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 ABSTRACT 

 In this paper, an exact analytical solution for free vibration of rotating bi-

layered cylindrical shell composed of two independent functionally graded 

layers was presented. The thicknesses of the shell layers were assumed to be 

equal and constant. The material properties of the constituents of bi-layered 

FGM cylindrical shell were graded in the thickness direction of the layers of 

the shell according to a volume fraction power-law distribution. In order to 

derive the equations of motion, the Sanders’ thin shell theory and Rayleigh-

Ritz method were used. Also the results were extracted by considering 

Coriolis, centrifugal and initial hoop tension effects. Effects of rotating 

speed, geometrical parameters, and material distribution in the two 

functionally graded layers of the shell, circumferential and longitudinal wave 

number on the forward and backward natural frequencies were investigated. 

A comparison of the results was made with those available in the literature 

for the validity and accuracy of the present methodology. 

                                                © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords: Functionally graded material (FGM) ; Free vibration; Natural 
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1    INTRODUCTION 

 ANY applications of circular cylindrical shells are found in engineering and industry fields, such as civil 

engineering, mechanical engineering, and aerospace engineering. Prior to their applications, their dynamic 

features, such as vibration, buckling, and stability are theoretically analyzed. This helps to avoid the future risks for 

their practical uses. In recent years, the use of functionally targeted materials (FGM) in environments with high 

temperatures has been considered. In fact, these materials are composites made of metals and ceramics in which the 

thermal insulation capability and good toughness of ceramics and metals can be used at the same time. FGM 

materials are inhomogeneous such that their properties change continuously and gradually from one level to another 

level. This operation can be applied by changing the volume ratio with a special equation. In recent years, research 

has been carried out on the field of free vibration of FGM cylindrical shells. Loy et al. [1] studied the spectra of the 

natural frequencies of functionally graded cylindrical shells for various geometrical parameters. They concluded that 

the influence of the material distribution was controlled by the volume fraction law. Najafizadeh and Isvandzibaei 

[2] studied the vibration of functionally graded shells based on the higher-order shear deformation plate theory with 

ring support. Arshad et al. [3] presented a frequency analysis of FGM cylindrical shells with various volume fraction 

laws. Shah et al. [4] also used exponential volume fraction law to study the vibration frequencies of FGM cylindrical 
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shells by varying the base element of this law. Isvandzibaei and Awasare [5] analyzed the vibration of two kinds of 

functionally graded cylindrical shells with various volume fraction laws. Rahimi et al. [6] studied the vibrational 

behavior of functionally graded cylindrical shells with intermediate ring supports. A functionally graded cylindrical 

shell made up of a mixture of ceramic and metal was considered. The influence of some commonly used boundary 

conditions and the effect of changes in shell geometrical parameters and variations in ring support position on 

vibration characteristics was also studied. Studies on functionally graded (FG) cylindrical shell confined to a single 

layer can be seen in other literatures. Moradi-Dastjerdi and Foroutan [7] used different Mesh-Free method for free 

vibration analysis of orthotropic FGM cylinders. The cylinders are assumed to be a mixture of two isotropic 

materials as fiber and matrix. The volume fraction of the fiber is changed in the radial direction. Ebrahimi and 

Najafizadeh [8] analyzed the free vibration of a two-dimensional functionally graded circular cylindrical shell. The 

spatial derivatives of the equations of motion and boundary conditions were discretized by the methods of 

generalized differential quadrature (GDQ) and generalized integral quadrature (GIQ). Bahadori and Najafizadeh [9] 

investigated the dynamic behavior of moderately thick functionally graded cylindrical shell based on the First-order 

Shear Deformation Theory (FSDT). The material properties of functionally graded cylindrical shell were graded in 

two directional (radial and axial) and assumed to obey the power law distribution. 

Two-layered FG cylindrical shells have many applications, such as nuclear reactors. Sofiyev et al. [10] analyzed 

the vibration and stability analysis of a three-layered conical shell with middle layer of functionally graded material. 

They applied the method of Galerkin to transform governing equations of motion into a pair of time dependent 

partial differential equations and came to a conclusion that the critical parameters were affected by the 

configurations of the constituent materials and the variation of the shell geometry. Arshad et al. [11] analyzed the 

vibration frequency of a bi-layered cylindrical shell composed of two independent functionally graded layers. The 

two thin layers were assumed to be perfectly bonded in the transverse direction at their interface without slip and 

their deformation was continuous across the layers interface. Arshad et al. [12] studied the vibration of bi-layered 

cylindrical shells with layers of different materials. One layer  was  made  of  functionally  graded  material  and  the 

other  layer  of  isotropic  material. Frequencies were evaluated for long, short, thick and thin cylindrical shells by 

varying the non-dimensional geometrical parameters, length-to-radius and thickness-to-radius ratios for a simply 

supported boundary condition. According to Shah et al. [13] the vibration  characteristics  of  a  cylindrical  shell  

composed  of  three  layers  were  investigated. The inner and outer layers of a cylindrical shell are functionally 

graded materials while the middle layer is of isotropic material. The wave propagation technique was used to solve 

the present shell problem. Sepiani et al. [14] investigated  the free vibration and buckling of a two-layered 

cylindrical shell made of inner functionally graded (FG) and outer isotropic elastic layer, subjected to combined 

static and periodic axial forces. Li et al. [15] studied the free vibrations of a simply supported triple layer circular 

cylindrical shell with similar inner and outer isotropic layers and FGM core. 

