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 ABSTRACT 

 In this paper the vibration of a spinning cylindrical shell made of functional graded material is 
investigated. After a brief introduction of FG materials, by employing higher order theory for shell 
deformation, constitutive relationships are derived. Next, governing differential equation of 
spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. 
Making use of the principle of minimum potential energy, the characteristic equation of natural 
frequencies is derived. After verification of the results, the effect of changing different parameters 
such as material grade, geometry of shell and spinning velocity on the natural frequency are 
examined. 
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1    INTRODUCTION 

HE concept of functionally gradient materials (FGMs) was first introduced in 1984 by a group of materials 
scientists in Japan when they were in a process of preparing thermal barrier materials [1, 2]. Since then, FGMs 

have attracted much of the interests as a heat-shielding material. FGMs are made by combining different materials 
using powder metallurgy methods [3]. They possess property variations in the constituent volume fractions that lead 
to continuous change in the composition, microstructure, porosity, etc. as well as results in gradients in the 
mechanical and thermal properties [2, 4-7]. Studies on FGMs have been extensive but are largely confined to 
analysis of thermal stress and deformation [8-12]. Related to the vibration of cylindrical shells numerous researches 
were conducted. Many of these studies are for isotropic and composite shells. Arnold and Warburton [10], Ludwig 
and Krieg [11], Chung [12], Soedel [13], Forsberg [14], Bhimaraddi [15], Soldatos and Hajigeoriou [16], Soldatos 
[17], Lam and Loy [18], Loy and Lam [19], and Loy, Lam and Shu [20] are among those who have carried out 
studies on the vibration of cylindrical shells. Nevertheless, associated with the vibration of cylindrical shells made of 
FG material only one work is reported [21] in which the bases of vibration analysis were on the usage of classical 
theory. To move one step further on this analysis, in this work the higher order shear deformation theory (HSDT) is 
employed on the spinning shells which have various applications in the industry.  

In this paper, the vibration of a spinning cylindrical shell made of functional graded material (FGM) is 
investigated. The considered functionally graded material is composed of stainless steel and nickel where the 
volume fractions follow a power-law distribution. The objective is to study the frequency characteristics, the 
influence of the constituent volume fractions, and the effects of the configurations of the constituent materials on the 
natural frequencies. A functionally graded cylindrical shell is essentially an inhomogeneous shell consisting of a 
mixture of isotropic materials. The analysis of the functionally graded cylindrical shell is carried out using higher 
order theory for shell deformation and solved using Hamilton’s principle method.  
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1    FUNCTIONALLY GRADED MATERIALS 

One of the most advantages of the FGM over other engineering materials is its superior resistant against harsh 
temperature condition. The combined material properties of such a material can be expressed as [21] 
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in which, PF can be any effective FGM property, Pmi is a parameter depending on temperature and Vmi is a volume 
fraction for ith material. Moreover, T represents the temperature (°K) and z is the coordinate along the body 
thickness. The parameter for each material usually is expressed as [21] 
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in which P0, P1, P2, P3, and P are some temperature dependent parameters. In order to model the property 
distribution, according to Voigt model which assumes that the strain is the same in the ceramic and in the metal, the 
FGM mechanical property is expressed as 
 

 
in which P is the effective FGM property, indices c and m, stand for ceramic and metal respectively, and V 
represents the FGM volume fraction subjected to the law 
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For a cylindrical shell with thickness h, the variation of the volume fraction of phases can be expressed 
according to the following power law in terms of thickness z 
 

 
For the mechanical properties of the cylindrical shell either of following power law models can be used 

 

 
For example, the Young’s modulus for functionally graded (FG) cylindrical shell with N=0.5 can be expressed as 

 

 
This means that the cylindrical shell at z=h/2 is completely metal and in the z=-h/2 it is completely ceramic. In 

other words, shell starts from inside surface by ceramic material and becomes completely metal at the outside wall. 
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2    GOVERNING EQUATIONS 

