1 (3 2 ) t   = +  and 1 (3 2 ) , ,c     = +  are Lame’s constants, t  is the coefficient of linear thermal 

expansion and t  is the coefficient of linear diffusion expansion. 1 2 3( , , )u u u=u  is the displacement vector and   is 

the Laplacian operator. 

3    FORMULATION OF THE PROBLEM  

We consider the medium of isotropic generalized thermoelastic diffusion with voids under initial stress. The origin 
of the Cartesian coordinate system 1 2 3( , , )x x x   is taken at any point and x3-axis taking vertically downward into the 

medium. We consider plane waves in the 1 3x x - plane with wave front parallel to the x2-axis. For two dimensional 

problem, we have 
 

1 3( ,0 , )u u u=  (22)
 

 
We define the dimensionless quantities: 
 

* * *2
*1 1 1
1 2 2 2

1 1 1 1 1

*
* 0 * 0 * 1 * 1 * 2

0 1 0 1 1 1 1 1 1 1

, , , , , ,

( 2 ) 2
, , , , ,

i i
i i

x u T C
x t u T C

c c c c c

C
c

k

      
 

               


¢ ¢

¢ ¢ ¢ ¢ ¢ ¢= = = = = =

+ +¢ ¢= = = = = =

 (23)
 

 
Here, *

1   and c1 are the characteristic frequency and longitudinal wave velocity in the medium respectively. 

Upon introducing the quantities (23) in the Eqs. (17)-(20) with the aid of (22) and after suppressing the primes, we 
obtain 
 

1
1 2 3 11 1grad div grad grad T grad C

t t
     

æ ö æ ö¶ ¶÷ ÷ç ç+ + - + - + =÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø¶ ¶
u u u  (24)

 

1
4 5 6 7 8 1 9( ) 1 (1 )div T C

t t t
         

æ ö¶ ¶ ¶÷ç+ + + + + + + =÷ç ÷÷çè ø¶ ¶ ¶
u  (25)

 

0
0 10 11 12 0 13 0( ) 1 m

m mdiv T C K T
t

         
æ ö¶ ÷ç+ + + + =÷ç ÷÷çè ø¶

 u  (26)
 

1 0
14 15 16 1 171 1 mdiv T C C

t t
       
é ùæ ö æ ö¶ ¶÷ ÷ç çê ú+ + + + + =-÷ ÷ç ç÷ ÷÷ ÷ç çê úè ø è ø¶ ¶ë û

u  (27)
 

 
Here, 2 2

1 3/ / ,x x=¶ ¶ +¶ ¶  1 1 3 3/ /div u x u x=¶ ¶ +¶ ¶u  and value of all deltas are  
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0
0

1 2 3 4 5 6*2 * *
1 1 1

2 * 2* * * 2
0 0 1 11 2 1

7 8 9 10 11 12* *3 *
1 1 1 1 1

2 * 2 * * *
0 1 1 2

13 14 15 16* 4 2 *
1 1 1 1

, , , , , ,
2 2 ( 2 )

, , , , , ,
2

, , ,

t B A

T T b cb b C cB

aT c b

c c

        
        

  
     

      

      
   

   

+ +
= = = = =- =-

+ + +

=- = = = = =
+

= = = =
* * * * 0

1 1
17 182 2

1 1

, , 1
2

a d t

c c

  
 

 
=- = +

+

 (28)
 

 
We introduce the potential functions   and   through the relations 

 

1 3
1 3 3 1

,u u
x x x x

  ¶ ¶ ¶ ¶
= - = +

¶ ¶ ¶ ¶
 (29)

 

 
Substituting Eq. (29) in the Eqs. (24)-(27), we obtain 
 

1
18 3 11 1 ,T C

t t
     

æ ö æ ö¶ ¶÷ ÷ç ç+ - + - + =÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø¶ ¶
  (30)

 

1

1
0, 


 - =  (31)

 