There exist a few studies on the rotating FGM cylindrical shells. One of these works was done by Ahmad and 

Naeem [16]. This paper utilized thin shell theory with Love approximation displacements field. As an effect of the 

rotation, only the centrifugal force was considered. Also, as an important part of the analysis, wave propagation 

technique was used and the vibration behavior of cylinder was approximated numerically by some beam Eigen 

functions. Civalek [17] using the discrete singular convolution (DSC) method, studied the free vibration analysis of 

rotating truncated conical shells, circular shells and panels. Isotropic, orthotropic, functionally graded materials 

(FGM) and laminated material cases were considered. Hosseini Hashemi et al. [18] presented an exact analytical 

solution for free vibration of a rotating functionally graded circular cylindrical shell based on Sanders’ shear 

deformation theory. Effects of various combinations of boundary conditions, rotational speed, geometrical and 

material properties of the shell on the forward and backward waves of the natural frequencies were investigated. 

Mehrparar [19] analyzed vibration of functionally graded spinning cylindrical shells using higher order shear 

deformation theory. 

According to advantageous literature review and based on the author's acknowledge, the absence of an exact 

analytical study is sensed for vibration analysis of a rotating multi-layered or bi-layered FGM cylindrical shells 

under Coriolis and centrifugal effects of axial rotation. In this paper, free vibration analysis of a rotating bi-layered 

cylinder made of functionally graded materials was considered. The equations of motion were obtained based on 

Sanders’ shear deformation theory. Rotation was applied to the model by considering Coriolis, centrifugal and initial 

hoop tension effects. In order to derive the equations of the theory of thin shells, Rayleigh- Ritz method was applied. 

To make simply supported conditions, the components of displacement (in longitudinal direction, circumferential 

and radial) were considered as a combination of sine and cosine functions. The effect of various parameters, such as 

rotating speed, circumferential wave number, longitudinal wave number, and material distribution in the two 

functionally graded layers, thickness and length to radius ratios on natural backwards and forwards frequencies of 
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rotating FGM cylindrical shells were also discussed. A  number  of comparisons  with literature was  done  to  check  

the effectiveness,  robustness  and  accuracy  of  the  presented  method. 

2    FUNCTIONALLY GRADED MATERIALS    

FGM materials are made from a combination of two or more materials. Most of these materials are used in high 

temperature environments and the properties of these materials are defined as a function of temperature according to 

the following equation [1]: 

 

 1 2 3

0 1 1 2 31P P PP T T TP PT

              (1) 

 

where
0 1 1 2, , ,P P P P

and
3P are constants at temperature T in Kelvin scale and are fixed for any specific matter. The 

characteristics of FGM, P related to ingredient properties and volume ratio and defined as follows [1]: 
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jP &
fiV  in the aforementioned equation are the characteristics of materials and volume fraction j. Total volume 

ratio of materials is equal to one [1]. 
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For a cylindrical shell with a uniform thickness h and a reference surface at its middle surface, the volume 

fraction of the two constituents for a shell having a single FGM layer [1] can be expressed as: 
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where N is the power law (0 )N   and z is the distance from middle surface ( / 2 / 2)h z h      . 

For a bi-layered functionally graded cylindrical shell with the constituent materials 
1M  and 

2M  for inner FGM 

Layer, 
2M  and 

3M  for outer FGM layer, the effective material parameters Young’s modulus E, Poisson’s ratio ν 

and the mass density ρ of both  layers are expressed as [12]: 
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where 1 1 1, ,fgm fgm fgmE   and 2 2 2, ,fgm fgm fgmE   correspond to the resultant material properties for inner and outer 

FGM layers, respectively.  