Consider a cylindrical spinning shell made of FGM, with length L, radius R, and thickness of h, spinning around its 
symmetric axis with constant angular velocity of Ω (see Fig. 1). In vibration analysis of shell in this work, higher 
order shear deformation theory is considered. Based on the assumptions prevailing on this theory, differential 
equations are derived. For a point located somewhere on the spinning shell and referred to the coordinate system 
shown in Fig. 1, the position and velocity of such point are [22] 
 

 
in which i, j and k are unit vectors in the cylindrical coordinates of x,θ and z, respectively. Moreover, Ω is shell 
rotational speed, u, v and w are displacement components in x,θ and z directions, respectively and ,,vu and w  are 
time derivative of displacement components. As it was mentioned, in this study we use the Reddy higher order 
theory [23] assumptions in which the general form of displacement components are defined as 
 

 
in which, u0, v0, w0, βx, βθ, μx, μθ, ψx, and ψθ are defined as 
 

 
Moreover, based on this theory, we further have 

 

 
Since the cylindrical shell has a thin wall, the strain components can be defined as 

 
 

 
 
 
 
 
 
Fig. 1 
Spinning cylindrical shell, geometry and 
coordinates. 
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where 
 

 
Furthermore, by employing Hook’s law one can easily calculate the following forces (normal and shear) and 

moments (bending and torsional) all per unit of length as 
 

 
in which Ni, Mi, Pi, Qi and Si are system of forces or moments and can be represented in matrix form as 
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Furthermore, related to shear terms in the Hook’s law, one can obtain the following shear forces and bending 

moments due to shear forces (all per unit of length) as 
 

 
in which 
 

 
in which the elements of [S] and [X] matrices i.e., Aij, Dij, Eij, Fij and Hij are defined as 
 

 
It should be mentioned that for the isotropic materials the elements of Qij (i,j = 1,2,6) matrix turned to be as 
 

2.1 Boundary conditions 

In this study the boundary condition of both ends are taken to be simply supported. Based on this type of boundary 
condition, following admissible displacement field for any point on the mid-plane surface is given by 
 

0

0

( , , )   sin  cos ( )

( , , )   cos  sin ( )

mπx
u x t A nθ ωt

L
mπx

v x t B nθ ωt
L

θ

θ

= +

= +
 

 

0 ( , , )   cos  cos ( )mπx
w x t C nθ ωt

L
θ = +  (19) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

°°°°°°
°°°
°°°

°°°°°°
°°°
°°°

°°°°°°
°°°
°°°

=

666666

221222122212

121112111211

666666

221222122212

121112111211

666666

221222122212

121112111211

][

HFE

HHFFEE

HHFFEE

FDB

FFDDBB

FFDDBB

EBA

EEBBAA

EEBBAA

S
 

[ ] { }sXT ε∗=}{  (16a) 

{ }
{ } ],,,[

],,,[
11
xzzxz

T
S

xx
T

kk

SSQQT

θθθ

θθ

εεε °°=

=
 

[ ]
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

55545554

54445455

55544454

54445455

FFDD

FFDD

DDAA

DDAA

X  
(16b) 

∫−=
2/

2/

6432 d ),,,,,1(),,,,,(
h

h
ijijijijijijij zzzzzzQHFEDBA  (17) 

ν

ν
ν

ν

22

1

1

665544

212

22211

+
===

−
=

−
==

E
QQQ

E
Q

E
QQ

 (18) 



164                   M. Mehrparvar 
 

© 2009 IAU, Arak Branch 

( , , )   sin  cos ( )

( , , )   cos  sin ( )

x
mπx

x t D nθ ωt
L

mπx
x t E nθ ωt

Lθ

β θ

β θ

= +

= +
 

 
In Eq. (19), the coefficients A, B, C, D, and E represent the magnitude of the vibration amplitude in the 

aforementioned directions. By employing energy method i.e., defining the kinetic energy, internal energy (due to 
existing stresses) and work done by external forces of the system and imposing the Hamilton principle, differential 
equation of the motion can be obtained. The variational form of the functional (potential energy) is expressed as 

