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ABSTRACT
In this paper the vibration of a spinning cylindrical shell made of functional graded material is
investigated. After a brief introduction of FG materials, by employing higher order theory for shell
deformation, constitutive relationships are derived. Next, governing differential equation of
spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle.
Making use of the principle of minimum potential energy, the characteristic equation of natural
frequencies is derived. After verification of the results, the effect of changing different parameters
such as material grade, geometry of shell and spinning velocity on the natural frequency are
examined.
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1 INTRODUCTION

HE concept of functionally gradient materials (FGMs) was first introduced in 1984 by a group of materials

scientists in Japan when they were in a process of preparing thermal barrier materials [1, 2]. Since then, FGMs
have attracted much of the interests as a heat-shielding material. FGMs are made by combining different materials
using powder metallurgy methods [3]. They possess property variations in the constituent volume fractions that lead
to continuous change in the composition, microstructure, porosity, etc. as well as results in gradients in the
mechanical and thermal properties [2, 4-7]. Studies on FGMs have been extensive but are largely confined to
analysis of thermal stress and deformation [8-12]. Related to the vibration of cylindrical shells numerous researches
were conducted. Many of these studies are for isotropic and composite shells. Arnold and Warburton [10], Ludwig
and Krieg [11], Chung [12], Soedel [13], Forsberg [14], Bhimaraddi [15], Soldatos and Hajigeoriou [16], Soldatos
[17], Lam and Loy [18], Loy and Lam [19], and Loy, Lam and Shu [20] are among those who have carried out
studies on the vibration of cylindrical shells. Nevertheless, associated with the vibration of cylindrical shells made of
FG material only one work is reported [21] in which the bases of vibration analysis were on the usage of classical
theory. To move one step further on this analysis, in this work the higher order shear deformation theory (HSDT) is
employed on the spinning shells which have various applications in the industry.

In this paper, the vibration of a spinning cylindrical shell made of functional graded material (FGM) is
investigated. The considered functionally graded material is composed of stainless steel and nickel where the
volume fractions follow a power-law distribution. The objective is to study the frequency characteristics, the
influence of the constituent volume fractions, and the effects of the configurations of the constituent materials on the
natural frequencies. A functionally graded cylindrical shell is essentially an inhomogeneous shell consisting of a
mixture of isotropic materials. The analysis of the functionally graded cylindrical shell is carried out using higher
order theory for shell deformation and solved using Hamilton’s principle method.
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1 FUNCTIONALLY GRADED MATERIALS

One of the most advantages of the FGM over other engineering materials is its superior resistant against harsh
temperature condition. The combined material properties of such a material can be expressed as [21]

Pp(T,2) =) Pu(T)V,(2) (1)
i=1

in which, Pr can be any effective FGM property, P, is a parameter depending on temperature and V,,; is a volume
fraction for ith material. Moreover, T represents the temperature (°K) and z is the coordinate along the body
thickness. The parameter for each material usually is expressed as [21]

Emaj=3(£%1+1+ar+grz+grj )

in which Py, P;, P,, P;, and P are some temperature dependent parameters. In order to model the property
distribution, according to Voigt model which assumes that the strain is the same in the ceramic and in the metal, the
FGM mechanical property is expressed as

k
P= ZV P
fiti
i1 3)
P(z)=PV.+P,V,

in which P is the effective FGM property, indices ¢ and m, stand for ceramic and metal respectively, and V
represents the FGM volume fraction subjected to the law

V. +V, =1 “

For a cylindrical shell with thickness h, the variation of the volume fraction of phases can be expressed
according to the following power law in terms of thickness z

N
Vi = [kh—”j )

For the mechanical properties of the cylindrical shell either of following power law models can be used

N
PG)=(P. —Pm)[zzh+ hj +P,

v ©)
P(z)=(Pm—PC)[%j +P,

For example, the Young’s modulus for functionally graded (FG) cylindrical shell with N=0.5 can be expressed as

0.5
E()= (E. —E)(%j VE, ™)

This means that the cylindrical shell at z=h/2 is completely metal and in the z=-k/2 it is completely ceramic. In
other words, shell starts from inside surface by ceramic material and becomes completely metal at the outside wall.
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2 GOVERNING EQUATIONS