Fig. 1 shows that material 
1M  is enriched at the inner surface of the inner layer and is gradually reduced in the 

thickness direction till it has zero concentration at the outer surface of the inner layer, while material 
2M  is enriched 

at the outer surface of the inner layer and has zero concentration at the inner surface of the inner layer. Similarly, in 

the second layer material 
2M  is concentrated at the inner surface of the outer layer and has zero concentration at the 

outer surface of the outer layer, while material 
3M  is enriched at the outer surface of the outer layer and has zero 

concentration at the inner surface of the outer layer of the cylindrical shell. The material properties given in Eqs. (5) 

are for inner and outer FGM layers of the cylindrical shell which vary from / 2h  to 0 and from 0 to / 2h , 
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respectively. From these relations, it can be concluded that at / 2z h  , the effective material properties become 

1 1 1, ,E E v v      for inner layer, for 0z  , material properties become 
2 2 2, ,E E v v      in both layers, 

and at / 2z h  , the material properties turn into
3 3,E E v v  , and 

3  for functionally graded outer layer of 

the cylindrical shell. These results lead to the conclusion that there exists a smooth and continuous change in the 

material properties from material 
1M  at the inner surface to the material properties of 

2M  at the outer surface of the 

shell of the FGM inner layer of the cylindrical shell. Similarly in the outer layer, there is a variation in the material 

properties from material properties 
2M  at the inner surface of the outer layer to material properties 

3M  at the outer 

surface of the outer layer of the cylindrical shell. Similar behavior is seen in the inverse direction. For this shell, if 

the thickness to radius ratio is less than 0.05, it will be possible to use the theory of thin shells. In the next section, a 

formulation based on Sanders’ shell theory, for a functionally graded cylindrical shell is carried out. 

 

 

 

 

 

 

 

 

Fig.1 

Variation of material properties along the thickness direction 

of the bi-layered FGM cylindrical shell [9]. 

3    THEORY AND EQUATIONS    

The main purpose of this section is to obtain the equations of motion for FGM thin cylindrical shell shown in Fig. 2, 

with uniform thickness h, radius R, length L and mass density  , which rotates about the x-axis at constant angular 

velocity . The shell has a coordinate system fixed on its middle surface. Membrane displacement in the 

longitudinal, circumferential and radial direction ( , , )x z are shown by u, v and w and velocity vectors and 

displacements of a point on the shell are shown by V and r , respectively. The velocity vector at each point of the 

shell is determined by the following equation. 

 

( 0) ( )V r i r               (6) 

 

In this equation, the displacement vector r  is written as: 

 

r ui vj wk            (7) 

 

That ,i j and k are unit vectors in x and   and z directions, respectively when 0  . By combining Eq. (7) 

with Eq. (6), the velocity vector is obtained as follows: 

 

( ) ( )V ui vj wk i wk i vj                  (8) 

 

In this equationu ,v  and w are velocity components in three main directions. The kinetic energy of the shell is 

expressed by following equation [20]: 
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By putting Eq. (8) into Eq. (9), the kinetic energy of the shell can be obtained as follows: 
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where
t is the mass density per unit length and is defined by: 
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where  1fgm and  2fgm represent the mass density of the constituent materials in both the FGM layers.  

The initial hope tension due to the centrifugal force is defined as [15]: 

 
2 2h RN           (12) 

 

The strain energy of the shell due to hoop tension is given as [15]: 
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Shell tensile and flexural strain energy can be written as follows [15]: 
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In this equation S is the stiffness matrix, and strain vector  can be written as: 

 

 1 2 1  2     2 T e e k k        (15) 

 

In this equation, the middle surface strain is determined by 
1 2, ,e e   and the middle surface curvature is 

determined by
1k , 

2k and . Based on Sanders’ thin shells theory, these values are calculated as follows. [21] 
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Stiffness matrix for shell is given by: 
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Here ijA , ijB and ijD  (i, j =1, 2 and 6) are extensional, coupling and bending stiffness’s for isotropic materials, 

respectively and can be defined in both layers of the cylindrical shells as: 
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Reduced stiffness matrix Q determines by (18): 
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For a cylindrical shell with a simply-supported edge, the essential geometrical boundary at that edge conditions 

can be explicitly written as: 

 

0v w         (20) 

 

Displacement functions u, v and w considered as follow: 
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,mn mnA B and 
mnC are constant modes of shape coefficient, m is the number of half – wave longitudinal wave and 

n is the number of half –wave circumferential waves. By substituting Eq. (18) and (19) into (17), the stiffness matrix 

of the shell is calculated and by substituting Eq. (21) in Sanders’ strain equations, the strain vector is calculated, and 

then according to Eq. (14), the  potential energy of the shell can be obtained. The total energy of the system is given 

as follows: 

 

Π   hT U U        (22) 

 

Using the Ritz minimizing method, 
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The following matrix relation is extracted: 
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That ij presented at Appendix A. For obtaining a non-trivial answer of the aforementioned equations, the 

determinant matrix must be zero. 
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After expanding Eq. (25), the characteristic equations of membrane frequencies can be obtained as follows: 
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That 
i are the constants. Maple toolbox is used to solve six roots of Eq. (26) for each m and n. 

 

 

 

 

 

 

 

Fig.2 

Rotating bi-layered FGM Cylindrical shell. 

4    MATERIALS  

Material properties used in this study is expressed in Table 1. 
 

Table 1  

Material properties of FGM. 

