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 ABSTRACT 

 In this paper, a three dimensional analysis of arbitrary straight-sided quadrilateral 
nanocomposite plates are investigated. The governing equations are based on three-
dimensional elasticity theory which can be used for both thin and thick nanocomposite 
plates. Although the equations can support all the arbitrary straight-sided quadrilateral 
plates but as a special case, the numerical results for skew nanocomposite plates are 
investigated. The differential quadrature method (DQM) is used to solve these equations. 
In order to show the accuracy of present work, our results are compared with other 
numerical solution for skew plates. From the knowledge of author, it is the first time that 
the stress analysis of arbitrary straight-sided quadrilateral nanocomposite plates is 
investigated. It is shown that increasing the skew angle and thickness of nanocomposite 
skew plate will decrease the vertical displacements. It is also noted that the thermal effects 
are also added in the governing equations. 
                                                                       © 2014 IAU, Arak Branch.All rights reserved.   
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1    INTRODUCTION 

 HE discovery of carbon nanotubes has initiated a number of scientific investigations to explore their unique 
properties and potential applications. The composite community considers carbon nanotubes as ideal 

reinforcements for structural and multifunctional composite applications [1]. Shariyat, and Darabi [2] studied the 
characteristics of low/medium velocity impact responses of thin nanocomposite plates impacted by rigid spherical 
indenters. A modified contact law that takes into account effects of the plate thickness and boundary conditions was 
employed in this research. Jafari Mehrabadi et al [3] investigated the mechanical buckling of a functionally graded 
nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes subjected to 
uniaxial and biaxial in-plane loadings. Belay and Kiselev [4] presented the results of molecular dynamics simulation 
of deformation and fracture of a “copper - molybdenum” nanocomposite plate under uniaxial tension. It was shown 
that plastic deformation in shear bands in the copper culminates in the pore formation at the Cu-Mo contact 
boundary. Yas et al [5] studied the vibrational properties of functionally graded nanocomposite cylindrical panels 
reinforced by single-walled carbon nanotubes based on the three-dimensional theory of elasticity. The carbon 
nanotube reinforced cylindrical panel had smooth variation of carbon nanotube fraction in the radial direction and 
the material properties were estimated by the extended rule of mixture. Dynamic analysis of nanocomposite 
cylinders reinforced by single-walled carbon nanotubes subjected to an impact load was carried out by a mesh-free 
method by Moradi-Dastjerdi et al [6]. Free vibration and stress wave propagation analysis of carbon nanotube 
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reinforced composite cylinders were presented. Heshmati and Yas [7] studied the dynamic response of functionally 
graded multi-walled carbon nanotube polystyrene nanocomposite beams subjected to multi-moving loads based on 
Timoshenko beam theory. The finite element method was employed to discretize the model and obtain a numerical 
approximation of the motion equation. Postbuckling analysis was presented for nanocomposite cylindrical shells 
reinforced by single-walled carbon nanotubes subjected to combined axial and radial mechanical loads in thermal 
environment by Shen and Xiang [8]. The governing equations were based on a higher order shear deformation shell 
theory with a von Kármán-type of kinematic nonlinearity. 

Skew and trapezoidal plates have quite a good number of applications in modern structures. Skew plate 
structures can be found frequently in modern construction in the form of reinforced slabs or stiffened plates. Such 
structures are widely used as floors in bridges, ship hulls, buildings, etc. Several researchers have addressed the 
linear and nonlinear static and dynamic problems of skew and trapezoidal plates [9-18].  

In this research, based on three-dimensional elasticity theory, the equations for the arbitrary straight-sided 
quadrilateral nanocomposite plates are achieved. In the derivation of these equations, the thermal effect is included 
so other researchers can extend present work for thermal environment, too. The equations are solved with 
differential quadrature method. As a special case of straight-sided quadrilateral plates, the displacements and 
stresses are calculated for skew nanocomposite plates. The author hopes that the present work can be a new step in 
investigation of nanocomposites. 