 

 
in which T, U and W represent the kinetic energy, internal energy and work done by external forces, respectively. 
For the geometry under consideration, i.e. cylindrical shell, the kinetic energy is defined by 
 

 
in which ρth=ρ, i.e., ρt is the density per unit length. Substituting Eq. (8) into Eq. (21) satisfy the following equation 
 

 
Related to the internal energy, we break it into two parts; i.e. strain energy due to centrifugal force 
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ρθ which is shown by Uh and defined as [22] 
 

 
and shell strain energy due to internal stresses shown by Uε is defined by 
 

 
After substituting Eqs. (22-24) into Eq. (20), the equations of motion is obtained 

 

 
Now by setting the determinant of above linear algebraic equation to zero, the characteristic equation of natural 

frequencies which is an equation of order tenth in ω is obtained 
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where λi (i=0,1,…10) in Eq. (26) are all functions of elements of [C] matrix. 

3    RESULTS AND DISCUSSIONS 

By solving Eq. (26), natural frequencies of spinning cylindrical shell can be determined. Table 1 lists the value of 
different parameters such as E, ν and ρ of stainless steel and nickel part of the FG material. The result of solving Eq. 
(26) i.e. natural frequency vs. wave number n, for different values of volume fraction power N, L/R=20, h/R=0.05, 
Ω=50 (rps) and m=1 is listed in Table 2. It should be mentioned that the values under NSS and NN columns on this 
table represent the natural frequency of the cylindrical shell made of only stainless steel or only nickel, respectively. 
If we just change the value of h/R from 0.05 to 0.002 which means for reducing the thickness 25 times less and 
keeping the other parameters unchanged, the results of natural frequencies vs. wave number are listed in Table 3. 
The pictorial variations of the natural frequencies given in Tables 2-3 are shown in Figs. 2-3. As it is seen from 
Tables 2-3, the variation of natural frequency for different values of volume fraction from 0.5 to 20, has only a 
discrepancy of about 2.3% and the highest value for the natural frequency in this range belongs to the case of 
isotropic state made of stainless steel (NN=0). The lowest value for the natural frequency in this range belongs to the 
case of isotropic state made of ceramic (NSS=0). It can be verified that for the FG material of first kind, by increasing 
the value of N, the natural frequency approaches to the case of NN i.e. an isotropic media made of nickel which is an 
indication of reduction of natural frequency. Referred to Fig. 3, it can be noticed that for a thin cylindrical shell the 
natural frequency has its minimum value for n=2 and 3, a condition which compared to Fig. 2 is created due to 
thinness (h/R<<1) of the shell. 

Now, let us calculate the values of the natural frequency while h/R is changing for different values of volume 
fraction under condition of L/R=20, Ω=50 (rps) and m=1. The result of this variation is given in Table 4. Moreover, 
the given results in Table 4 are converted into different curves depicted in Fig. 4.  
  
Table 1 
Mechanical properties of FGM at T=300 K [21] 
Coefficients Stainless Steel    Nickel   
 E (N m-2) ν ρ (kg m-3)  E (N m-2) ν ρ (kg m-3) 
P0 201.04×109 0.3262 8166  223.95×109 0.3100 8900 
P-1 0 0 0  0 0 0 
P1 3.079×10-4 -2.002×10-4 0  -2.794×10-4 0 0 
P2 -6.534×10-7 3.797×10-7 0  -3.998×10-9 0 0 
P3 0 0 0  0 0 0 
 2.07788×1011 0.317756 8166  2.05098×1011 0.3100 8900 
 
 
Table 2 
Natural frequency vs. wave number n, for different values of volume fraction power N, (L/R=20, h/R=0.05, Ω=50 (rps) and m=1) 

 