Consider a cylindrical spinning shell made of FGM, with length L, radius R, and thickness of A, spinning around its
symmetric axis with constant angular velocity of Q (see Fig. 1). In vibration analysis of shell in this work, higher
order shear deformation theory is considered. Based on the assumptions prevailing on this theory, differential
equations are derived. For a point located somewhere on the spinning shell and referred to the coordinate system
shown in Fig. 1, the position and velocity of such point are [22]

72uf+v}+wl€ ®
V =i +vj +wk + (Qi x wk) + (Qi xv]),

in which i, j and k are unit vectors in the cylindrical coordinates of x,8 and z, respectively. Moreover, Q is shell
rotational speed, u, v and w are displacement components in x,6 and z directions, respectively and #,v, and w are

time derivative of displacement components. As it was mentioned, in this study we use the Reddy higher order
theory [23] assumptions in which the general form of displacement components are defined as

u(x,0,2) = uy (x,0) + 28, (x,0) + 2% 1 (x,0) + 2’y (x,0)
u(x,0,2) = vy (x,0) + 2, (x,0) + 2° 115 (x,0) + 2y  (x,0) )
w(x,0,2) =wy(x,0)

in which, uy, vo, wo, B, Bo th He Wi, and yy, are defined as

uy =u(x,60,0,1), Vo = v(x,6,0,1), wo = w(x,8,0,1)

P R R

Co\az)y e ZZO’ e o (10)
A (A

o)y let) ) T e,

Moreover, based on this theory, we further have

g, =0

sz[xﬁ,i%,l)=cr&(x,9,i§,t]=0 an

Since the cylindrical shell has a thin wall, the strain components can be defined as

Fig. 1
Spinning cylindrical shell, geometry and
coordinates.
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Furthermore, by employing Hook’s law one can easily calculate the following forces (normal and shear) and
moments (bending and torsional) all per unit of length as

h/2
(Nx9N97Nx¢9) :th/z(axraﬁﬂaxﬁ)dz

h/2
(M, ,My,M ) :J:h/z(ax,crg,axg)zdz

h/2 2
(PeuPyPp)= [~ (0.00.0,9) 7 (14
h/2
2

©u80=[ o .:))d:

h/2 5
QoS = [ oall)d:
~h/2
in which N;, M;, P;, Q; and S, are system of forces or moments and can be represented in matrix form as

N} =[]+ {e} (152)
in which

[N]=[N,,Ng,N,o, M, My,M y,P ,Py,Py]

IS CRCIRIPR SN N PN SN 7N ) (15b)
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o o E66 o o F66 o o H66 |

Furthermore, related to shear terms in the Hook’s law, one can obtain the following shear forces and bending
moments due to shear forces (all per unit of length) as

(T} = [x]* e} (16a)

in which

iy =10,.05.5..5,]
{5S}T = [g%,gig,kéz,kiz]

Ass  Asq Dy Ds, (16b)
[x]= Asy Ay Dsqy Dss

Dss Dsy  Fyy  Fsy

D54 D55 F54 F55

in which the elements of [S] and [X] matrices i.e., A;, Dy, E;, F;; and Hj; are defined as

ijs

hi2 2 3 _4 _6
(AU7BU’DU’E1]’E]’HU):j_h/zQ’](LZ’Z )Z 7Z ,Z )dZ (17)

It should be mentioned that for the isotropic materials the elements of Q;; (i,j = 1,2,6) matrix turned to be as

E
01 =0n = —
vE
Q12:1—v2 (18)
E
Qus =055 =0y R

2.1 Boundary conditions

In this study the boundary condition of both ends are taken to be simply supported. Based on this type of boundary
condition, following admissible displacement field for any point on the mid-plane surface is given by

mmnx

ug(x,0,t)=A sin cos (nf +wt)

mr.

vo(x,0,t)=B cos Lx sin (nf +wt)

mmx

wo(x,0,t)=C cos cos (nf +wt) (19)
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mZx cos (nf +wt)

B, (x,0,t)=D sin

mmx

By(x,0,t)=E cos sin (n6 +wt)

