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 ABSTRACT 

 Present study deals with the prediction of crack initiation angle for mixed mode (I/II) fracture 
using finite element techniques and J-Integral based approach. The FE code ANSYS is used to 
estimate the stress intensity factor numerically. The estimated values of SIF were incorporated 
into six different crack initiation angle criteria to predict the crack initiation angle. Single edge 
crack specimens of Araldite-Hardener were used for the present analysis. Load was applied up to 
critical limit of the specimens containing crack at different angles of inclination. The crack 
initiation angle obtained using stress intensity factor and J-integral based approach were found 
close to each other and also found to be in good agreement with the available experimental results 
in literature. It is also investigated that as crack inclination angle increases material was found to 
behave in a brittle manner. 
                                                                                  © 2010 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

HE research on the mixed fracture criterion and crack growth is significant in fracture mechanics and 
engineering. Many research works in this area have been conducted and some criteria for predicating the 

direction of the crack initiation angle and the critical fracture load of materials have been determined. Thus, studying 
crack initiation angles is an important issue in dealing with crack arrest. Accordingly, several criteria have been 
proposed to predict the crack initiation angle. These criteria can be categorized on the basis of the critical parameter 
on which the criterion is defined. These parameters might be a critical value of stress, energy or strain. Griffith [7] 
was the first to propose a crack initiation criterion based on energy. On the other hand, Erdogan and Sih [6] were the 
first to propose a crack initiation criterion, the so called the maximum tangential stress (MTS) criterion, using the 
stress as a critical parameter. To support their criterion, Erdogan and Sih [6] conducted experiments using brittle 
Plexiglas plates and it is believed that MTS is suitable for analyzing brittle material. Later, Sih [17, 18] used the 
strain as a critical parameter in order to propose the minimum strain energy density (S) criterion. The (S) criterion 
showed a good agreement with the experimental results obtained earlier by Erdogan and Sih [6]. In addition, this 
criterion is the only one that shows the dependence of the initiation angle on material property represented by 
Poisson’s ratio  .  Similar to Sih, Theocaris et al. [21-23] used the strain as a critical parameter to propose the 
maximum dilatational strain energy (T) criterion. Theocaris et al. [21-23] used Polycarbonate specimens for their 
experimental work and their experimental results showed a good agreement with the theoretical predictions. On the 
other hand, Kong et al. [11] proposed the maximum triaxial stress (M) criterion which uses the stress as a critical 
parameter. Kong et al. [11] experimental results were in agreement with the theoretical predictions as well as the 
experimental results by Theocaris et al. [21-23]. Ukadgaonker and Awasare [25] presented the T-criterion in a new 
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form using the first and second stress invariants. Shafique and Marwan [19] modified the MTS criterion in order to 
be suitable for analyzing ductile materials. To achieve this, they introduced a variable radius for the plastic core 
region and used the von Mises yield criterion for determining the variable radius. Later, Shafique and Marwan [20] 
proposed the (R) criterion. 

Computation of fracture parameters, such as the stress intensity factors or energy release rate, using finite 
element analyses requires either a refined mesh around the crack tip or the use of “special elements” with embedded 
stress singularity near the crack tip. Although conceptually the stress intensity factors are obtained in a 
straightforward approach, finite elements analyses with conventional element near the crack tip always 

underestimate the sharply rising stress-displacement gradients. Instead of trying to capture the well-known 1 / r  
singular behavior with very small elements, Hanshell and Shaw [8] and Barsoum [3, 4] proposed a direct method by 
shifting the mid-side node of an 8-noded isoparametric quadrilateral element to the one-quarter point from the crack 

tip node. Relocating the mid-side nodes to the one-quarter point achieves the desire 1 / r  singular behavior. As an 
extension of the node collapsing approach Pu et al. [13] showed that the stress intensity factors KI and KII for 
opening and sliding modes, respectively, can be calculated directly from the nodal displacement on the opposite 
sides of the crack plane. Peter et al. [14] developed a finite element program which combines the analytical crack tip 
solution with a conventional finite element analyses. Petit et al. [15] used finite element method to obtain the 
displacement field in order to evaluate the stress intensity factors (KI and KII) and simulate the crack propagation for 
an inclined edge crack panel with crack angle of 45º. Rousseau and Tippur [16] studied the mixed mode crack tip 
deformation and developed a FE model using ANSYS and validated their model by their measurements. Ayhan [2] 
used three-dimensional enriched finite elements to calculate mixed mode stress intensity factors for deflected and 
inclined surface cracks in finite-thickness plates under uniform tensile remote loading. Tilbrook et al. [24] modified 
the finite element model which was used for simulating mixed-mode crack propagation in a linear elastic material to 
incorporate yielding. Joch and Ptak [9] examined several methods for 2D quasi-static linear-elastic problems to 
compute the stress intensity factor under mixed-mode mechanical loading conditions. Cherapanov [5] defined the 
components of two dimensional J-Integral problems. 