ρ(kg m-3)×103 ν E(N m-2)× 1011 material 

  8.166 0.317756 2.07788 Stainless steel (SS) 

5.7 0.297996     1.6806296 Zirconia (Zr) 

8.9 0.31           2.05098 Nickel (Ni) 

3.8 0.3           3.8         )3O2AlAlumina ( 

2.7 0.34         0.7         Aluminum (Al) 

5    RESULTS AND DISCUSSIONS   

5.1 Validation 

The validation and the accuracy of the present approach were checked by comparing the present results and those 

found in other research work. In Table 2., the results of the variation of natural frequencies of the five types of bi-

layered functionally graded cylindrical shells with circumferential wave number n=1,2,3,4,5 having shell parameters 
(m=1, L/R=20, h/R=0.002) and material parameters at power law exponent N=5 were  compared with the results of 

Arshad et al. [12]. 

 
Table 2  

Comparison of natural frequencies (Hz) with circumferential wave number n for power law exponent N =5 with geometrical 

parameters (m=1, h/R=0.002, L/R=20) for simply supported bi-layer FGM cylindrical shells. 

Zr-Ni-SS SS-Zr-Ni SS-Ni-Zr Ni-SS-Zr Ni-Zr-SS Material 

Present Arshad 

[12] 

Present Arshad 

[12] 

Present Arshad 

[12] 

Present Arshad 

[12] 

Present Arshad 

[12] 

n 

13.5119 13.512 13.9149 13.915 13.2655 13.266 13.3218 13.322 13.6453 13.645 1 

4.5827 4.5808 4.7070 4.7113 4.4852 4.4853 4.5110 4.5108 4.6222 4.6257 2 

4.2234 4.2154 4.3923 4.4087 4.1281 4.1284 4.1509 4.1502 4.3185 4.3313 3 

7.1213 7.1114 7.4870 7.5069 6.9886 6.9889 7.0130 7.0123 7.3509 7.3665 4 

11.3608 11.35 11.9838 12.005 11.1673 11.168 11.1988 11.198 11.7587 11.775 5 

Average error = 0.08 % 
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Table 3. shows the natural frequencies of FG cylinder under different rotational speeds (from 0 to 200 rev/s). The 

natural frequencies were calculated for a FGM cylinder with material properties of Al-AL2O3 and mode numbers 

m=n=1. From the table, the columns for each rotation speed are considered, which show the forward (
fF ) and 

backward wave (
bF ) frequencies, respectively. The forward waves correspond to the decreasing frequencies and the 

backward ones corresponded to the increasing frequencies. It can be concluded from this table that there is a very 

good agreement between the present method and the reference results [18] for any rotation speeds. This is evident 

from the average errors calculated between the present method and reference results which are written in Table 3. 
 

Table 3  

Comparison of natural frequency for a rotating single layer FGM cylinder (h/R=0.01, L/R=3, N=1, n=m=1, AL-Alumina). 

  (rad/s) 
fF  (Hz) 

bF  (Hz) 

Hosseini [18] Present Hosseini [18] Present 

0 518 516.979 518 516.979 

25 493.8 492.829 542.13 541.116 

50 469.56 468.664 566.2 565.237 

100 420.91 420.293 614.16 613.434 

150 372.07 371.871 661.85 661.567 

200 323.04 323.398 709.22 709.633 

Average error = 0.16 % 

 

By confirming the accuracy of the present method for FGM rotating single layer shell and FGM bi-layered 

Cylindrical shell, free vibration of rotating bi-layered FGM cylindrical shell is considered in the model for the next 

step.  

Table 4. shows the natural frequencies of rotating bi-layered (Ni+ Alumina +SS) FGM cylindrical shell and 

single-layered (Ni+SS) rotating FGM cylindrical shells under different rotational speeds (from 100 to 300 rev/s). 

The natural frequencies are calculated for circumferential wave number n=1, 2, 3, 4, 5 with axial half-wave number 

m=1 for non-dimensional geometrical parameters L/R=6, h/R=0.002 and the power law index N=1.  

 
Table 4  

Variation of natural frequency for a rotating FGM cylinder (h/R=0.002, L/R=6, N=1, m=1). 