In Eq. (19), the coefficients A, B, C, D, and E represent the magnitude of the vibration amplitude in the
aforementioned directions. By employing energy method i.e., defining the kinetic energy, internal energy (due to
existing stresses) and work done by external forces of the system and imposing the Hamilton principle, differential
equation of the motion can be obtained. The variational form of the functional (potential energy) is expressed as

5JIZ(T—U+W)dt:0 (20)
|

in which 7, U and W represent the kinetic energy, internal energy and work done by external forces, respectively.
For the geometry under consideration, i.e. cylindrical shell, the kinetic energy is defined by

T=Lpn[ [FevRdO 21
= ol [ 1)
in which p"=p, i.e., p, is the density per unit length. Substituting Eq. (8) into Eq. (21) satisfy the following equation
L 27 o o ° °
T:%pthJ‘ J' 2 402 407 4200w - wr )+ Q22 +w?)| RdOdx 22)
oJdo

Related to the internal energy, we break it into two parts; i.e. strain energy due to centrifugal force

(Ng = phQ?R?) which is shown by U, and defined as [22]

| ¢l o LouY [1(ov *Tifow I
) Ne{[aa—xj )] 5 }R‘”‘“ =

and shell strain energy due to internal stresses shown by U, is defined by

U, = %Ll I:” (V" [s)e} R do dx (24)

After substituting Eqgs. (22-24) into Eq. (20), the equations of motion is obtained

(25)

S
S
S
O
B
O
Mo aOw >
I
(=)

Now by setting the determinant of above linear algebraic equation to zero, the characteristic equation of natural
frequencies which is an equation of order tenth in @ is obtained

20" + 1,0° + 1y0° + 1y0" + 2y0° + As0° + Ae0* + 10° + Ag® + A+ Ap =0 (26)
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where /4; (i=0,1,...10) in Eq. (26) are all functions of elements of [C] matrix.

3 RESULTS AND DISCUSSIONS

By solving Eq. (26), natural frequencies of spinning cylindrical shell can be determined. Table 1 lists the value of
different parameters such as E, vand p of stainless steel and nickel part of the FG material. The result of solving Eq.
(26) i.e. natural frequency vs. wave number n, for different values of volume fraction power N, L/R=20, h/R=0.05,
Q=50 (rps) and m=1 is listed in Table 2. It should be mentioned that the values under N** and N" columns on this
table represent the natural frequency of the cylindrical shell made of only stainless steel or only nickel, respectively.
If we just change the value of 4/R from 0.05 to 0.002 which means for reducing the thickness 25 times less and
keeping the other parameters unchanged, the results of natural frequencies vs. wave number are listed in Table 3.
The pictorial variations of the natural frequencies given in Tables 2-3 are shown in Figs. 2-3. As it is seen from
Tables 2-3, the variation of natural frequency for different values of volume fraction from 0.5 to 20, has only a
discrepancy of about 2.3% and the highest value for the natural frequency in this range belongs to the case of
isotropic state made of stainless steel (N"=0). The lowest value for the natural frequency in this range belongs to the
case of isotropic state made of ceramic (N**=0). It can be verified that for the FG material of first kind, by increasing
the value of N, the natural frequency approaches to the case of N" i.e. an isotropic media made of nickel which is an
indication of reduction of natural frequency. Referred to Fig. 3, it can be noticed that for a thin cylindrical shell the
natural frequency has its minimum value for n=2 and 3, a condition which compared to Fig. 2 is created due to
thinness (h/R<<1) of the shell.

Now, let us calculate the values of the natural frequency while /4/R is changing for different values of volume
fraction under condition of L/R=20, Q=50 (rps) and m=1. The result of this variation is given in Table 4. Moreover,
the given results in Table 4 are converted into different curves depicted in Fig. 4.

Table 1

Mechanical properties of FGM at 7=300 K [21]

Coefficients Stainless Steel Nickel

E(Nm>) v p(kgm?) E(Nm?) v pkgm?)

