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 ABSTRACT 

 In this paper, an upper bound approach is used to analyze the tube extrusion process 

through rotating conical dies with large mandrel radius. The material under deformation in 

the die and inside the container is divided to four deformation zones. A velocity field for 

each deformation zone is developed to evaluate the internal powers and the powers 

dissipated on all frictional and velocity discontinuity surfaces. By minimization of the total 

power with respect to the slippage parameter between tube and the die and equating it with 

the required external power, the extrusion pressure is determined. The corresponding 

results for rotating conical dies are also determined by using the finite element code, 

ABAQUS. The analytical results show a good coincidence with the results by the finite 

element method with a slight overestimation. Finally, the effects of various process 

parameters such as mandrel radius, friction factor, etc., upon the relative extrusion 

pressure are studied. 

                                               © 2015 IAU, Arak Branch.All rights reserved. 

 Keywords : Tube extrusion; Rotating conical die; Upper bound method. 

1    INTRODUCTION 

 UBE extrusion is a process in which tubes are manufactured by forcing a hollow billet through a die and the 

mandrel under high pressure. The mandrel is generally connected to the ram and moves with ram velocity. In 

extrusion process, die rotation reduces primary forming loads and improves the homogeneity of deformation [1]. To 

study the effects of the process parameters on the tube extrusion process through rotating conical dies, analytical 

solutions are preferred to the finite element method. Among various analytical methods of solutions, upper bound 

solutions are found by minimizing the total power formulated from a chosen kinematically admissible velocity field. 

Some attention has been focused on the upper bound analysis of axisymmetric extrusion (round to round) through 

rotating dies by assuming appropriate velocity fields. The so called KOBO type forming proposed by BOCHNIAK 

and KORBEL applied to extrusion of tubes and wires has demonstrated essential advantages with respect to 

monotonic forming processes [2-4]. Kim and Park studied the backward extrusion process with low die rotation to 

improve the problems of conventional backward extrusion process: the requirement of large forming machine, the 

difficulty in selecting the die material caused by high surface pressure, high cost of forming machine caused by 

improvement of noise and vibration, etc [5]. They used upper bound technique and FEM simulation. The results 

showed that the backward extrusion with die rotation is a very useful process because this process yields the 

homogeneous deformations and lower forming load. MA et al. analysed the process of forward rod extrusion 

______ 
*
 Corresponding author. Tel.: +98 831 4274530; Fax: +98 831 4274542. 

E-mail address:  hhaghighat@razi.ac.ir (H. Haghighat). 

T   
  

      

mailto:hhaghighat@razi.ac.ir


192           H. Haghighat and M.M.Mahdavi 

© 2015 IAU, Arak Branch 

 

through steadily rotating conical dies, theoretically and experimentally [6-7]. They provided required torque for 

rotating the die from an external source and also supposed that the angular velocity of the material inside the die 

changes with power relation with radius of each position in proportion to apex of virtual conic of the die. They 

inspected the effect of slippage factor and semi die angle in extrusion pressure and finally determined the optimum 

die angle. MACIEJEWSKI and MROZ analyzed the rod extrusion process through a flat die assisted by cyclic 

torsion, which was induced by a cyclically rotating die [8].  

In this study, tube extrusion process with large mandrel radius through rotating conical dies, investigated 

analytically and numerically. The material under deformation is divided to four deformation zones. A velocity field 

for each deformation zone, considering slippage parameter between material and the die, is developed and the total 

power is calculated. By minimization of the total power with respect to the slippage parameter and equating it with 

the required external power, the extrusion pressure is determined. Based on developed analytical model, for a given 

process conditions and die angular velocity, the optimum die angle and the relative extrusion pressure are derived 

and they are compared with results of the FEM simulation data. 