In this paper, mixed mode finite element analyses were carried out on five specimens using Araldite-Hardener. 
The final crack length was kept 27.5 mm for all the specimens and crack inclination angle was taken to 0˚, 15˚, 30˚, 
45˚ and 50˚. The crack tip radius r (distance from crack tip) was taken 0.8 mm. To vary the a/w ratio, crack length 
was varied by keeping the width of the specimen constant. The mixed mode stress intensity factors IK  and IIK  was 

determined. Using the values of SIF obtained, crack initiation angle was calculated using six different criterions.  

2    TEST MATERIAL AND SPECIMEN 

Material used for the analysis was Araldite-Hardener. Single edge crack specimen dimensions of 117×41×6.5 mm 
were considered for the study. The crack was inclined at different inclination angle namely 0˚, 15˚, 30˚, 45˚ and 50˚; 
the final crack length was taken to 25.5 mm but it is varied by changing the a/w ratio from 0.1 to 0.7 to study the 
geometry effect. The crack tip radius r (distance from crack tip) was taken to 0.8 mm. To find out the proportionality 
limits, and Young’s modulus, a rectangular shaped specimen of 117×41×6.5 mm size, was loaded on computerized 
Zwick/Roell Universal Testing Machine, model Z250 of 25 kN capacity with a crosshead speed 1 mm/min. The 
program for tensile test was loaded in the console control to obtain the proportionality limits and modulus of 
elasticity to 1.99×105 GPa. To obtain the Poisson’s ratio an extensometer Biaxial Model of Gage length 25 mm, 
travel ±2.5mm axial/ ±1 mm transverse from Epsilon Technology Corp was used to obtain the lateral and 
longitudinal extensions. These values were then used to obtain the Poisson’s ratio which came out to be 0.36. 

3    CRACK INITIATION ANGLE CRITERION 

3.1 MTS criterion 

Erdogan and Sih [6] were the first to propose a crack initiation criterion using the stress as a critical parameter. This 
criterion states that direction of crack initiation coincides with the direction of the maximum tangential stress along a 
constant radius around the crack tip so it is called the maximum tangential stress (MTS) criterion. It can be stated 
mathematically as: 
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If the stress intensity ratio is known then Eq. (2) can be solved for   such that  = 0 , which is the predicted 

crack initiation angle. 

3.2 S-criterion 

Sih [17, 18] used the strain as a critical parameter in order to propose the minimum strain energy density (S) 
criterion. It states that the direction of crack initiation coincides with the direction of minimum strain energy density 
along a constant radius around the crack tip. The (S) criterion showed a good agreement with the experimental 
results obtained earlier by Erdogan and Sih [6]. In addition, this criterion is the only one that shows the dependence 
of the initiation angle on material property represented by Poisson’s ratio ν. In mathematical form, S-criterion can be 
stated as: 
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where d / dW V  is the strain energy density function per unit volume, and 0r  

is a finite distance from the point of 

failure initiation. For slit cracks, the crack tip is assumed to be the point of failure initiation. 
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where  is defined as in Eq. (3). Similar to MTS criterion, after finding the stress intensity ratio  , Eq. (6) can be 

solved for , 0  which is the predicted crack initiation angle. 
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3.3 T-criterion 

Similar to Sih, Theocaris et al. [21-23] used the strain as a critical parameter to propose the maximum dilatational 
strain energy (T) criterion. It states that the direction of crack initiation coincides with the direction of maximum 
dilatational strain energy density along the contour of constant distortional strain energy around the crack tip. 
Theocaris et al. [21-23] used Polycarbonate specimens for their experimental work and their experimental results 
showed a good agreement with the theoretical predictions. In mathematical form, T-criterion can be stated as: 
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Again the same procedure as for MTS can be applied to find the crack initiation angle. 