P, 201.04x10° 0.3262 8166 223.95x10° 0.3100 8900

P, 0 0 0 0 0 0

P, 3.079x10™ -2.002x10% 0 -2.794x10™ 0 0

P -6.534x107 3.797x107 0 -3.998x10” 0 0

P, 0 0 0 0 0 0

2.07788x10"! 0.317756 8166 2.05098x10"! 0.3100 8900

Table 2

Natural frequency vs. wave number n, for different values of volume fraction power N, (L/R=20, h/R=0.05, Q=50 (rps) and m=1)
n N¥=0 N'=0 N=0.5 N=0.7 N=1 N=5 N=10 N=20
1 13.461 12.806 13.234 13.182 13.124 12.91 12.903 12.887
2 33.385 31.592 32.691 32.461 3242 31.799 31.86 31.79
3 92.89 88.156 91.208 90.842 90.442 88.998 88.822 88.692
4 177.949 168.879 174.719 174.019 173.249 170.479 169.798 169.72
5 287.679 273.029 282.459 281.319 280.089 275.619 273.959 273.799
6 422.04 400.45 414.281 412.619 410.809 404.249 403.32 402.719
7 580.669 551.109 570.139 567.849 565.349 556.339 554.47 552.959
8 763.868 724.97 750.008 746.988 743.708 731.865 728.52 727.418
9 971.737 922.287 954.127 950.277 946.117 931.037 927.189 926.027
10 1203.86 1142.56 1182.06 1177.26 1172.06 1153.46 1149.46 1146.36
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Table 3
Natural frequency vs. wave number n, for different values of volume fraction, N (L/R=20, h/R=0.002, Q=50 (rps) and m=1)
n N%=0 NY=0 N=0.5 N=0.7 N=1 N=5 N=10 N=20
1 13.437 12.783 13.21 13.158 13.1 12.887 12.829 12.815
2 4.565 4.342 4.4888 4.4324 4.453 4.3798 4.3564 4.3495
3 4.2313 4.0169 4.1591 4.1429 4.1249 4.0571 4.0333 4.0256
4 7.121 6.7537 6.9932 6.9651 6.9344 6.8211 6.7816 6.7686
5 11.431 10.844 11.225 11.179 11.13 10.95 10.888 10.867
6 16.806 15.946 16.503 16.436 16.364 16.101 16.01 15.98
7 23.173 21.99 22.755 22.664 22.564 22.202 22.077 22.037
8 30.548 28.992 29.998 29.878 29.746 29.271 29.107 29.053
9 39.5185 37.5395 38.8185 38.6655 38.4995 37.8945 37.6855 37.6185
10 4829 45.838 47.423 47.233 47.027 46.277 46.019 45.935
HSDT
1400
1200 - h/R=0.05
Q L/R=20 —=—Nn=0
T 1000 Q=50 N=20
g 600 —e—N=1
g ——N=0.7
5 400 ——N=05 Fig. 2
200 Ns=0 Variation of the natural frequency vs. n,
wave number for different values of volume
0 : ' ' ' ' ' ' . _ _ _
. ) s . s . ; . s 10 fraction L/R=20, h/R=0.05, Q=50 (rps) and
! m=1.
Circumferencial wavenumber n
HSDT
60
h/R=0.002
50 4 L/R=20
Q=50 —=— Nn=0
g 40 4 m=1 N=20
\u; N=10
E —%—N=5
g3 —o—N=1
© ——N=0.7
3 201 —
5 I Fig. 3
10 - Variation of the natural frequency vs. n,
wave number for different values of volume
° ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ fraction L/R=20, h/R=0.002, Q=50 (rps) and