2    UPPER BOUND ANALYSIS  

2.1 Geometric description of deformation zones 

Schematic diagram of the tube extrusion process through a rotating conical die is shown in Fig. 1. In this figure, 

circular tube with initial outer radius oR and inner radius mR , respectively, is extruded through the conical die with 

semi-die angle   and its outer radius is reduced to fR . As shown in this figure, a moving cylindrical shaped 

mandrel with radius mR  is attached to the punch. The material under deformation in the die and inside the container 

is divided to four deformation zones, I-IV shown in Fig. 1, and they are used in upper bound analysis. A spherical 

coordinate system ( , , )r   is used to describe the position of the two surfaces of velocity discontinuity and the 

velocity in deformation zones I and II. The origin of spherical coordinate system is located at point O. The material 

inside the container along the total length L is divided into two deformation zones, zones III and IV. Zone III is 

bounded by two velocity discontinuity surfaces 2S  and 3S , mandrel surface as well as the container surface. The 

material in this zone is twisted plastically. The billet in the remaining length ( )L l is designated by zone IV. In this 

zone, the incoming material is assumed to flow horizontally as a rigid body with a velocity ov . Zone IV is separated 

from zone III by a surface of velocity discontinuity 3S . This surface is located at radial distance or  from the origin 

O , where distance OO is equal to L. A cylindrical coordinate system ( , , )r y is used to describe the velocity field in 

the deformation zones III and IV where the axial coordinate y is parallel to the extruding direction. 

For the continuity of the normal component of velocity at the exit boundaries, surface 1S , must not be circular. 

The radial position of the exit boundary, ( )fr   in Fig. 1, is given by:  
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where 1r  is value of ( )fr  at   . For simplicity ( )fr  is abbreviated to fr . 

The mathematical equations for radial positions of the surface of velocity discontinuity 2S  is given by: 
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In addition to these surfaces, there are some frictional surfaces along mandrel surface, die wall and the container 

surface, 4 9S S . 

2.2 Velocity fields in different zones 

The first step in modelling and analysing a metal forming process by use of upper bound approach is to select a 

suitable velocity field for the material which is deforming plastically.  

In zone I, the material moving in the axial direction and rotating along the die axis with constant angular velocity 

1 d  , where d  is the angular velocity of the die. The velocity field in spherical coordinate system ( , , )r   is: 

 

1cos , sin , ( sin )r f f d mU v U v U R r                   (4) 

 

1  is the circumferential slippage parameter defined as the angular velocity ratio of material at exit of conical 

die to rotating die. Slippage parameter 1  varies between 0 and 1, where the value of 1 implies that the extruded 

tube rotates at the same angular velocity as that of the die. The optimal value of 1 can be determined by minimizing 

the extrusion pressure. fv is the speed of the extruded tube and from the volume flow balance, we have 
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In zone IV, material does not deform but moves as a rigid body in the axial direction with constant velocity of 

the punch ov and we have 

 

0, 0,r y oU U U v         (6) 

                                                                                    

For deformation zone II that is surrounded by two velocity discontinuity surfaces 1S  and 2S and mandrel surface 

as well as the die surface. Assuming volume flow balance, the radial velocity rU within the deformation zone II can 

be obtained. In Fig. 1, the volume flow of the material across the surfaces 1S  at the point ( , , )or   in the radial 

direction is: 

 

cos ( )( sin )o o m odQ v r d R r d            (7) 

 

The volume flow of the material in the radial direction at the point ( , , )r    in the deformation zone is: 

 

( )( sin )r mdQ U rd R r d          (8) 

                                                                             

where angle   is the angular position of a point in the deformation zone II. Equating Eqs. (7) and (8), the radial 

velocity component in zone II can be found.  
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The same circumferential component of velocity field was employed by Ma et al. to analyze rod extrusion     

process through rotating conical dies is extended here for tube extrusion process through rotating conical dies [7]. So 

the total velocity field is described by: 
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0U      (10b) 
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For deformation zone III, using cylindrical coordinate system ( , , )r y  in Fig. 1, it is assumed that 
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where 2 ( )  is the slippage parameter (angular velocity ratio of rod at entrance of conical die to rotating die) where 

angle   is shown in Fig. 1 and varies between 0 and  . 

Eqs. (10) and (11) satisfy the incompressibility condition as well as the boundary conditions, therefore they can 

be deemed as kinematically admissible fields. 

With the velocity field, the strain rates in the deformation zone, internal power and the power consumed on the shear 

and frictional surfaces can be given in usual matter. 

The strain rates in spherical coordinates are given by : 
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where ij (with i j ) is a shear strain rate component. 