1
4 5 6 7 8 1 91 1 ,T C

t t t
          
æ ö æ ö æ ö¶ ¶ ¶÷ ÷ ÷ç ç ç+ + + + + + + =÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç çè ø è ø è ø¶ ¶ ¶

  (32)
 

0
0 10 11 12 0 13 0( ) 1 ,m

m m cT C k T
t

         
æ ö¶ ÷ç+ + + + =÷ç ÷÷çè ø¶

    (33)
 

1 0
14 15 16 1 17[ 1 1 ] mT C C

t t
        

æ ö æ ö¶ ¶÷ ÷ç ç+ + + + + =-÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø¶ ¶
  (34)

 

 
The Eq. (31) corresponds to transverse wave that decouples from rest of the motion, and is not affected by the 

thermal, voids and diffusion parameters. 

4    PLANE WAVE PROPAGATION 

For plane harmonic waves, we assume the solution of the form 
 

1 1 3 3i( ( ) )( , , , ) ( , , , ) e n x n x tT C T C     + -=  (35)
 

 
where ω is the angular frequency and ξ is the complex wave number and 1 3( ,0, )n n n=


 
is the unit propagation 

vector. , ,T   and C  are the undetermined amplitude vectors that are independent of time t and coordinates 

( 1,3).mx m =  The unit propagation vector n1 and n2 onto the 1 3x x -plane have the property 2 2
1 3 1.n n+ =  

Using Eq. (35) in the Eqs. (30), (32)-(34), we obtain 
 

2 2
18 3 22 33[ ( ) ] 0,T C      - + - - =  (36)

 

2 2 2
7 5 4 6 8 22 9 33( ) 0,i T C           - + - - + + + =  (37)

 

2 2
44 10 11 44 12 55 13 66( ) 0 ,k T C          - + + + + =  (38)

 

4 2 2 2
14 15 22 16 17 33 77( ) 0 ,T C           - + + + - =  (39)

 

 



303                   R. Kumar and R. Kumar 

© 2011 IAU, Arak Branch 

where 
 

1
22 1 33 44 0 0 55 0

0 0 0
66 44 77 0

1 i , 1 i , i (1 ), i (1 ),

(1 i ), i (1 i )

i m i

m m

         

     

= - = - =- - =- -

= - =- -
 (40)

 

 

The system of the Eqs. (36)-(39) has a non-trivial solution if the determinant of the coefficients 
tr

, , ,T Cé ùê úë û  

vanishes i.e. 
 

2 2
18 3 22 33

2 2 2
7 5 4 6 8 22 9 33

2 2
44 10 11 44 12 55 13 66

4 2 2 2
14 15 22 16 17 33 77

( )
0

i

K

     

           

         

          

- - -

- - - +
=

- +

- -

    
(41)

 

 
Solving the determinant of Eq. (41), a quartic equation in c2 is obtained that can be written as, 
 

* 8 * 6 * 4 * 2 *
1 2 3 4 5 0F c F c F c F c F+ + + + =  (42)

 

 
where 
 

* 2 2 2
1 5 6 77 55 12 77 22 44 11 8

* 2 2 2 2
2 5 6 33 55 12 17 77 22 66 13 16 5 6 8 12 55 77

2 2
8 22 11 17 33 44 15 13 66 8 11 18 22 44 77 9 33 11 16 22 44 12 1

( ) ,

( ( )( ) ( )

( ) (

F i

F i k i

            

                    

                        

=- - + +

= - + - - + - +

- - - + - 5 55

2
3 12 55 77 10 13 22 66 10 3 8 44 22 77 7 11 44 22 77 10 44 22 77 5 6

* 4 2 2 2 2
3 4 33 55 12 17 77 22 66 13 16 5 6 17 33 18 5 6

33 55 12 17 77 22 66 1

)

( ) ( )),

( ( ) ( ) ( )

(

i

F k i k i

k



                         

                     
       