3.4 M-criterion 

Kong et al. [11] proposed the maximum stress triaxiality (M) criterion which uses the stress as a critical parameter. 
It states that the direction of crack initiation coincides with the direction of maximum stress triaxiality ratio along a 
constant radius around the crack tip. Kong et al. [11] performed experiments using steel (FeE550) specimen at low 
temperature (-140ºC) in order to ensure that K controls the fracture. Kong et al. [11] experimental results were in 
agreement with the theoretical predictions as well as the experimental results by Theocaris et al. [21-23] and T 
criterion. M-criterion can be stated mathematically as: 
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Although plane strain formulation is done here, however, plane stress formulation gives the same results. Again 

the same procedure as for MTS is applied to find the crack initiation angle. 

3.5 Modified MTS criterion 

Shafique and Marwan [19] modified the MTS criterion in order to be suitable for analyzing ductile materials. To 
achieve this, they introduced a variable radius for the plastic core region and used the von Mises yield criterion for 
determining the variable radius. 
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3.6 R-criterion 

Shafique and Marwan [20] proposed the (R) criterion which states that the direction of the crack initiation angle 
coincides with the direction of the minimum distance from the crack tip to the core region boundary. 
Mathematically, the R criterion can be stated as: 
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Again the same procedure as for MTS can be applied to find the crack initiation angle. Graeffe’s root squaring 

method has been used to solve the equations of all the crack initiation criterions.  This method has an advantage over 
the other methods that it does not require any prior information about the roots and is applicable to solve polynomial 
equations of higher degree and is also capable of giving all the roots. However, another method called Descarte’s 
rule of sign was used to determine the maximum number of positive and negative roots. This method states that the 
equation ( ) 0f x

 
cannot have more positive roots than the changes of sign in ( )f x and more negative roots than 

the changes of sign ( ).f x  

4    GRAEFFE’S ROOT SQUARING METHOD 

This method has an advantage over the other methods that it does not require any prior information about the roots. 
But it is applicable to solve polynomial equations of higher degree as in this case and is also capable of giving all the 
roots. The polynomial equation can be written as, 
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In this way, this method can be used to calculate the roots of higher order polynomial equations. Out of the 

several roots only those roots which satisfy the inequality were considered. 

5   FINITE ELEMENT MODELLING 

Any crack tip has an associated least dimension (LD) factor. It can be defined as an approximate radius of the largest 
circle, centered at the crack tip; within which no geometrical or applied load quantity varies Abdalla et al. [1] 
surrounding the crack tip within which the singular stress field can be guaranteed to dominate the solution. This 
imaginary circle is related to the following important parameters. Firstly, if the crack has some radius of curvature 
close to the crack tip, then the singularity can dominate the solution only within a region of radius which is some 
small percentage of the radius of curvature of the crack. Therefore the crack radius of curvature is one of the 
quantities which should be considered in computing the crack tip Least Dimension (LD). In the present study, no 
blunting of crack is considered. Therefore, the effect of radius of curvature was neglected. Secondly, the applied 
loading can also affect the size of the region surrounding the crack tip in which the singular term in the stress field 
dominates the solution. If a point load is applied near the crack tip, it can distort the stress field locally. Therefore, 
the region in which the singular terms dominate the stress field should not contain any point loads. In this case, there 
is no such point load applied in the vicinity of crack tip instead the load is applied on top and bottom edge of the 
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specimen and thus satisfied the condition. Thirdly, LD must be selected small enough so that the distance to the 
nearest material discontinuity or geometrical discontinuity could significantly affect within the region of radius of 
LD. In this study, the crack tip was approached close to the boundary of the specimen when a/w ratio taken to 0.7 so 
the radius of element rows selected in such a way that it is not affected by the boundary close to the crack tip. Lastly, 
after finite element analysis of linear elastic problem has been performed the numerically calculated stress field near 

the crack tip should evidence the necessary 1/ 2r radial distribution of stress. 

5.1 Modeling 

5.1.1 Geometry 

In the case of an inclined crack, the model was not symmetric. Thus, full model of the edge cracked plate was 
analyzed using ANSYS 11 environment. The problem was idealized as 2D plane stress and the geometry was 
modeled using 8 keypoints with keypoint 7 being the crack tip. Keypoints 6 and 8 are coincident such that each one 
belonging to opposite crack face as shown in Fig. 1. Edge crack specimen was modeled with same crack length but 
different angle of inclination. The inclination angles considered in this study are 0°, 15°, 30°, 45° and 50°. 