The strain rates components for deformation zone I are zero and the strain rates components for deformation 

zone II become 
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The non-vanishing strain rate for the deformed tube inside container, zone III in Fig. 1, in cylindrical coordinate 

system ( , , )r y , is determined by: 
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Fig.1 

Schematic diagram of the tube extrusion process through a 

rotating conical die, geometric parameters and its 

deformation zones. 

2.3 Internal power of plastic deformation 

The internal power dissipated in the deformation zone is given by: 
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For deformation zone II, the differential volume is: 
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2 ( sin )mdV R r r drd        (17) 

 

The internal power of deformation in zone II becomes 

 

2 2 2 2 2 2
2 0

0

4 1 1 1
( sin )

2 2 23

o

f

r

i rr r r m
r

W R r rd dr


    


                 

 

   (18) 

 

For deformation zone III the differential volume is: 
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The internal power of deformation in zone III is determined as: 
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where (1 cos )or    . 

 2.4 Shear power dissipation 

The general equation for the power losses along a shear surface of velocity discontinuity in an upper bound model 

is: 
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Equation for the power losses along the shear surfaces of velocity discontinuity 1S and 2S can be given by: 
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2.5 Frictional power dissipation                                                                                                                                                                                  

The general equation for the frictional power losses along a surface with a constant friction factor m is: 
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For the conical surface of the die, frictional surface 4S , the magnitude of the velocity difference and the 

differential surface are 
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Inserting Eqs. (27)-( 28) into Eq. (26)  and then placing into Eq. (25), gives the frictional power losses along the 

conical surface of the die as: 

 

1

3
12 2 2

4 0 3

( )2
[ ( sin )cos ] [( sin ) (1 )]

3

or fo
f d o m o m d

r

rr
W m v R r R r dr

r r

 
          

 

   (29) 

 

where dm is the constant friction factor between the material and the die. 

For frictional surface 5S  
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For frictional surface 6S  
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The frictional power losses along frictional surface 6S  can be determined by: 
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where mm  is the constant friction factor between the material and the mandrel. 

For frictional surface 7S : 
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The frictional power losses along the surface 7S  can be given by: 
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The velocity discontinuity on surface 8S and its area become 
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The frictional power losses along surface 8S  can be given by: 
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where cm is the constant friction factor between the material and the container. 

Finally, the frictional power loss along surface 9S  is: 
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where L is length of tube in the container. 

2.6 Twist moments 

In addition to the power applied by the punch, a twist moment dM  is supplied by the rotating die. To determine this 

moment, it is assumed that the friction vector mk on a point at the die-material interface is opposite of resultant 

velocity [7]. The rotational component of the resultant velocity 4V  is 4V  and it is determined by: 

 
3

4 1 3

( )
( sin ) ( sin ) (1 )

f

m d m d

r
v R r U R r

r
   


            

    

(41) 

 

The angle 4  between 4V  and 4V  is calculated by: 
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The twist moment inserted by die rotation can therefore be derived by: 
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The twist moment generates in the mandrel surfaces, 5 6,S S  and 7S  can be derived from 
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The twist moment within the container is given as: 
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As the balance among twisting moments must be maintained, the moment applied by the rotary die is balanced 

with summing up the moments caused by the circumferential frictions in the container and on the mandrel. The 

balance of the couples gives 

 

5 6 7 8dM M M M M        (48) 

 

The twisting length l can be determined by satisfying Eq. (48) with a given 1 . 

2.7 Total power  

Based on the upper bound model, the total power needed for a tube extrusion process can be obtained by summing 

the internal powers and the powers dissipated on all frictional and velocity discontinuity surfaces and by ignoring 

the overlapping between zones II and III as: 
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The total external power is given by: 

 
2 2( )ave o m o d dJ R R v M       (50) 

 

Therefore, the total upper bound solution for relative extrusion pressure is given by: 
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(51) 

 

All integrals that are presented in the power terms are evaluated by numerical integration. The total power in 

equation above is a function of semi-cone angle. The optimum semi-cone angle that minimizes the total power can 

be determined numerically. 

3    RESULTS AND DISCUSSION      

To make a comparison with the developed model, the tube extrusion process is simulated by using the finite element 

code, ABAQUS. Friction factors 0.2, 0.2c dm m   and 0.2mm   , radii 10oR mm , 8.19fR mm , 2mR mm , 
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extruding speed 1 secov mm are adopted during the analytical solution and the FEM simulation.  