+ + + - + - +

= - - - + - + - - +

- - 3 16 55 77 12 14 18 33 9 15 3 7 12 55 77 10 13 22 66

22 3 8 13 14 66 10 17 33 44 33 3 9 12 14 55 10 10 22 44 22 7 13 15 66 11 17 33 44

2
22 5 6 13 14 66 10 17 33 44 22

) ( )

( ) ( ) ( )

( )( )

k

i

                 
                            

            

- - + +

+ - - - + - +

- - + + - 44 77 4 10 22 33 9 44 11 14 44 15 10

2
33 7 44 11 16 55 15 12 33 5 6 12 14 55 10 16 22 44 22 33 8 44 11 14 44 15

* 6 2 2
4 18 5 6 17 33 33 9 15 18 33 4 17 33 3

( )

( ) ( )( ) (

( ( )

i

F i k k k

           

                           

                

- -

- - - - + - + -

= - - + + - + 7 17 33 3 9 14

2
22 4 13 14 66 10 17 33 44 33 7 15 5 6 14 33 33 4 12 14 55 10 16 22 44

* 8
5 4 17 18 33

( ) ( ) ( )),

,

k k

k i k

F k c

     

                         

      

-

+ + + - - + + -

= =
 

 

 
Eq. (42) is quartic in c2, therefore the roots of this equation gives four values of c2. Each value of c2 corresponds 

to a velocity of propagation of four possible waves. The waves with velocity cj  (j1, 2, 3, 4) corresponds to four 
type of waves. The complex coefficients * *

1 5F F-
 
in Eq. (42) implies that four roots of this equation may be 

complex. The complex velocity of wave ‘j’, i.e., ( ),j R Ic c ic= +  j1,…4, define the phase propagation velocity 
2 2( ) /j R I RV c c c= +  and the attenuation quality factor 1 2 /j I RQ c c- =-

 
for the corresponding wave [44]. Therefore, 

the four waves in such a medium are attenuating waves. Let we name these four waves corresponding to descending 
order of their phase velocities, namely a P wave, a Mass Diffusion(MD) wave, a Thermal(T) wave and Volume 
Fraction(VF) wave. 
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5    STEADY OSCILLATIONS 

Now we consider the case of steady oscillations. We assume the displacement vector, volume fraction,temperature 
change and concentration functions as 

 
i( ( , ), ( , ), ( , ), ( , )) ( )e tu x t x t T x t C x t u   -= T C, , ,  (43)

 

Using Eq. (43) into Eqs. (17)-(20), we obtain the system of equations of steady oscillations as 
 

grad div grad - grad T - grad C 0* * 2
1 2 22 33B        + + + =u u u  (44)

 

div T C 0* * *
3 1 22 2 33( )B A b b   - + + + + =u  (45)

 

div - T C 0* * * *
4 5 6 7( )K    + + + =u  (46)

 

*
11div T ( )C 0* * *

8 9 10 77        - + + - =u  (47)
 

 
where 
 

* 0 * * 2 * * *
1 2 3 4 0 44 5 1 0 44

* * * * * * * * * * * *
6 55 7 0 66 8 9 2 10 22 11 33

, , , , ,

, , , , ,

ot i T b T

C aT b a d

             

               

= + = + = + - = =

=- = =- = =- =
 (48)

 

We introduce the matrix differential operator 

 

6 6
( ) ( )x mn xF D F D

´
=   

 
where 
 

( ) ( ) ( )
2

* 2 *
1 2 4 5 1 22

* *
6 1 33 4 44 3 45 1 22

* * * *
646 2 33 5 4 54 5 55

*
56 7 6 8

[ ] , , ,

( ) , ( ) , ( ) , ,

, ( ) , ( ) , ( ) ( ),

( ) , ( )

mn x mn m x m x
m n m m

m x n x x
m n

n x x x
n

x n x

F D F D B F D
x x x x

F D F D B F D A F b
x x

F b F D F D F D K
x

F D F D

     