N=20 N=10 N=5 N=1 N=0.7 N=0.5 NN=0 NSS=0 n 

   12.887     12.903     12.91     13.124     13.182      13.234     12.806     13.461 1 

    31.79     31.86     31.799     32.42     32.461      32.691     31.592     33.385 2 

    88.692     88.822     88.998     90.442     90.842      91.208     88.156     92.89 3 

  169.72   169.798   170.479   173.249   174.019    174.719   168.879   177.949 4 

  273.799   273.959   275.619   280.089   281.319    282.459   273.029   287.679 5 

  402.719   403.32   404.249   410.809   412.619    414.281   400.45   422.04 6 

  552.959   554.47   556.339   565.349   567.849    570.139   551.109   580.669 7 

  727.418   728.52   731.865   743.708   746.988    750.008   724.97   763.868 8 

  926.027   927.189   931.037   946.117   950.277   954.127   922.287   971.737 9 

1146.36 1149.46 1153.46 1172.06 1177.26 1182.06 1142.56 1203.86 10 
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Table 3 
Natural frequency vs. wave number n, for different values of volume fraction, N (L/R=20, h/R=0.002, Ω=50 (rps) and m=1) 

 

N=20 N=10 N=5 N=1 N=0.7 N=0.5 NN=0 NSS=0 n 

12.815 12.829 12.887 13.1 13.158 13.21 12.783 13.437 1 
  4.3495   4.3564   4.3798   4.453   4.4324   4.4888   4.342   4.565 2 
  4.0256   4.0333   4.0571   4.1249   4.1429   4.1591   4.0169   4.2313 3 
  6.7686   6.7816   6.8211   6.9344   6.9651   6.9932   6.7537   7.121 4 
10.867 10.888 10.95 11.13 11.179 11.225 10.844 11.431 5 
15.98 16.01 16.101 16.364 16.436 16.503 15.946 16.806 6 
22.037 22.077 22.202 22.564 22.664 22.755 21.99 23.173 7 
29.053 29.107 29.271 29.746 29.878 29.998 28.992 30.548 8 
37.6185 37.6855 37.8945 38.4995 38.6655 38.8185 37.5395 39.5185 9 
45.935 46.019 46.277 47.027 47.233 47.423 45.838 48.29 10 
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Fig. 2 
Variation of the natural frequency vs. n, 
wave number for different values of volume 
fraction L/R=20, h/R=0.05, Ω=50 (rps) and 
m=1. 
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Fig. 3 
Variation of the natural frequency vs. n, 
wave number for different values of volume 
fraction L/R=20, h/R=0.002, Ω=50 (rps) and 
m=1. 

 
 

As can be seen from Fig. 4, the natural frequency increases more or less in a linear fashion up to h/R=0.024 and 
then it decreases a bit and remains unchanged afterwards. This trend is observed for all sort of different FG 
materials. In a parallel analysis, the values of the natural frequency while L/R is changing for different values of 
volume fraction and wave number under condition of h/R=0.002, Ω=50 (rps) and m=1. The result of such analysis is 
given in Table 5 and also depicted in Fig. 5. Related to Figs. 4 and 5, one can realize that the natural frequency of a 
short cylindrical shell of FG material is higher than the longer one. In other words, by reducing the value of L/R, the 
natural frequency of a cylindrical shell increases. By setting the value of L/R=20, h/R=0.05, n=1, m=1, the values of 
natural frequency of cylindrical shell for different FG materials are obtained while the spinning speed of the shell 
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changes. The result of such calculation is listed in Table 6. By close examination of numbers in any specific column 
in this table, one can deduce that little variations exist. In other words, any variation in the spinning speed has 
insignificant effect on the natural frequency of the cylindrical shell made of FG material. This finding is consistent 
with the fact that the natural frequency is not a function of excitation frequency but rather function of intrinsic 
properties such as structural mass and stiffness of the body. To validate the accuracy of our analysis, the results of 
first ten natural frequencies for simply supported cylindrical shells based on higher order shear deformation theory 
(HSDT) and classical shell theory (CST) are compared with Loy et al. [21], when L/R=20, h/R=0.01, ν= 0.3, (see 
Table 7). Another comparison is made with work of Arnold and Warburton [10] for two specific natural frequencies 
but different wave numbers (see Table 8). 
 