Material Ni - SS Ni - Alumina - SS 

  (rad/s) n fF  (Hz) 
bF  (Hz) 

fF  (Hz) 
bF  (Hz) 

100 

1 100.1401991 130.4571539 146.5772404 176.8890497 

2 35.77269753 61.22057579 52.63012126 78.06903425 

3 34.56792159 53.74863081 39.63836802 58.81210419 

4 50.49271596 65.53155008 52.12428596 67.15752278 

5 68.63007905 80.91283158 69.65166867 81.92973837 

200 

1 84.96719304 145.6014162 131.4110797 192.0348618 

2 33.24044088 84.15932636 47.80308912 98.69277564 

3 60.25946048 98.66417214 63.21518305 101.5848221 

4 98.14657459 128.2703164 99.02184604 129.1118986 

5 135.2184504 159.827155 135.7668476 160.3450902 

300 

1 69.7843282    160.7364481 116.2379858 207.1740678 

2 34.34705423 110.7828983 46.60145883 122.9655595 

3 87.66271463 145.3775427 89.77785992 147.3876114 

4 146.317858    191.6183111 146.9891929 192.1831291 

5 202.1602929 239.1811246 202.6050621 239.5276255 

 

As mentioned, the frequencies of the cylinder depend on the rotational speed and rotation direction. Indeed, 

rotation in the positive direction presents a decreasing behavior in the natural frequencies and rotation in the 

negative direction presents an increasing behavior in the natural frequencies. Hence, the natural frequencies of 

rotating cylinder versus rotational speed bifurcate into two branches as the forward and backward whirl, 

respectively. Constituent materials used for the fabrication of single-layered FGM cylindrical shells have the same 

configuration as the constituents at the inner and outer FGM layers of the bi-layered FGM cylindrical shells. It is 

observed that natural frequencies of the bi-layered FGM cylindrical shells are above the frequencies of single-

layered FGM cylindrical shells for different rotational speeds. Therefore, the addition of an intermediate layer is 

seen as being evident in the improved vibration characteristics of the shell. 
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5.2 Effect of rotation on the various mode numbers 

The variation of natural frequencies of a FGM cylinder with properties as L/R=6 and h/R=0.002 is plotted under 

rotational speed according to Fig. 3(a-c), for various longitudinal (n) and circumferential mode (m) numbers. The 

rotational speed changes between 0 and 200 rev/s. From the figure, it can be observed that there is a decrease in the 

difference of the frequency between backward and forward with increasing circumferential wave number n, while 
this difference increases with increasing rotating speed Ω. At small circumferential wave number (n), the frequency 

of the backward wave increases and that of forward wave decreases with increasing rotating speed Ω. With large 

value of n, the frequency of both backward and forward wave increases with increasing rotating speed Ω. By 

increasing the longitudinal wave number (m), the backward and forward frequencies are increased. Based on these 
figures, it can be said that there exist a substantial influence of rotating speed Ω and circumferential wave number 

n on the frequency characteristics. When rotating speed Ω is large and circumferential wave number n is small, 

these influences become more significant. It is observed that the forward and backward frequencies according to the 

first longitudinal wave 1n m  show more changes by increasing the rotational speed with respect to the other 
mode numbers. 
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Fig.3 

Variation of natural frequencies of a bi-layered FGM cylindrical shell versus rotational speed for various mode numbers (Ni-

Alumina-SS, L/R=6,h/R=0.002, N=1, 1<m<3, 1<n<3). 

5.3 Variation of natural frequencies with circumferential wave number n for different material type 

In Table 5., the results of the variation of natural frequencies of the eight types of bi-layered functionally graded 

cylindrical shells with circumferential wave number n=1,2,3,4,5 m=1 having shell parameters (L/R=6,h/R=0.002, 

N=1) for two rotation speed are presented. It can be seen from these tables that the backward and forward natural 

frequencies (Hz) of the bi-layered functionally graded cylindrical shell are directly and indirectly affected by the 

variation of rotation speed, respectively. The material type have a great impact on the backward and forward 

frequency, so that the highest frequency occurs  in Al - Alumina - Zr FGM shell and the lowest frequency occurs 

Alumina - Zr - Ni FGM shell. Increasing the rotational speed reduces the environmental wave number (n) of 

fundamental natural frequencies, but material type change does not affect it. It was also observed that in the high 

environmental wave number (n), there is a reduction in the effect of the material type on the natural backward and 

forward frequencies between all material types. 
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Table 5  

Variation of natural frequency for a rotating FGM cylinder (h/R=0.002, L/R=6, N=1, m=1). 

  

(rev/s) n fF  (Hz) 
bF  (Hz) 

fF  (Hz) 
bF  (Hz) 

fF  (Hz) 
bF  (Hz) 

fF  (Hz) 
bF  (Hz) 

Ni - Alumina - SS SS- Alumina -Ni Ni-Zr- Alumina Alumina -Zr-Ni 

100 

1 146.57724 176.88905 146.57661 176.88841 129.92425 160.23285 129.88575 160.19387 

2 52.63012 78.06903 52.62288 78.06158 46.48278 71.92321 46.49393 71.92269 

3 39.63837 58.81210 39.62574 58.79892 37.70032 56.88780 37.74335 56.90018 

4 52.12429 67.15752 52.11320 67.14552 51.57148 66.62901 51.63469 66.64249 

5 69.65167 81.92974 69.64304 81.91987 69.46053 81.77232 69.54057 81.78432 

300 

1 116.23799 207.17407 116.23735 207.17343 99.58516 190.51177 99.54716 190.47233 

2 46.60146 122.96556 46.59632 122.95977 41.94578 118.32609 41.97814 118.32364 

3 89.77786 147.38761 89.77407 147.38214 88.92946 146.60217 89.02593 146.60702 

4 146.98919 192.18313 146.98770 192.17891 146.70812 191.99804 146.86159 192.00273 