   

   

 







¶ ¶ ¶
= + + = =-

¶ ¶ ¶ ¶

¶ ¶
=- =- = + =

¶ ¶

¶
= = = =- +

¶

= = * * *
64 9 65 10

*
66 11 77

, ( ) , ( ) ,

( ) , , 1,2,3

x x
n

x

F D F D
x

F D m n

 

 

  



¶
=- =

¶

= - =

  

 
and mn  is Kronecker delta. The system of Eqs. (44)-(47) can be written as 

 
( ) ( ) 0xF D U x =   

 
where U(u,φ,T,C) is a six-component vector function on E3. 

Definition: The fundamental solution of the system of Eqs. (44) - (47) (the fundamental matrix of operator F) is 
the matrix G(x)II Gmn(x) II6x6 satisfying condition[40] 
 

( ) ( ) ( ) ( )xF D G x x I x=  (49)
 

 
where   is the Dirac delta and 

6 6mn x
I =  is the unit matrix and x   E3. Now we construct G(x) in terms of 

elementary functions. 
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6    FUNDAMENTAL SOLUTION OF SYSTEM OF EQUATIONS OF  STEADY OSCILLATIONS 

We consider the system of equations 
 

8grad div grad grad T grad C* * * * 2
1 2 4      + - + + + =u u B u H  (50)

 

9div T - C* * *
3 5( )B A Z    + + + =u  (51)

 

div - T C* * *
1 22 1 22 6 10( )b K L      - + + + =u  (52)

 

*
11div T ( )C* *

1 33 2 33 7 77b M         - + + + - =u  (53)
 

 
where H is three-component vector function on E3 ; Z, L and M are scalar functions on E3. The system of Eqs. (50)-
(53) may be written in the form 

 
( ) ( ) ( )tr

xF D U x Q x=  (54)
 

 
where Ftr is the transpose of matrix F, Q(H, Z, L, M) and x  E3. Applying the operator div to Eq. (50), we obtain  
 

9

*
11

div T - C

div - T C

div T ( )C

** 2 * *
9 4 8

* * *
3 5

* * *
1 22 1 22 6 10

* *
1 33 2 33 7 77

( )

( )

( )

div B T C div

B A Z

b K L

b M

    

   

     

      

   

 

 

   

+ - + + =

+ + + =

- + + + =

- + + + - =

Hu

u

u

u

 (55)
 

 
where 
 

** 0
9 2 t  = + +   

 
The system of Eqs. (55) may be written in the form  
 

( ) =N S Q  (56)
 

 
where Sdiv u,  , T, C), Q(d1, d2, d3, d4)(div H,  , T, C) and  

** 2 * *
9 4 8

* * *
3 5 9

4 4 * * *
22 1 22 6 10

* * *
33 2 33 7 11 77 4 4

( ) ( )
( )

( )

mn

x

B

B A
N N

b K

b

   

  

   

    

   


 



   

´

+ -

+ -
= =

- - +

- -

 (57)
 

 
The system (56) can be also written as 
 

( )S   =  (58)
 

 
where 
 

4
*

1 2 3 4 * ** * **
111 9 11 9

1 1
( , , ) , ( ) det ( ), 1,2,3,4n mn m

m

N d N n
AK AK

     
   

  
=

= = = =å, ,  (59)
 

 
and N*

mn is the cofactor of the elements Nmn of the matrix N. From Eqs. (57) and (59), we see that 
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4
2

1

( ) ( )m
m

  
=

= +  (60)
 

 
where λ2

m, m1, 2, 3, 4 are the roots of  the equation Г(-k)0 (with respect to k). Applying the operator ( )   to the 
Eq. (50), we get 

 
2
5( ) ( )u    ¢+ =  (61)

 

 

where 
2

2
5 *

1




=  and 

* * *
2 1 2 4 3 8 4*

1

1
{ ( ) [ }H grad B       


  ¢ = - - + +  (62)