 
Table 4 
Natural frequency vs. h/R for different values of volume fraction N, L/R=20, Ω=50 (rps) and m=1 

N=20 N=10 N=5 N=1 N=0.7 N=0.5 NN=0 NSS=0 n h/R 

   2.63190    2.63820    2.64720    2.69190   2.70360    2.71410    2.62170    2.75990 3 0.001 

   5.22080    5.23960    5.25060    5.33860   5.36170    5.38240    5.20130    5.47220 2 0.005 

   6.05970    6.08730    6.09490    6.19690    6.22360    6.24760    6.03610   6.3530 2 0.007 

   7.53910    7.56740    7.58340    7.70970   7.7430    7.77310    7.50880     7.90630 2 0.01 

  13.0940   13.110 13.1170 13.3310 13.3890 13.4410 13.0130 13.6680 1 0.02 

  13.080 13.0960 13.1030 13.3170 13.3750 13.4270 12.9990 13.6540 1 0.03 

12.8870 12.9030   12.910 13.1240 13.1820 13.2340 12.8060 13.4610 1 0.05 
 

 
 
Table 5 
Natural frequency vs. L/R for different values of volume fraction N, h/R=0.002, Ω=50 (rps) and m=1 

N=20 N=10 N=5 N=1 N=0.7 N=0.5 NN=0 NSS=0 n L/R 

   418.27 419.93 420.7 427.72 429.56 431.22 416.64 438.46 20 0.2 
166.73 167.34 167.7 170.51 171.25 171.91 166.08 174.81 15 0.5 
  82.786   83.082   83.268   84.665   85.031   85.36   82.463   86.801 11 1 
  40.997   41.051   41.237   41.93   42.112   42.275   40.836   42.992 8 2 
  16.01   16.07   16.103   16.374   16.445   16.508   15.948   16.786 5 5 
    8.1542     8.1763     8.2023     8.3394     8.3755     8.4081     8.1213     8.5525 4 10 
    4.2633     4.0489     4.1911     4.1749     4.1569     4.0891     4.0653     4.0576 3 20 
    1.4015     1.4088     1.4098     1.4335     1.4398     1.4455     1.3957     1.4708 2 50 
    0.5261     0.5272     0.5288     0.53761     0.54     0.5422     0.5245     0.5515 1 100 

 

 
 
Table 6 
Natural frequency vs. spinning speed Ω, for different values of volume fraction N, L/R=20, h/R=0.05, m=1, n=1 

N=20 N=10 N=5 N=1 N=0.7 N=0.5 NN=0 NSS=0 Ω 
31.876 31.886 31.902 32.322 32.465 32.694 31.596 33.190 5 
31.875 31.886 31.901 32.321 32.465 32.694 31.595 33.190 10 
31.875 31.885 31.901 32.321 32.464 32.693 31.594 33.189 15 
31.873 31.884 31.900 32.320 32.463 32.692 31.593 33.188 20 
31.87231.884 31.90032.32032.46232.692 31.592 33.188 30 
31.871 31.883 31.899 32.319 32.462 32.691 31.592 33.187 40 
31.871 31.883 31.899 32.319 32.461 32.691 31.591 33.187 50 
31.870 31.882 31.898 32.318 32.460 32.690 31.591 33.186 100 
31.869 31.881 31.897 32.318 32.460 32.689 31.590 33.186 150 
31.868 31.880 31.897 32.317 32.459 32.689 31.589 33.176 200 
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Fig. 4 
Variation of the natural frequency vs. 
h/R, for different values of volume 
fraction L/R=20, Ω=50 (rps) and 
m=1. 
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Fig. 5 
Variation of the natural frequency vs. L/R 
for different values of volume fraction 
h/R=0.002, Ω=50 (rps) and m=1. 