1 2 3 4 5 6 7 8 9 10

' ) m=1.
Circumferencial wavenumber n

As can be seen from Fig. 4, the natural frequency increases more or less in a linear fashion up to #/R=0.024 and
then it decreases a bit and remains unchanged afterwards. This trend is observed for all sort of different FG
materials. In a parallel analysis, the values of the natural frequency while L/R is changing for different values of
volume fraction and wave number under condition of #/R=0.002, Q=50 (rps) and m=1. The result of such analysis is
given in Table 5 and also depicted in Fig. 5. Related to Figs. 4 and 5, one can realize that the natural frequency of a
short cylindrical shell of FG material is higher than the longer one. In other words, by reducing the value of L/R, the
natural frequency of a cylindrical shell increases. By setting the value of L/R=20, h/R=0.05, n=1, m=1, the values of
natural frequency of cylindrical shell for different FG materials are obtained while the spinning speed of the shell
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changes. The result of such calculation is listed in Table 6. By close examination of numbers in any specific column
in this table, one can deduce that little variations exist. In other words, any variation in the spinning speed has
insignificant effect on the natural frequency of the cylindrical shell made of FG material. This finding is consistent
with the fact that the natural frequency is not a function of excitation frequency but rather function of intrinsic
properties such as structural mass and stiffness of the body. To validate the accuracy of our analysis, the results of
first ten natural frequencies for simply supported cylindrical shells based on higher order shear deformation theory
(HSDT) and classical shell theory (CST) are compared with Loy et al. [21], when L/R=20, #/R=0.01, v= 0.3, (see
Table 7). Another comparison is made with work of Arnold and Warburton [10] for two specific natural frequencies

Vibration Analysis of Functionally Graded Spinning Cylindrical Shells ...

but different wave numbers (see Table 8).

Table 4
Natural frequency vs. i/R for different values of volume fraction N, L/R=20, Q=50 (rps) and m=1
h/R n  N®=0  N'=0 N=0.5 N=0.7 N=1 N=5 N=10 N=20
0.001 3 2.75990 2.62170 2.71410 2.70360 2.69190 2.64720 2.63820 2.63190
0.005 2 5.47220 5.20130 5.38240 5.36170 5.33860 5.25060 5.23960 5.22080
0.007 2 6.3530 6.03610 6.24760 6.22360 6.19690 6.09490 6.08730 6.05970
0.01 2 7.90630 7.50880 7.77310 7.7430 7.70970 7.58340 7.56740 7.53910
0.02 1 13.6680 13.0130 13.4410 13.3890 13.3310 13.1170 13.110 13.0940
0.03 1 13.6540 12.9990 13.4270 13.3750 13.3170 13.1030 13.0960 13.080
0.05 1 13.4610 12.8060 13.2340 13.1820 13.1240 12.910 12.9030 12.8870
Table 5
Natural frequency vs. L/R for different values of volume fraction N, #//R=0.002, Q=50 (rps) and m=1
LR n N"=0 NY=0 N=0.5 N=0.7 N=1 N=5 N=10 N=20
02 20 43846 416.64 431.22 429.56 427.72 420.7 419.93 418.27
0.5 15 174.81 166.08 171.91 171.25 170.51 167.7 167.34 166.73
1 11 86.801 82.463 85.36 85.031 84.665 83.268 83.082 82.786
2 8 42.992 40.836 42.275 42.112 41.93 41.237 41.051 40.997
5 5 16.786 15.948 16.508 16.445 16.374 16.103 16.07 16.01
10 4 8.5525 8.1213 8.4081 8.3755 8.3394 8.2023 8.1763 8.1542
20 3 4.0576 4.0653 4.0891 4.1569 4.1749 4.1911 4.0489 4.2633
50 2 1.4708 1.3957 1.4455 1.4398 1.4335 1.4098 1.4088 1.4015
100 1 0.5515 0.5245 0.5422 0.54 0.53761 0.5288 0.5272 0.5261
Table 6
Natural frequency vs. spinning speed Q, for different values of volume fraction N, L/R=20, h/R=0.05, m=1, n=1
Q N*¥=0 N'=0 N=0.5 N=0.7 N=1 N=5 N=10 N=20
5 33.190 31.596 32.694 32.465 32.322 31.902 31.886 31.876
10 33.190 31.595 32.694 32.465 32.321 31.901 31.886 31.875
15 33.189 31.594 32.693 32.464 32.321 31.901 31.885 31.875
20 33.188 31.593 32.692 32.463 32.320 31.900 31.884 31.873
30 33.188 31.592 32.692 32.462 32.320 31.900 31.884 31.872
40 33.187 31.592 32.691 32.462 32.319 31.899 31.883 31.871
50 33.187 31.591 32.691 32.461 32.319 31.899 31.883 31.871
100 33.186 31.591 32.690 32.460 32.318 31.898 31.882 31.870
150 33.186 31.590 32.689 32.460 32.318 31.897 31.881 31.869
200 33.176 31.589 32.689 32.459 32.317 31.897 31.880 31.868
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Fig. 4

Variation of the natural frequency vs.
h/R, for different values of volume
fraction L/R=20, Q=50 (rps) and
m=1.

