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ABSTRACT 
Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by 
mechanical forces. Therefore, development of mechanical properties of these materials is 
important. Neural network technique is a useful method which can be used to obtain cell 
deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in 
the needle injection process, deformation and geometry of cell under external point-load is a key 
element to understand the interaction between cell and needle. In this paper, the goal is the 
prediction of cell membrane deformation under a certain force and to visually estimate the force of 
indentation on the membrane from membrane geometries. The neural network input and output 
parameters are associated to a three dimensional model without the assumption of the adherent 
affects. The neural network is modeled by applying error back propagation algorithm. In order to 
validate the strength of the developed neural network model, the results are compared with the 
experimental data on mouse oocyte and mouse embryos that are captured from literature. The 
results of the modeling match nicely the experimental findings. 
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1    INTRODUCTION 

IVING cells are always exposed to mechanical stimulations in the human body. Often, it is important for us to 
investigate how cells mechanically react to physical loads and how the distribution and transmission of these 

mechanical signals are ultimately converted to chemical and biological responses in the cells [1]. Consequently, to 
understand the cell functions and behavior, the relationship between cellular deformations and mechanical forces in 
living cells is important. In order to study the biomechanical properties of biological cells, there has recently been 
extensive concentration in the literatures. Because of the heterogeneous nature of these biological cells, different  
experimental techniques are used and devised to probe the response of cells such as: atomic force microscopy 
(AFM) [2, 3], laser/optical tweezers [4], micro plate stretcher [5], micropipette  aspiration [6],tapered micropipette 
[7]. These different experimental techniques have led to a variety of different mechanical models developed by 
various researchers to interpret and explain the experimental data such as: cortical shell liquid core models (or liquid 
drop models), solid models, fractional derivative model, cytoskeletal models for adherent cells, spectrin-network 
model for erythrocytes [1]. 

Artificial neural networks (ANNs) are computational networks that try to simulate the processes that happen in 
the human brain and nervous system during pattern, identification, information filtering and functional controls [8]. 
In conjunction with the statistical approaches, this manner is one of the most powerful modeling techniques. In order 
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Minimizing of an error function is the goal of this stage and during this minimization procedure, connection 
weights and biases are set. In this process, the outputs must be equal or close to targets. Using series of data sets that 
captured from actual system's behavior is the most convenient method for training a neural network. The learning 
algorithm may be categorized into two different paradigms called: supervised learning and unsupervised learning. In 
supervised learning, which is used in this paper, an external teacher is required that can provide an adequate 
mapping knowledge between the input and output signals. For each given input, the teacher provides the learning 
system with desired outputs which is memorized by minimizing the discrepancy between the neural network outputs 
and actual outputs. In this method, an optimization technique such as least square technique is used to minimize the 
overall evaluation function. If we use least square method as an optimization method for neural network while 
evaluation function is discrepancies between actual output signals and appropriate network output's signals, this 
method is called "delta method" or "error back propagation method" that is implemented in this work [13], [14]. On 
the other hand, unsupervised learning does not rely on an external teacher for guiding the learning process. The 
teacher can be considered as a built in mechanism to learn method [14]. Improvements in better converges of neural 
network model depends on better selection of initial conditions such as learning momentum, learning rate, initial 
weights and thresholds, increasing the number of layers and increasing the number of neurons in each layers [15]. 
For example, in order to avoid the local minimum and reach to global minimum, learning rate can play an important 
role [15], [13]. 

4    DATA COLLECTION 

The input neural network parameters associated with the indentation experiment are dimple radius, dimple depth, 
radius of the semi-circular curved surface of the cell and the external force which exerted to the cell that are denoted 
by a, w, R and f, respectively. These parameters obtained from two sets of data associated to mouse oocyte and 
mouse embryos. The ranges of input variable data used for the model are shown in Table 1 (for mouse oocyte) and 
Table 2 (for mouse embryos). These tables are exerted from experimental observations by YU SUN and his co-
workers [16]. These experiments are performed statically; therefore a static neural network structure is implemented. 

5    ARCHITECTURE OF THE NEURAL NETWORK MODEL  

Architecture of the neural network model is summarized in Table 3. The model includes an input layer, a single 
hidden layer and an output layer as shown in this table. In this model, six neurons are used in hidden layer and one 
neuron in output layer. The initial weights and thresholds are generated randomly. Since the normalizing operation 
depends on the selected transfer function, which adjusts the sum of the weights into an output, we normalized the 
data between -1 and 1for hyperbolic sigmoid transfer function. Inputs and outputs are normalized as follows: 
 
 
Table 1 
Input variable data ranges used for mouse oocyte 
Input variable Mouse oocyte  
 Minimum value Maximum value 
Indentation's force (µN)   0 2.172   07.211 
Dimple depth(µm) 10.51 22.00 
Dimple radius (µm) 13.35 18.20 
Radius of semi-circular curves(µm) 11.96 15.80 
 