5.1.2 Material model and element type 

Araldite-hardener was modeled as a linear isotropic material with elastic modulus 1.99 GPa and Poisson’s ratio 0.36 
obtained experimentally. But since the problem is idealized as two dimensional, therefore PLANE183 triangular 6 
noded structural element having two degrees of freedom in x and y directions have been used for FE modeling. It is 
a higher order element and possesses quadratic displacement behavior and is well suited to modeling irregular 
meshes shown in Fig. 3. This element is defined by 8 nodes or 6-nodes having two degrees of freedom at each node: 
translations in the nodal x and y directions. In addition to this, element behavior was chosen to plane stress (as the 
problem is 2D) along with thickness to 6.5 mm as a real constant. 
 
 

 
Fig. 1 
Position of keypoints and lines at crack. 

  
  
  

Fig. 2 
Quarter node element at crack tip. 
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5.1.3 Finite element mesh 

A typical finite element mesh for the 2-D analysis is depicted in Fig. 3 which has elements and nodes shown in 
Table 1 to unsymmetrical full model of the edge crack panel is modeled. To avoid problems of incompressibility, 6 
noded quadratic triangular elements whose mid side nodes have been shifted to the quarter-points of the element 
sides (element type PLANE183 for plane stress condition with ANSYS library) are used for 2-D shown in Fig. 2. 
Convergence of mesh is carried out shown in Fig. 4 to get more accurate results. The radius of the concentration 
point is chosen to 0.8 mm and its location is at keypoint 7 depicted in Figs. 1 and 2. On the other hand, the ratio of 
the second row elements radius to the first row elements radius are selected to be 0.5 and the element size was 
considered to be 0.003. The number of elements in circumferential direction is selected to 6 which have created 12 
singular elements around the crack tip. The specifications of the crack tip mesh and a close up view for crack 
inclination angles β45º are shown in Fig. 3. 
 
 

Fig. 3 
Crack tip mesh. 

  
  

 

 
Fig. 4 
Convergence of mesh at crack tip. 

  
 
Table 1 
FE Model specifications and numerically obtained SIF 
Angle (β)            Element                  Nodes                  KI (MPa)                   KII (MPa)                   KII/KI                         KI/KII 
0˚                       1906                       2561                    3.07                         0.0                             0                        0 
15˚                     1943                       2720                    2.70                         0.35                           0.13                   7.71 
30˚                     1969                       2920                    2.35                         0.65                           0.27                   3.61 
45˚                     2081                       3189                    1.40                         0.64                           0.45                   2.18 
50˚                     2157                       3427                    1.36                         0.72                           0.53                   1.90 
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5.1.4 Loading and boundary conditions 

Pressure boundary condition is prescribed on the top surface of the model while the bottom surface is restricted in 
the y-direction and one node, at x0 and y0, is restricted in x and y direction as shown in Fig. 5. Table 2 gives the 
different values of critical pressure applied on the specimen at different β, until the fracture of specimen occurs to 
obtain the critical value of mixed mode stress intensity factors. 

5.1.5 Crack path modeling 

Since a full model is considered, five nodes need to be selected along the two crack faces to get the value of mixed 
mode stress intensity factors KI and KII. The first node should be the crack tip and the second and third nodes are the 
first and second nodes next to the crack tip on the crack’s top face. The forth and fifth nodes have to be the first and 
second nodes next to the crack tip but on the crack’s bottom face as shown in Fig. 6. 

6    ANALYTICAL VERIFICATION OF MODE I SIF 

There are closed form solutions available for calculating the SIF for single edge crack panel but for pure opening 
mode I SIF. The general form can be represented as: 
 

IK Y a=  (20)
 

 
where Y is the geometry correction factor and it is usually a function of both crack length a and panel width w. The 
available geometry factor is only valid for a straight single edge crack panel and is calculated as: 
 

2 3 4
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Fig. 5 
Inclined crack panel with boundary condition. 

  
 
Table 2 
Mixed mode SIF obtained from J-Integral 
β˚              Critical Load(N)               Critical Stress (MPa)          KI (MPa)            KII (MPa)                 KII/KI                     KI/KII 
0˚               515.99                              1.92                                    3.51                    0                               0                      0 
15˚             551.57                              2.06                                    3.10                    0.26                          0.10                 11.92 
30˚             716.16                              2.67                                    2.67                    0.57                          0.22                 4.68 
45˚             782.88                              2.92                                    1.60                    0.47                          0.30                 3.40 
50˚             969.71                              3.62                                    1.54                    0.58                          0.52                 2.5 
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Fig. 6 
Crack path definition of opening crack. 