Fig. 5

Variation of the natural frequency vs. L/R
for different values of volume fraction
h/R=0.002, Q=50 (rps) and m=1.

In both of these cases & = wR+/(1—v?)p/E . While vibrating analysis of simply supported FG cylindrical shells

composed of stainless steel and nickel with its properties changing in the thickness-wise direction according to a
volume fraction power-law, let us consider the effect of the changing the constituent volume fractions V;and see
how does it affect the FGM configuration. This can be done by varying-simultaneously-the volume fractions of the
stainless steel and nickel, which is taking care of by changing the value of the power-law exponent N. The effects on
the FGM configuration are studied by studying the frequencies of two FG cylindrical shells i.e. Type-I FG
cylindrical shell and Type-II FG cylindrical shell. Type-I FG cylindrical shell has nickel on its inner surface and
stainless steel on its outer surface and Type-II FG cylindrical shell has stainless steel on its inner surface and nickel
on its outer surface. Figs. 6 and 7 show the variations of the volume fractions V;of nickel and stainless steel, in the
thickness-wise direction z for Type-I and Type-II FG cylindrical shells, respectively.

Table 7

Comparison of obtained first ten natural frequencies with different methods (L/R=20, //R=0.01, v=0.3)
n Loy etal. [21] HSDT CST
1 0.016101 0.016106 0.016104
2 0.009382 0.009387 0.009389
3 0.022105 0.022108 0.022110
4 0.042095 0.042097 0.042099
5 0.068008 0.068010 0.068011
6 0.099730 0.099732 0.099734
7 0.137239 0.137243 0.137244
8 0.180527 0.18053 0.180532
9 0.229594 0.229598 0.2296
10 0.284435 0.284439 0.284443
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Table 8

Comparison of obtained results with different methods (L= 8 in, R=2 in, #=0.1 in, E=30x10° Ibf-in, p=7.35x10™ Ibf-s%in"*)
m Arnold and Warburton [10] HSDT CST
1 (n=2) 2046.8 20549.5 2050.7
2 5637.6 5640.7 5643.3
3 8935.3 8939.3 8941.3
4 11405 11410.9 11416.9
5 13245 13258.9 13262.9
6 14775 14789.3 14799.6
1 (n=3) 2199.3 2201.9 2204.0
2 4041.9 4049.3 4052.0
3 6620 6627.1 6633.3
4 9124 9137.5 9140.6
5 11357 11370.2 11378.8
6 13384 13401.9 13411.9

Fig. 6
Variation of volume fraction of nickel in the thickness-wise
direction z, Type L.

Fig. 7
Variation of volume fraction of Stainless Steel in the thickness-
wise direction z, Type I1.

The influence of the value of N, which affects the constituent volume fraction, can be seen from the tables. As N
increased, the natural frequencies decreased. The decreased in the natural frequencies from N=1 to N=15 is about
2.3% at n=1 and about 2.4% at n=10. The natural frequencies approach those of N°° when N is small and they
approach those of N when N is large.

4 CONCLUSIONS

Based on the higher order shear deformation theory as well as calculated and depicted results of a spinning
cylindrical shell made of different types of FG materials it can be concluded that:
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(1). Variation on the shell rotational speed has no effect on the value of the natural frequency.

(i1). The natural frequency of short cylindrical shell is higher than the long one, having all other parameters the
same.

(iii). The natural frequency of thick cylindrical shell is higher than the thin one, having all other parameters the
same.

(iv). For the FG material of the first kind, by increasing the value of volume fraction N, the natural frequency
approaches to the case of N", i.e. an isotropic media made of nickel. In other words, natural frequency
decreases by increasing N.

(v). The least value for the natural frequency occurs at n=2 and 3 and #/R<0.01.
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