 
Table 2 
Input variable data ranges used for mouse embryos 
Input variable Mouse oocyte  
 Minimum value Maximum value 
Indentation's force (µN)   0 1.052 13.390 
Dimple depth(µm) 11.754 25.155 
Dimple radius (µm) 18.375 23.079 
Radius of semi-circular curves(µm)   9.650 12.76 
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Table 3 
Key neural network model parameters for back propagation algorithm 
Key parameter Value 
Layers 3 
Hidden layer 1 
Neurons in hidden layer 6 
Neurons in input layer 2 
Neurons in output layer 1 
Learn rule delta rule 
Transfer function Hyperbolic sigmoid 
Learning momentum 0 
Learning rate 0.15 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 
Comparison of the predicted force and experimental 
data versus the dimple depth for mouse oocyte. 

 
 

min

max min
n

x x
x

x x

-
=

-
 (4) 

 
In the first step, the network is trained to adjust the weights and thresholds between layers until output of 

network are close to actual output and in the second step we used these adjusted weights and thresholds in our 
network model. The error calculated in the output layer is the difference between the network output and the actual 
output and for the model is the half of mean square (HMS) as follows: 
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6    RESULTS AND DISCUSSIONS 

In order to predict the dimple depth due to an arbitrary exerted force on mouse oocyte and mouse embryos two sets 
of networks are designed and tested. In these simulations, indentation force acts as one of inputs of the network and 
the dimple depth is predicted in the output of the network .In a similar manner, to predict indentation force for a 
certain dimple depth in mouse oocyte and mouse embryos also two sets of networks are designed. In these models, 
the dimple depth is used as one of network’s input while the indentation force would be the output of the network. 
Plots of the predicted force versus dimple depth in comparison with the experimental data for mouse oocyte and 
mouse embryos are shown in Figs. 4 and 5, and their related error values versus the number of epochs (each time of 
network’s training) also shown in Figs. 6 and 7 , respectively. 
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Fig. 5 
Comparison of the predicted force and experimental 
data versus the dimple depth for mouse embryos. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 
Error values versus the number of epochs in the 
prediction of indentation force for mouse oocyte. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 
Error values versus the number of epochs in the 
prediction of indentation force for mouse embryos. 

 
 

According to Fig. 6, the smallest error value after 30000 epochs has reached to 0.0015 for mouse oocyte and this 
value, in Fig. 7, has reached to 0.0051 after 40000 epochs for mouse embryos. There is not any gap between the 
experimental data and neural network's output and good prediction occurs in both cases (Figs. 4 and 5). Plots of 
predicted dimple depth versus indentation force in comparison with the experimental data for mouse oocyte and 
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mouse embryos are also shown in Figs. 8 and 9, and their related error values versus the number of epochs are 
shown in Figs. 10 and 11, respectively. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 
Comparison of the predicted dimple depth and 
experimental data versus indentation force for mouse 
oocyte. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 
Comparison of the predicted dimple depth and 
experimental data versus indentation force for mouse 
embryos. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 
Error values versus the number of epochs in the 
prediction of dimple depth for mouse oocyte. 
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Fig. 11 
Error values versus the number of epochs in the 
prediction of dimple depth for mouse embryos. 

 
 

In Fig. 10, the error value has decreased to 0.0014 after 50000 epochs for mouse oocyte and this value for mouse 
embryos, in Fig. 11, has reached to 0.0026 after 70000 epochs. The very good agreement between the experimental 
data and neural network's output also occurs in prediction of dimple depth for mouse oocyte and mouse embryos 
(Figs. 8, 9). Consequently, the accuracy of ANN model in estimation is visibly confirmed in these figures. 

In summary, ANN has the ability to accurately predict the mechanical behavior of biological cells .It seems that 
this model could be extended to other experimental methods in biological cell studies .By means of this model, the 
need for detailed experimental analysis of the processes can be reduced drastically. Since the governing equation 
between measured force and dimple depth (Eq. (1)) is somewhat complex and subject to variations due to parametric 
uncertainties, neural network modeling has been shown to be potentially capable of modeling such problems. 

7    CONCLUSIONS 

In this paper, the neural network model is applied to extract and estimate mechanical behaviors of mouse oocyte and 
mouse embryos. In order to learn the underlying complex relationships between input and output cell membrane 
geometries of normalized experimental data acquired from published literature, the neural network model is 
implemented and trained. In one hand, the changes of the cell membrane dimple depth under a different indentation 
forces is predicted and on the other hand, indentation force is estimated by the means of changing in the dimple 
depth. Since the biological cell modeling studies are very challenging, the neural network modeling is used in this 
study because of its ability in mimicking complex input-output relationships. The obtained mechanical properties 
using the neural network model are in excellent agreement with the experimental observations. 
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