 

Crack length (a) considered for the mode I case is taken to 27.5 mm, and the panel width is 41 mm, yields a/w 

ratio to 0.67. By substituting the value of a/w ratio in Eq. (27), the value of Y yields to 7.571. Substituting the value 

of Y and applied stress in Eq. (26), yields the value of KI to 2.8 MPa which is very close to the value of KI obtained 

by FEA shown in Table 1. This validates the correctness of mode I SIF obtained using finite element analysis. 

7    J-INTEGRAL BASED APPROACH
 

Within the framework of plane linear fracture mechanics, many different approaches to the computation of critical 
parameters associated with crack extension have been proposed. Among these methods, Rice’s J-integral is 
extremely attractive since it involves only the evaluation of a path independent contour integral. The method is 
easily incorporated into most existing finite element stress analysis programs which have no provision for treating 
singular stress states. Charepanov [5] investigated that the components of two dimensional J-integral shown in Fig. 
7 are defined as 
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The function s was chosen in linear form and introduced by means of shape functions N as reads 
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where superscript M refers to the node number and 
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Fig. 7 
Coordinate systems and J-integration contours. 

  
 
 


 



1 ... at the crack tip

0.75 or 0.5 ... at a shift or non-shifted midside node respectively

0 ... at the remaining element nodes
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It can be seen in Fig. 7 that, 
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The use of divergence theorem given by Charepanov [5] leads to 
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where  designates the domain enclosed by the contour .t Accepting the assumptions of elastic continuum, small 

deformation theory, and the absence of body forces and temperature loading which are sufficient conditions to make 
the second term in Eq. (27) zero. At the same time the presupposition of traction-free crack faces are accepted and 
noticed the properties of the quantities indicated so far under the above described conditions for k = 1 and k =2. 
Obviously it holds, 
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Irrespective of the width and distance of domain   from the crack tip, and also according to Eq. (22) 
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If the domain   is close to the crack tip, then the displacements and stresses will, with appropriate accuracy, 

comply with an asymptotic solution and 
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1, 2, 0f s f s
I IJ J
    (31)

 

 
Then according to Eq. (22, 27and 31) it can be written as 
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The validity of Eq. (32) is the more accurate, the closer the crack tip is surrounded by the domain . Between 

the J-integral and the SIF components hold the relationships derived, given by Charepanov [5] 
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From which IK  and IIK may be explicitly expressed 
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Here E* = E for plane stress and  * 2/ (1 )E E for plane strain, where E, v are Young’s modulus and Poisson’s 
ratio, respectively. All the crack initiation angle criterion can predict the crack initiation angle θ, if the ratio of 

/I IIK K is known but a careful investigation of Eq. (3) and Eq. (35) can lead to an important conclusion that using J-

integral based approach crack initiation angle can be equally determined by using Eq. (36) in terms of J as 
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Eq. (36) can be further simplified as, 
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Finally, the equation comes out in the form 
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Thus Eq. (37) gives that the ratio of stress intensity factor is equal to the negative function of mixed mode J-
Integral. To evaluate the K components, using J-Integral approach, in single edge crack panel depicted in Fig. 5, 
conventional isoparametric triangles elements with 6 nodes are used. The functions were chosen in linear form and 
introduced by means of shape functions N as reads by Eq. (25). 

8    RESULTS AND DISCUSSION 

8.1 Effects on mode I and mode II SIF 

Fig. 8 gives the comparison of mode I and mode II SIF, computed numerically as well as J-Integral based approach 
with respect to crack inclination angle. It was observed that results obtained from both approach are very close to 
each other. In other words, both methods can be employed to determine crack initiation angle. Significant fall of 
curves was noticed between β = 30° to β = 48° after that IK  was found to increase. Table 2 shows that as β 

increases, higher stresses were required to fracture the specimens. Fig. 9 gives the clear picture of yielding at the 
crack tip. It was observed that increasing crack inclination angle implies to decreasing the equivalent von Mises 
stresses for all a/w ratio from 0.1 to 0.7, which indicated that the yielding, at crack tip, decreases as β increases or in 
other words the stiffness of the material increases followed by rising in stress triaxiality thus trigger the chance of 
brittle fracture. This phenomenon can also be observed in Fig. 10 (a to e). It indicated that shrinkage of yield 
envelope was observed near the crack tip thus decreasing the amount of plastic zone at the crack tip and gives rise to 
brittle fracture. 
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Mode I and mode II SIF vs. β. 
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Von Mises stress at the crack tip. 