 

 
From Eqs. (58) and (61), we obtain 
 

ˆ( ) ( ) ( )U x x  =  (63)
 

 
where 
 

2 3 4
ˆ ( , , , )    ¢=  and 

6 6
( ) ( )qn x

   =
 

2
5 44 55 66( ) ( )( ), ( ) 0, ( ) ( ) ( ) ( ),

  1,2,3,  , 1,2,3,4,5,6,  

mn qn

m q n q n

              = + = = = =

= = ¹
  

 
The Eqs. (59) and (62) can be rewritten in the form 
 

2

11 21 31 41*
1

12 22 32 42

3 13 23 33 43

4 14 24 34 44

1
[ ( ) ( )grad div ] ( )grad ( )grad ( )grad ,

( )div ( ) ( ) ( ) ,

( )div ( ) ( ) ( ) ,

( )div ( ) ( ) ( ) ,

q H q Z q L q M

q H q Z q L q M

q H q Z q L q M

q H q Z q L q M









     

   

   

   

¢= + + + +

= + + +

= + + +

= + + +

J

 (64)
 

 
where 

3 3mn
´

=J  is the unit matrix. In Eq. (64), we have used the following notations: 

 

* * * * * * *
1 2 1 2 4 3 8 4 2 2* ** * **

1 11 9 11 9

* *
3 3 4 4* ** * **

11 9 11 9

1 1
( ) [ ], ( ) ,

1 1
( ) , ( ) , 1,2,3,4

m m m m m m m

m m m m

q N BN N N q N
AK AK

q N q N m
AK AK

  
    

   

  

 

= - - + =

= = =
  

 
Now from Eq. (64), we have 

 
ˆ ( ) ( ) ( )tr

xx R D Q x =    (65)
 

 
where 
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( )

(1) (2)

6 6 (3) (4)
6 6

(4) 4

3 3 3 3

2
(1)

11*
1

(2) (3) (4)
1 1 1, 1

, ,

1
( ) ( ) ( ) ,

( ) ( ) , ( ) ( ) , ( ) ( ), 1,2,3

mn

r r
mn mn

mn x mn
m n

mn x n mn x n mn x m n
n n

R R
R R

R R

R R R R

R D q
x x

R D q R D q R D q r
x x




  

  

´
´

´ ´

+ +

= =

= =

¶
= +

¶ ¶

¶ ¶
= = = =

¶ ¶

 (66)
 

 
From Eqs. (54), (63) and (65), we obtain 

 
tr trU R F U =   

 
It implies that 

 

( ) ( ) ( )

tr tr

x x

R F

F D R D


 

=

=
 (67)

 

 
We assume that 
 

2 2 0, , 1,2,3,4,5,m n m n m n ¹ ¹ = ¹   
 
Let 
 

( )
5 4

1 44 55 66 26 6
1 1

( ) , ( ) ( ), ( ) ( ) ( ) ( ), ( ) 0,

1,2,3, , 1,2,3, 4,5,6 ,

rs mn n n n n vw
n n

x Y x Y x r x Y x Y x Y x r x x

m v w v w

 
´

= =

= = = = = =

= = ¹

å åY Y
  

 
where 

 
5

2 2 1
1

1,

4
2 2 1

2
1,

1
( ) exp( ), ( ) , 1,2,3,4,5

4

( ) , 1,2,3, 4

n n n m n
m m n

v m n
m m v

x i x r n
x

r v

   


 

-

= ¹

-

= ¹

=- = - =

= - =




  

 
We will prove the following Lemma: 
Lemma: The matrix Y defined above is the fundamental matrix of operator ( ),   that is 
 

( ) ( ) ( ) ( )Y x x I x  =  (68)
 

 
Proof: To prove the lemma, it is sufficient to prove that 

 
2
5 11 44( )( ) ( ) ( ), ( ) ( ) ( )Y x x Y x x      + = =  (69)

 