5 202.60506 239.52763 202.60540 239.52424 202.42830 239.47372 202.63614 239.47782 

 
 

Ni - Alumina - Al Al - Alumina - Ni Al - Alumina - SS Al - Alumina - Zr 

100 

1 157.04819 187.35933 157.07972 187.39119 160.67347 190.98628 170.14879 200.45824 

2 56.50788 81.94174 56.50378 81.94568 57.84981 83.29359 61.35361 86.79154 

3 40.90829 60.07039 40.88301 60.06628 41.34733 60.53160 42.53971 61.71850 

4 52.49075 67.50572 52.45033 67.49963 52.61641 67.66645 53.00450 68.04822 

5 69.77801 82.03143 69.72520 82.02559 69.83735 82.13844 70.05784 82.35130 

300 

1 126.71132 217.64531 126.74251 217.67748 130.33540 221.27438 139.81550 230.74435 

2 49.63966 125.98308 49.62060 125.98808 50.68345 127.05479 53.50493 129.85492 

3 90.35062 147.91516 90.28570 147.91357 90.48383 148.11146 91.01884 148.62285 

4 147.17767 192.30586 147.07274 192.30372 147.13304 192.36274 147.29522 192.49834 

5 202.72419 239.56250 202.58146 239.56050 202.62134 239.59925 202.72462 239.67248 

5.4 Variation of natural frequencies with circumferential wave number (n), rotation speed and power law exponent  

In Table 6., the variations of the natural frequencies (Hz) are tabulated with the circumferential wave numbers (n) at 

m=1 having geometrical parameters, L/R=20, h/R=0.002 for the four rotation speed of bi-layered functionally graded 

cylindrical shells with simply supported end conditions at power law exponents N=0.01,1,4,7. It can be seen from 

these table that there is a decrease in the forward and backward natural frequencies (Hz) of the bi-layered 

functionally graded cylindrical shell with increasing power law exponent N. Also by increasing the circumferential 

wave number (n) for each rotation speed, forward and backward frequencies decreased. Another result of this table 

is that the effect of power law exponent at large n and   are small on forward and backward natural frequencies. 

In Fig. 4, the variations of the natural frequencies (Hz) are shown with the rotation speed   at n=1 having 

geometrical parameters, L/R=6, h/R=0.002 for the three longitudinal wave number m=1, 5, 10 at power law 

exponents N=0.01, 1, 7. It can be seen from these figures that the forward and backward natural frequencies (Hz) of 

the bi-layered functionally graded cylindrical shell are indirectly affected by the variation of power law exponent N. 

Also it can be observed that the influence of power law exponent N at large longitudinal wave number m is more 

significant than that at small longitude nal wave number m. 
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Fig.4 

Variation of natural frequencies of a bi-layered FGM cylindrical shell versus rotational speed for various power law index (Ni- 

Alumina -SS, L/R=6,h/R=0.002, n=1). 

 

 
Table 6  

Variation of natural frequency for a rotating FGM cylinder (h/R=0.002, L/R=6, N=1, m=1). 

  N=0.01 N=1 N=4 N=7 

  

(rev/s) 
n fF (Hz) 

bF  (Hz) 
fF  (Hz) 

bF  (Hz) 
fF (Hz) 

bF  (Hz) 
fF (Hz) 

bF  (Hz) 