A three-dimensional model is used for FEM analyses. The billet model is meshed with C3D8R elements. Punch, 

mandrel, container and die are assumed as rigid bodies, since they are not meshed. However, sufficiently fine 

meshing is essential in material, which undergoes plastic deformation. The die model is able to rotate along its axis 

of symmetry and the punch model is loaded by specifying displacement in the axial direction. Also, container model 

is fixed by applying displacement constraint on its nodes. Fig. 2(a) illustrates the mesh used to analyze the 

deformation in extrusion of the tube through conical die with 20   and 0.5 / secrad  . Deformed model of the 

tube is shown in Fig. 2(b). As it is expected, the material is twisted in the die and inside the container. 

 

 
(a) 

 
(b) 

Fig.2 

(a) The finite element mesh, (b) The deformed mesh of tube in extrusion process through rotating conical die. 

 

In Fig. 3, the relative extrusion pressure for different angular velocity of the die, obtained from the upper bound 

solution is compared with the FEM simulation results. The results show a good agreement between the upper bound 

data and the FEM results.  

This figure also shows that with increasing of the angular velocity of the die the relative extrusion pressure is 

decreased but this reduction saturates at a high die angular velocity.  

In Fig. 4, the relative extrusion pressure for different semi-die angle obtained from the upper bound solution is 

compared with the FEM simulation results. The results show a good agreement between the upper bound data and 

the FEM results. As it is expected, there is an optimum die angle in which the extrusion pressure is minimized. 
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Fig.3 

Comparison of analytical relative extrusion pressure with 

FEM data for different angular velocity of the die.  
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Fig.4 

Comparison of analytical relative extrusion pressure with 

FEM data for different semi-die angles.  
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The effect of mandrel radius on the relative extrusion pressure is illustrated in Fig. 5. It is seen that the extrusion 

pressure is increased by increasing the mandrel radius.  

The effect of angular velocity on the relative extrusion pressure for different values of die friction factors is 

shown in Fig. 6. It is observed that the extrusion pressure is decreased by increasing the die angular velocity and 

decreasing the die friction factor but this reduction saturates at a high die angular velocity.  
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Fig.5 

Effect of mandrel radius on the relative extrusion pressure 

for
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Fig.6 

Effect of angular velocity of the die on the relative extrusion 

pressure for different friction factors of die. 
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The effect of die angle on the relative extrusion pressure for different values of die friction factors is shown in 

Fig. 7. As it is expected, for a given value of die friction factor, there is an optimal die angle, which minimizes the 

extrusion pressure and the optimum die angle increases when friction factor of die increases. This figure also shows 

that an increase in the friction factor of die tends to increase the extrusion pressure. 
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Fig.7 

Effect of semi-die angle on the relative extrusion pressure 

for different friction factors of die. 
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The effect of angular velocity on the relative extrusion pressure for different values of the tube entrance speed is 

shown in Fig. 8. It is observed that the extrusion pressure is decreased by decreasing the die angular velocity and 

decreasing the entrance speed but this reduction is low at high entrance speeds.  
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Fig.8 

Effect of angular velocity of the die on the reduction of 

extrusion pressure for different extruding speeds. 
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5    CONCLUSIONS 

In this research, an upper bound model for analysis of the tube extrusion process through rotating conical dies was 

developed and it was concluded that  

1. The analytical results by the analytical method showed a good coincidence with the results by the FEM 

with a slight overestimation.   

2. With increasing of the angular velocity of the die, the relative extrusion pressure was decreased but this 

reduction saturates at a high die angular velocity.  

3. The relative extrusion pressure was increased by increasing the mandrel radius.  

4. The relative extrusion pressure was decreased by decreasing the die friction factor but this reduction 

saturates at a high die angular velocity. 

5. For a given value of die friction factor, there was an optimal die angle, which minimizes the extrusion 

pressure and the optimum die angle increases when friction factor of die increases.  

6. Twisting length of the material inside the container decreases when friction factor of die increases.  

7. The relative extrusion pressure is decreased by decreasing the entrance speed but this reduction is low at 

high entrance speeds.  
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