244                   S.S. Bhadauria et al. 

 

© 2010 IAU, Arak Branch 

 
(a) 

 
(b) 

 
(c) 

   

 
(d)  

(e) 

 

Fig. 10 
Von Mises stress distribution at crack tip at: (a) 0˚ (b) 15˚ (c) 30˚ (d) 45˚ and (e) 50˚. 
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Fig. 11 
Crack initiation criteria at different β. 

8.2 Prediction of crack initiation angle 

Stress intensity factors KI and KII were computed numerically as well as J-Integral based approach. These are 
incorporated into six crack initiation angle criteria to predict the crack propagation angle. Fig. 11 depicts that all 
criterion predict approximately the same crack initiation angle for the cases of small crack inclination angles (β = 0º 
and β = 15º). Similarly Table 3 and Fig. 12 depict the comparative study of crack initiation angles carried out by 
using both K and J based approaches in which a difference of about 3° was noticed if J-Integral based approach is 
followed. It is investigated that both M and T criteria were found to yield the same initiation angle for all crack 
angles. To support their criterion, Kong et al. [11] performed experiments on FeE550 steel center crack specimens at 
low temperature (-140ºC) in order to ensure that K controls the fracture. The authors conclude that the theoretical 
results of the M criterion compared very well with the experiment results of Theocaris et al. [21-23] and the T 
criterion. Kong et al. [11] experimental results were also in a good agreement with T criterion and the experimental 
results of Theocaris et al. [21-23], especially for small inclination angles. 



Finite Element Modeling of Crack Initiation Angle Under Mixed Mode (I/II) Fracture                   245 

© 2010 IAU, Arak Branch 

Table 3 
Comparison of K and J-Integral based Crack initiation angle obtained from different criteria 
                                                                            Crack initiation angle (-θ) 

Β                                                         Numerical                                                                                 
          M              T              S              MTS        MMTS    R             M            T              S              MTS          MMTS         R       
0°       0               0               0              0              0              0              0              0              0               0                0                  0 
15°     14.318      14.318      13.958     14.315     14.228     13.85       11.91       11.78       11.91        11.91         11.88           11.84 
30°     27.583      27.587      25.487     27.395     26.935     27.66       25.28       24.14       25.35        25.34         25.0             24.63 
45°     39.351      39.459      36.645     38.276     37.561     33.76       32.22       30.67       32.35        32.35         32.84           30.35 
50°     43.057      43.322      38.373     41.420     40.845     36.84       36.03       33.10       36.61        36.64         35.35           34.05 
 
 

Fig. 12 
Comparison of crack initiation angle obtained from K 
and J-Integral based approach. 

 
 

 

Fig. 13 
Comparison of crack initiation angle of this study and 
available results. 

 
  

Fig. 14 
Comparison between crack initiation angle of this study 
and Zwing et al. (1976). 
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Furthermore, the M and T criteria were found to predict the maximum initiation angle while the S criterion 
predicted the minimum angle. The same behavior of the S criterion is observed in the literature shown in Fig. 13. 
Zwing et al. [26] conducted experiments on PMMA edge crack specimens. Similar behavior is observed by 
Theocaris et al. [21-23] except that their experimental results showed an agreement with MTS and S criteria for 
inclination angles less than 50º shown in Fig. 14. However, their experimental measurements of the crack initiation 
angles showed a good agreement with T criterion for higher inclination angles. 

9    CONCLUSIONS 

The pure opening mode and mixed mode stress intensity factor were estimated numerically using FE code as well as 
J-Integral based approach. For pure mode, the FE model compared very well with analytical solution. After 
estimating KI and KII, the SIF values are incorporated into six crack initiation criteria for crack initiation prediction. 
All criteria give the same initiation angle between β equals to (0º to 15º). However, as the crack angle of inclination 
increases with an increment of 15 º the difference in crack initiation angle prediction increases reaching more than 
13º. For all inclination angles, the S criterion was found to predict the minimum initiation angle and can also gives 
the relationship of ductile and brittle behavior of material while both M and T criteria were found to predict the 
maximum initiation angle. The crack initiation angle obtained using stress intensity factor and J-integral based 
approach are close to each other and also found to be in good agreement with the available experimental results in 
literature. It was also observed that as crack inclination angle increases material is found to behave as brittle 
fracture. 
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