 
Consider 
 

1 2 3 4 5
11 12 13 14 15

6

,
z z z z z

r r r r r
z

- + - +
+ + + + =  (70) 
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where 
 

2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 2 4 2 5 3 4 3 5 4 5

2 2 2 2 2 2 2 2 2 2 2 2
2 1 3 1 4 1 5 3 4 3 5 4 5

2 2 2 2 2 2 2 2 2 2 2 2
3 1 2 1 4 1 5 2 4 2 5 4 5

2 2 2 2 2
4 1 2 1 3 1

( )( )( )( )( )( ),

( )( )( )( )( )( ),

( )( )( )( )( )( ),

( )( )(

z

z

z

z

           

           

           

    

= - - - - - -

= - - - - - -

= - - - - - -

= - - - 2 2 2 2 2 2 2
5 2 3 2 5 3 5

2 2 2 2 2 2 2 2 2 2 2 2
5 1 2 1 3 1 4 2 3 2 4 3 4

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5

)( )( )( ),

( )( )( )( )( )( ),

( )( )( )( )( )( )( )( )( )( )

z

z

      

           

                   

- - -

= - - - - - -

= - - - - - - - - - -

  

 
On simplifying the right hand side of above Eq.(70) , we obtain  

 

11 12 13 14 15 0r r r r r+ + + + =  (71)
 

 
Similarly, we find that 
 

2 2 2 2 2 2 2 2
12 1 2 13 1 3 14 1 4 15 1 5

2 2 2 2 2 2 2 2 2 2 2 2
13 1 3 2 3 14 1 4 2 4 15 1 5 2 5

2 2 2 2 2 2 2 2 2 2 2 2
14 1 4 2 4 3 4 15 1 5 2 5 3 5

2 2 2
15 1 5 2

( ) ( ) ( ) ( ) 0

( )( ) ( )( ) ( )( ) 0

( )( )( ) ( )( )( ) 0

( )(

r r r r

r r r

r r

r

       

           

           

  

- + - + - + - =

- - + - - + - - =

- - - + - - - =

- - 2 2 2 2 2
5 3 5 4 5)( )( ) 1    - - =

  

2 2 2( ) ( ) ( ) ( ) ( ), , 1,2,3,4,5m n m n nx x x m n     + = + - =  (72)
 

 
Now consider 
 

5
2 2 2 2 2 2
5 11 1 2 3 4 5 1

1

5
2 2 2 2 2 2
2 3 4 5 1 1

1

5 5
2 2 2 2 2 2
2 3 4 5 1 1 1

1 2

( )( ) ( ) ( )( )( )( )( ) ( )

( )( )( )( ) [ ( ) ( ) ( )]

( )( )( )( )[ ( ) ( ) ( )]

n n
n

n n n
n

n n n n
n n

Y x r x

r x x

x r r x

      

       

       

       

   

   

=

=

= =

+ = + + + + +

= + + + + + -

= + + + + + -

å

å

å å

  

 
Using Eq. (71) in the above relation, we obtain  

 
5

2 2 2 2 2 2 2
5 11 2 3 4 5 1 1

2

5
2 2 2 2 2 2 2
3 4 5 1 1 2

2

5
2 2 2 2 2 2 2
3 4 5 1 1 2

3

2 2
4 5 1

( )( ) ( ) ( )( )( )( ) ( ) ( )

( )( )( ) ( )[ ( ) ( ) ( )]

( )( )( ) ( )( ) ( )

( )( ) (

n n n
n

n n n n
n

n n n n
n

n

Y x r x

r x x

r x

r

       

        

       

 

      

  

  

 

=

=

=

+ = + + + + -

= + + + - + -

= + + + - -

= + +

å

å

å
5

2 2 2 2 2 2
1 2 3

3

5
2 2 2 2 2 2 2 2
4 5 1 1 2 3

4

5
2 2 2 2 2 2 2 2 2
5 1 1 2 3 4

4

2
5 5

)( )[ ( ) ( ) ( )]