2    MATERIAL PROPERTIES  

In this work, the numerical results of molecular dynamics simulation for the analysis of  nanocomposites (Fig. 1) by 
Griebal and Hamaekers [19,25]  are used. All their tensile test simulations were carried out under normal condition. 
The same time steps and fictitious masses as in the molecular dynamics part of the equilibration process were used 
[19]. To apply a tensile load to one of the six independent stress components, they used a stress rate of 
0.01 /Gpa ps . A molecular dynamics tensile simulation was stopped when a strain of 10%  was reached [19]. Some 

of the elastic constant for nanocomposites can be found as [19,25], 
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Fig. 1  
Left: Front view of unit cell. Right: Side view of 
the unit cell [19]. 

3    GOVERNING EQUATIONS    

In the following equations, the general stress-strain relation with linear behavior is presented. The stress-strain 
relations in general form can be written as follow [24],  
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The equilibrium equations for investigating nanocomposite plates are [24], 
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where ( , , , )ij i j x y z  are the stress tensor components; ii  and ( , , , ; )ij i j x y z i j   are the normal and 

shearing components of the strain tensor, respectively. The linear strain-displacements relations can be written as 
follow [24], 
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where u,v and w are the displacements in the x,y and z directions. Now by substituting Eq. (3) in Eqs. (1-2), the 
general governing equations for triclinic rectangular plates are, 
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As shown in Fig. 2, a Cartesian coordinate system (x, y, z) is used to label the material point of the plate in the 
unstressed reference configuration. It is obvious that the above equations cannot support the arbitrary straight-sided 
quadrilateral nanocomposite plates and they are suitable for rectangular plates. In order to extend the above 
equations for arbitrary straight-sided quadrilateral plates, first we rearrange the equations and then we derive the 
main equations.Using the three-dimensional constitutive relations and the strain-displacement relations, the 
equilibrium equations in terms of displacement components for a linear elastic plate with infinitesimal deformations 
can be written as:  

In-plane equilibrium:  
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Out-plane-of equilibrium: 
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where    ' d

dz
 . And along the boundary  , 
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In order to transform the boundary conditions into the computational domain, they are rearranged as,  
Eq. (9b): 
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Eq. (11b): 
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Eqs. (12a) and (12 b):   
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The physical domain can be transformed into the computational domain using the concept of the domain 

transformation usually used in the finite element method 
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Fig. 2  
Geometry and coordinate system of the FGM plate: a) 
physical domain, b) computational domain [14-17]. 
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Using the chain rule for the spatial derivatives, one obtains, 
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Using Eqs. (18a), (18b), the equilibrium equations become,     
Eq. (7):  
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Eq. (8):  
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Eq. (16):  
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Eq. (17): 
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Hence, here the differential quadrature method as an efficient and accurate numerical tool is employed to solve 

these system of equations and consequently, to obtain the initial stress components. A brief review of DQM is 
presented in Appendix A. The equilibrium Eqs. (20) and (21) can be discretized as [15-17,20-23],   

Eq. (20): 
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where k
ijA and  , ,k

ijB k z   are the first and the second order DQ weighting coefficients in the k-direction, 

respectively. It should be noted that the matrices ijA   are function of  the spatial coordinate z and they are 

introduced in Appendix B.  
The discretized form of the boundary conditions become [15-17,20-23]  
Eq. (22): 
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Eq. (23): 
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Eq. (25a): 
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Eq. (25b): 
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Eq. (26):   
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Other type of boundary conditions can be derived in the same way.  

4    NUMERICAL RESULTS         

In this part, the numerical results of static analysis of nanocomposite plates under mechanical loading are presented. 
First of all, to show the accuracy of the above equations and related boundary conditions, our results for maximum 
deflections are compared with the results of Das et al [18] under uniform pressure in Fig. 3. This figure is presented 

for 75   and 1
a

b
 .  It is obvious that for different loading the results are in an acceptable agreement. It is 

mentioned that normalized load is defined as follow,  
 

* 2( ) /(16 )xP PL Dh  (35) 
 
where D  is the flexural rigidity, xL  is the length of plate, P  is the uniform load and h  is the thickness of plate. 
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Fig. 3 
Comparison of present results with other numerical solution for 
skew plate. 