0 

1 164.3109 164.3109 161.7365 161.7365 160.2329 160.2329 159.8642 159.8642 

2 63.5073 63.5073 62.4942 62.4942 61.8983 61.8983 61.7521 61.7521 

3 31.6596 31.6596 31.0969 31.0969 30.7871 30.7871 30.7175 30.7175 

4 20.6891 20.6891 20.1184 20.1184 19.9078 19.9078 19.8955 19.8955 

5 19.6415 19.6415 18.7359 18.7359 18.5511 18.5511 18.6169 18.6169 

100 

1 149.1517 179.4633 146.5772 176.8890 145.0740 175.3850 144.7054 175.0161 

2 53.6039 79.0362 52.6301 78.0690 52.0588 77.5004 51.9187 77.3609 

3 40.0113 59.1675 39.6384 58.8121 39.4343 58.6181 39.3884 58.5747 

4 52.3468 67.3516 52.1243 67.1575 52.0370 67.0873 52.0287 67.0833 

5 69.9188 82.1580 69.6517 81.9297 69.5829 81.8846 69.5933 81.9009 

200 

1 133.9859 194.6092 131.4111 192.0349 129.9082 190.5303 129.5397 190.1613 

2 48.6797 99.5558 47.8031 98.6928 47.2910 98.1864 47.1657 98.0623 

3 63.4636 101.7975 63.2152 101.5848 63.0789 101.4692 63.0480 101.4433 

4 99.1810 129.2135 99.0218 129.1119 98.9505 129.0752 98.9398 129.0731 

5 135.9623 160.4620 135.7668 160.3451 135.6961 160.3220 135.6925 160.3303 

300 

1 118.8131 209.7486 116.2380 207.1741 114.7353 205.6690 114.3670 205.2998 

2 47.3687 123.7116 46.6015 122.9656 46.1555 122.5288 46.0466 122.4219 

3 89.9810 147.5354 89.7779 147.3876 89.6655 147.3073 89.6397 147.2894 

4 147.1457 192.2514 146.9892 192.1831 146.9114 192.1585 146.8968 192.1571 

5 202.8027 239.6060 202.6051 239.5276 202.5170 239.5122 202.5045 239.5177 

5.5 Variation of natural frequencies (Hz) with non-dimensional geometrical parameters (L/R, h/R, h/L) 

Fig. 5 shows the variation of the fundamental natural frequency with the L/R ratio. The fundamental frequencies of 

the backward and forward wave for the rotating cylindrical shell decrease rapidly with L/R ratio, and then the values 

become nearly constant. The effect of rotating speed for the large L/R ratio is greater than that for the small L/R 

ratio. 

In Table 7., the variations of the fundamental natural frequencies (Hz) are tabulated with the L/R at m=1 having 

geometrical parameters, h/R=0.002 for the two rotation speed of bi-layered functionally graded cylindrical shells 

with simply supported end conditions at power law exponents N=0.01, 1, 7. The effects of N on fundamental natural 

forward and backward frequencies for each rotation speed in high L/R ratio are less than small L/R ratio. The column 

n∗ represent the circumferential wave numbers at which the fundamental frequencies occur. It is noted that with 

increase in L/R ratio and rotation speed the n* decreased. 
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Table 7  

Variation of fundamental natural frequencies of a bi-layered FGM cylindrical shell versus L/R (Ni- Alumina -SS, h/R=0.002). 

N 0.01 1 7 
n* 

   (rev/s) L/R fF  (Hz) 
bF  (Hz) 

fF  (Hz) 
bF  (Hz) 

fF  (Hz) 
bF  (Hz) 

50 

 

1 143.7876 146.9473 140.3610 143.5645 139.3485 142.5849 10 

5 35.7969 43.3073 35.3380 42.8626 35.1053 42.6404 4 

10 18.0728 27.6283 17.8958 27.4600 17.8137 27.3844 3 

15 8.1732 20.9004 8.0243 20.7548 7.9246 20.6574 2 

200 

1 276.3176 294.2837 273.9078 291.9921 272.3549 290.5252 7 

5 69.2223 107.6031 68.8080 107.2245 68.5198 106.9614 3 

10 19.6668 70.5799 19.4458 70.3725 19.2885 70.2244 2 

15 1.3920 63.9303 0.8800 63.4184 0.5046 63.0429 1 

 

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

F
un

da
m

en
ta

l 
F

re
qu

en
cy

 (
H

z)

L/R

Forward

Backward

Ω=200 (rev/s)

Ω=20 (rev/s)

 

 

 

 

 

 

 

Fig.5 

Variation of fundamental natural frequencies of a bi-layered 

FGM cylindrical shell versus L/R (Ni- Alumina -SS, h/R=0.002, 

N=7). 

 

The variation of natural frequencies of a FGM cylinder with properties as L/R=1, 2, 3 and h/R=0.002 is plotted 

under rotational speed according to Fig. 6, for various longitudinal (m) and circumferential mode (n) numbers. The 

rotational speed changes between 0 and 200 rev/s. The forward and backward frequencies according to n=1 and m=1 
show more changes by increasing the rotational speed with respect to the other mode numbers. It can be seen from 

these figures that the forward and backward natural frequencies (Hz) of the bi-layered functionally graded 

cylindrical shell decrease with increasing L/R ratio. 
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Fig.6 

Variation of natural frequencies of a FG cylinder versus rotational speed for various mode numbers (Ni- Alumina -SS, L/R=1, 2, 

3, h/R=0.002, N=1, 1≤ m≤ 2; 1≤ n≤ 2). 
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Fig. 7 shows the variation of the fundamental frequency with the h/R ratio. There is an increase in the 

fundamental frequencies of the backward and forward wave of the cylindrical shell with increase in h/R ratio at any 

rotating speed. The effect of rotating speed for the large h/R ratio is greater than that for the small h/R ratio. 