 

In both of these cases ER /)1( 2 ρνωξ −= . While vibrating analysis of simply supported FG cylindrical shells 
composed of stainless steel and nickel with its properties changing in the thickness-wise direction according to a 
volume fraction power-law, let us consider the effect of the changing the constituent volume fractions Vf and see 
how does it affect the FGM configuration. This can be done by varying-simultaneously-the volume fractions of the 
stainless steel and nickel, which is taking care of by changing the value of the power-law exponent N. The effects on 
the FGM configuration are studied by studying the frequencies of two FG cylindrical shells i.e. Type-I FG 
cylindrical shell and Type-II FG cylindrical shell. Type-I FG cylindrical shell has nickel on its inner surface and 
stainless steel on its outer surface and Type-II FG cylindrical shell has stainless steel on its inner surface and nickel 
on its outer surface. Figs. 6 and 7 show the variations of the volume fractions Vf of nickel and stainless steel, in the 
thickness-wise direction z for Type-I and Type-II FG cylindrical shells, respectively. 
 
 
Table 7 
Comparison of obtained first ten natural frequencies with different methods (L/R=20, h/R=0.01, ν = 0.3) 

 

n Loy et al. [21] HSDT CST 
1 0.016101 0.016106 0.016104 
2 0.009382 0.009387 0.009389 
3 0.022105 0.022108 0.022110 
4 0.042095 0.042097 0.042099 
5 0.068008 0.068010 0.068011 
6 0.099730 0.099732 0.099734 
7 0.137239 0.137243 0.137244 
8 0.180527 0.18053 0.180532 
9 0.229594 0.229598 0.2296 
10 0.284435 0.284439 0.284443 
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Table 8 
Comparison of obtained results with different methods (L= 8 in, R=2 in, h=0.1 in, E= 30×106 lbf-in-2, ρ = 7.35×10-4 lbf-s2in-4)  
 

CST HSDT Arnold and Warburton [10] m 
  2050.7 20549.5   2046.8 1 (n=2) 
  5643.3   5640.7   5637.6 2 
  8941.3   8939.3   8935.3 3 
11416.9 11410.9 11405 4 
13262.9 13258.9 13245 5 
14799.6 14789.3 14775 6 
  2204.0   2201.9   2199.3 1 (n=3) 
  4052.0   4049.3   4041.9 2 
  6633.3   6627.1   6620 3 
  9140.6   9137.5   9124 4 
11378.8 11370.2 11357 5 
13411.9 13401.9 13384 6 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6 
Variation of volume fraction of nickel in the thickness-wise 
direction z, Type I. 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 7 
Variation of volume fraction of Stainless Steel in the thickness-
wise direction z, Type II. 

 
The influence of the value of N, which affects the constituent volume fraction, can be seen from the tables. As N 

increased, the natural frequencies decreased. The decreased in the natural frequencies from N=1 to N=15 is about 
2.3% at n=1 and about 2.4% at n=10. The natural frequencies approach those of NSS when N is small and they 
approach those of NN when N is large. 

4    CONCLUSIONS 

Based on the higher order shear deformation theory as well as calculated and depicted results of a spinning 
cylindrical shell made of different types of FG materials it can be concluded that: 
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(i). Variation on the shell rotational speed has no effect on the value of the natural frequency. 
(ii). The natural frequency of short cylindrical shell is higher than the long one, having all other parameters the 

same. 
(iii). The natural frequency of thick cylindrical shell is higher than the thin one, having all other parameters the 

same. 
(iv). For the FG material of the first kind, by increasing the value of volume fraction N, the natural frequency 

approaches to the case of NN, i.e. an isotropic media made of nickel. In other words, natural frequency 
decreases by increasing N. 

(v). The least value for the natural frequency occurs at n=2 and 3 and h/R≤0.01. 
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