( )( ) ( )( )( ) ( )

( ) ( )( )( )[ ( ) ( ) ( )]

( ) ( ) ( )

n n n n
n

n n n n n
n

n n n n n n
n

x x

r x

r x x

x x

       

        

          

  

 





=

=

=

- - + -

= + + - - -

= + - - - + -

= + =

å

å

å
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Similarly, the Eq. (69) can be proved. We introduce the matrix 
 

( ) ( ) ( )xG x R D Y X=  (73)
 

 
From Eqs. (67), (68) and (73), we obtain  

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x x xF D G x F D R D Y x Y x x I x = = =   

 
Hence, G(x) is a solution to Eq. (49).Therefore, we have proved the following theorem: 

Theorem: The matrix G(x) defined by Eq. (73) is the fundamental solution of system of Eqs .(44)-(47). 

7    BASIC PROPERTIES OF THE MATRIX G(x) 

Property 1. Each column of the matrix G(x) is the solution of the system of Eqs. (44)-(47) at every point x    E3 
except the origin. 
Property 2. The matrix G(x) can be written in the form 
 

(1) (2)

6 6 (3) (4)
6 6

( ) ( )
11

(2) (2)
44

(4) (4)
44

( ) ( ) ( ) , 1,3

( ) ( ) ( )

( ) ( ) ( )

mn

m m
x

x

x

G G
G G

G G

G x R D Y x m

G x R D Y x

G x R D Y x

´
´

= =

= =

=

=

 (74)
 

8    PARTICULAR CASES 

1. If we neglect the voids effect in the Eq. (73), we obtain the fundamental solution of initially stressed generalized 
thermoelastic diffusion material. 
2. Further in the absence of voids, diffusion and initial stress effects in the basic Eqs. (73), we obtain the similar 
results for fundamental solution as obtained by Iesan [33] in case of CT theory (i.e. taking all thermal relaxation 
times are zero). 

9    NUMERICAL RESULTS AND DISCUSSION 

With the view of illustrating theoretical results obtained in the preceding sections and compare these in the context 
of two theories of thermoelasticity for the medium of initially stressed thermoelastic diffusion with voids. For 
numerical computations we take the values of relevant parameters for copper material, the physical data is given 
below [18]: 
 
λ7.76 × 1010 Kg m-1 s-2,     μ3.86 × 1010 Kg m-1 s-2,    T00.293 × 103 K,    C*0.3831× 103 J/kg K,  
αt1.78 × 10-5  K-1,     αc1.98 × 10-4 m3 Kg-1,     α*0.85 × 10-8 m-3 Kg s,     a0.0012 × 104  m2s-2K-1,    d003 × 105 

Kg-1 m5 s-2,     ρ8.954 × 103 Kg/m3,     k386 ×103 W m-1 K-1. 
 
The voids and initial stress parameters are 
 

t00.5 × 1010 Kg m-1s-2,     χ1.75× 10-15 m2,     B1.13 × 1010 Kg m-1s-2,     ω0 2.687 Kg m-1s-1, 
A3.688 ×10-5 Kg m s-2,      1.475 ×1010 Kg m-1 s-2,     b1

*20 ×105 Kg m-1s-2K-1,     b2
*2.9 ×106 m2s-2, 
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τ00.005 s,     τ00.006 s,     τ10.007 s,     τ10.008 s. 
 
The software MATLAB 7.0.4 has been used to determine the values of phase propagation velocity and attenuation 
quality factor. The variations of phase propagation velocity and attenuation quality factor with respect to frequency 
have been shown in Figs.1-4 and 5-8 respectively. In all the Figures, two curves for Lord and Shulman(LS)-theory 
with and without initial stress cases of isotropic thermoelastic diffusion with voids are presented by ITVDIS(LS) 
and ITVD(LS) respectively, and two curves for Green and Lindsay(GL)-theory with and without initial stress cases 
of isotropic thermoelastic diffusion with voids are presented by ITVDIS(GL) and ITVD(GL) respectively. 