In Table 8., the variations of the fundamental natural frequencies (Hz) are tabulated with the h/R at m=1 having 

geometrical parameters, L/R=1 for the two rotation speed of bi-layered functionally graded cylindrical shells with 

simply supported end conditions at power law exponents N=0.01, 1, 7. The effects of N on fundamental natural 

forward and backward frequencies for each rotation speed in high h/R ratio are greater than small h/R ratio. It is 

noted that with increasing h/R ratio and rotation speed the n* decreased. 

The variation of natural frequencies of a FG cylinder with properties as h/R=0.002, 0.02, 0.05 and L/R=1 is 

plotted under rotational speed in Fig. 8, for various longitudinal (m) and circumferential mode (n) numbers. The 

rotational speed changes between 0 and 200 rev/s. It is observed that the forward and backward frequencies 

according to n=2 and m=1 show more changes by increasing the rotational speed with respect to the other mode 
numbers. It can be seen from these figures that the forward and backward natural frequencies (Hz) of the bi-layered 

functionally graded cylindrical shell increase with increasing h/R ratio, and this effect for large m and n mode 

numbers is greater than for the small m and n mode numbers. 

  
Table 8  

Variation of fundamental natural frequencies of a bi-layered FGM cylindrical shell versus h/R (Ni- Alumina -SS, L/R=1). 

N  0.01 1 7 
n* 

   (rev/s) h/R fF  (Hz) 
bF  (Hz) 

fF  (Hz) 
bF  (Hz) 

fF  (Hz) 
bF  (Hz) 

50 

0.002 143.7876 146.9473 140.3610 143.5645 139.3485 142.5849 10 

0.01 267.1317 271.5061 256.4544 260.9759 254.3190 258.9516 7 

0.03 448.7643 454.5320 429.4836 435.5449 425.5841 431.8678 5 

0.05 570.5250 577.2898 547.0368 554.1646 541.6141 549.0180 4 

200 

0.002 276.3176 294.2837 273.9078 291.9921 272.3549 290.5252 7 

0.01 321.3305 341.6254 313.9685 334.7547 311.2858 332.4413 6 

0.03 462.1489 485.2495 443.1787 467.4535 439.0015 464.1662 5 

0.05 570.7997 597.8911 547.0668 575.6094 541.2278 570.8749 4 
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Fig.7 

Variation of fundamental natural frequencies of a bi-layered 

FGM cylindrical shell versus h/R  (Ni- Alumina -SS, L/R=6, 

N=7). 
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Fig.8 

Variation of natural frequencies of a FG cylinder versus rotational speed for various mode numbers (Ni- Alumina -SS, L/R=1, 

h/R=0.002, 0.02, 0.05, N=1, 1≤ m≤ 2; 1≤ n≤ 2). 

 

The variation of natural frequencies of a FGM cylinder with properties as R/L=0.25, 0.5 and h/L=0.002, 0.02, 

0.05 are plotted under rotational speed according to Fig. 9, for m=m=1. The forward and backward frequencies 
according to R/L=0.5 show more changes by increasing the rotational speed with respect to the R/L=0.25. It can be 

seen from these figures that the forward and backward natural frequencies (Hz) of the bi-layered functionally graded 

cylindrical shell increase with increasing h/L ratio. 
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Fig.9 

Variation of natural frequencies of a FG cylinder versus rotational speed for h/L(Ni- Alumina -SS, R/L=0.25, 0.5, h/L=0.002, 

0.02, 0.05, N=1). 

6    CONCLUSIONS 

By using the Sanders’ shell theory, the vibration analysis for the rotating FGM bi-layered cylindrical shell was 

investigated. The natural frequencies were compared with the previously published results for the rotating FGM 

single layer shell and the bi-layered non rotating cylindrical shells. It was observed that the proposed exact method 

yielded accurate results in comparison with the references. The backward wave frequencies were higher than the 

forward frequencies due to Coriolis effects. The higher the rotating speed the larger the gap generated between the 

backward and forward waves frequencies at any vibration mode. The addition of an intermediate layer helped to 

improve the vibration characteristics of the shell. The material type had great impact on the backward and forward 

frequency. It can be seen that the forward and backward natural frequencies (Hz) of the bi-layered functionally 

graded cylindrical shell decreased by increasing the power law exponent N. Moreover, a change in the power law 

exponent had no effect on the circumferential wave number n at which the fundamental frequencies of the shells 

occurred. The fundamental frequencies of the backward and forward wave for the rotating cylindrical shell 

decreased rapidly with L/R ratio at high rotating speed, and then the values became nearly constant. The effect of 

rotating speed for the large L/R ratio was greater than for the small L/R ratio. It can be seen that the forward and 

backward natural frequencies (Hz) of the bi-layered functionally graded cylindrical shell increased with increasing 

h/R and h/L ratios and this effect for large m and n mode numbers was greater than for the small m and n mode 
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numbers, also . The fundamental frequencies of the backward and forward wave for the rotating cylindrical shell 

increased with h/R ratio. 
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