From Fig.1, it is noticed that the values of phase velocity V1 increase for both theories (LS-theory and GL-
theory) as frequency ω increases. Figs. 2, and 4 show that, the values of phase velocities V2 and V4 oscillate for 
lower value of frequency ω and increase smoothly for higher value of frequency ω for both theories. Fig. 3, on the 
other hand, shows that the values of phase velocity V3, increase as frequency ω increases for both theories. On 
comparing the theories, we find that the values of V1, V2, V3 and V4 are more for LS-theory in comparison to GL-
theory and due to the effect of initial stress the values of phase velocities V1, V2, V3 and V4 are little more. 

Figs. 5-8, show that the variation of attenuation quality factor with respect to frequency ω. From Fig. 5, the 
values of attenuation quality factor 1

1Q- are more for lower value of frequency ω and small for higher value of 

frequency ω for both theories (LS-theory and GL-theory). 
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Fig. 1 
Variation of phase propagation velocity 1 w.r.tV  frequency ω. 

   

0

5

10

15

B

C

D

E

0
15

30
45

60
75

90 

  ITVDIS(LS)
  ITVDIS(GL) 
  ITVD(LS)
  ITVD(GL)

 V
2 

Frequency 

 

 
 
 
 
 
 
 
 
 
 
Fig. 2 
Variation of phase propagation velocity 2 w.r.tV  frequency ω. 
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Fig. 3 
Variation of phase propagation velocity 3 w.r.tV  frequency ω. 
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Fig. 4 
Variation of phase propagation velocity 4 w.r.tV  frequency ω. 
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Variation of attenuation quality factor 1
1 w.r.tQ-  frequency ω. 
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Variation of attenuation quality factor 1
2 w.r.tQ-  frequency ω. 
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Variation of attenuation quality factor 1
3 w.r.tQ-  frequency ω. 
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Variation of attenuation quality factor 1
4 w.r.tQ-  frequency ω. 

   

 
Figs. 6, 8, show that the value of attenuation quality factors 1

1Q-

 and 1
4Q-

 decrease for lower value of frequency 

ω and increase for higher value of frequency ω for both theories. Fig. 7, on the other hand, depicts that the value of 
attenuation quality factor 1

3Q-

 decrease with respect to frequency ω increase for both theories. On comparing the 

theories, we find that the values of attenuation quality factors 1 1 1
1 2 3,  ,  Q Q Q- - -  and 1

4Q-  are little more for GL-theory 

in comparison to LS-theory and due to the effect of initial stress the values of attenuation quality factors 
1 1 1

1 2 3,  ,  Q Q Q- - -  and 1
4Q-

 are less. 

10    CONCLUSIONS 

The propagation of plane waves in homogeneous isotropic generalized thermoelastic diffusion with voids under 
initial stress has been studied. For two dimensional model of initially stressed isotropic generalized thermoelastic 
diffusion with voids, there exists four coupled waves namely, P wave, Mass Diffusion(MD) wave, Thermal(T) wave 
and Volume Fraction(VF) wave and one transverse wave is decoupled from rest of the motion which is not affected 
by the thermal, diffusion and voids parameters. The phase propagation velocities and attenuation quality factors of 
these plane waves are also computed and presented graphically with respect to frequency. The fundamental solution 
of system of equations in the generalized theories of thermoelastic diffusion with voids under initial stress in case of 
steady oscillations in terms of elementary functions has also been constructed. Some special cases are also 
discussed. 

This type of study is useful due to its applications in geophysics and electronic industry. Study of phenomenon 
of diffusion is used to improve the conditions of oil extractions (seeking ways of more efficiently recovering oil 
from oil deposits). Also the investigation of thermal, diffusion and initial stress effects on elastic wave propagation 
plays an important role in understanding many seismological processes.  
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