 
In Table 1, the maximum deflections of skew nanocomposite plate under uniform pressure is calculated. In this 

table one can see the influences of two different parameters on the results, 1) Skew angle, 2) Normalized load. It is 
shown that with the increase of skew angles and with the decrease of uniform load, the maximum vertical 
deflections will decrease. From this table one can found the importance of skew angle on the calculated results. 

The main reason of using three-dimensional elasticity theory is the ability of studying thick nanocomposite 
plates. So it is important to investigate the effects of thickness on the results. In Table 2, the influences of both 
thickness and loads are presented for fully clamped skew nanocomposite plate with skew angle of 75  . As it is 
expected, increasing the thickness of nanocomposite plate will decrease the displacements. It can be seen that the 
thickness of skew nanocomposite plate plays an important role in present analysis. 

 
Table 1 
Maximum deflections of skew nanocomposite plate under uniform pressure for different skew angles   ( 1, 0.4)a b h   

*P  50   60   70   80   
800   0.0409 0.0264 0.0136 0.0048 
900   0.0461 0.0297 0.0153 0.0054 
1000 0.0512 0.033   0.017   0.006   
1100 0.0563 0.0363 0.0187 0.0066 
1200 0.0614 0.0396 0.0204 0.0072 
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Table 2 
Maximum deflections of skew nanocomposite plate under uniform pressure for different thickness  ( 1)a b  

*P  0.5h   0.2h   0.1h   0.01h   
800 0.0075 0.0166 0.0416 11.3371 
900 0.0084 0.0187 0.0468 12.7542 
1000 0.0093 0.0208 0.0521 14.1713 
1100 0.0103 0.0229 0.0573 15.5885 
1200 0.0112 0.0250 0.0625 17.0056 

 
 

Table 3 
Stress results of skew nanocomposite plate under uniform pressure for different skew angles   ( 1, 0.4)a b h  

*P  60   70   80   
800   127680000 99744000   99692000   
900   143640000 112210000 112150000 
1000 159600000 124680000 124610000 
1100 175560000 137150000 137080000 
1200 191520000 149620000 149540000 

 
 

Table 4 
Deflections of nanocomposite plate under uniform pressure for different boundary conditions 

a h  CCCC CFCF CSCS 

10 10.8445 21.3630 11.2259 
11 11.9290 23.4993 12.3485 
12 13.0134 25.6356 13.4711 
13 14.0979 27.7719 14.5937 
14 15.1823 29.9081 15.7163 
15 16.2668 32.0444 16.8389 
16 17.3512 34.1807 17.9615 
17 18.4357 36.3170 19.0841 
18 19.5201 38.4533 20.2067 
19 20.6046 40.5896 21.3293 
20 21.6890 42.7259 22.4519 

 
 
 

In Table 3, the effects of skew angles on the z  at the center of the skew nanocomposite plate are investigated. 

One can find from the tabulated results that with the increase of skew angles, the stresses will decrease. From these 
three tables, one may understand that the major behavior of nanocomposites is the same as ordinary plates. This 
behavior can be seen in other nano structures such as nanotubes, too. The influences of different boundary 
conditions on the deflections of nanocomposite plate under uniform pressure are considered in Table 4. Three 
different boundary conditions are presented, 1) Fully clamped (CCCC), 2) Clamped-Free (CFCF) , 3) Clamped-
Simply support (CSCS). In this table, the effects of length to thickness ratio are also investigated. It is shown that the 
numerical results for fully clamped support are so close to clamped-simply support especially for lower length to 
thickness ratios. It is also shown that the results of clamped-free support are much more than the results for other 
boundary conditions. It may be worth to say that the results of clamped-free support are approximately two times 
bigger than the results for two other boundary conditions. One can also see that increasing the length to thickness 
ratio will increase the deflections for all boundary conditions. In Fig. 4, we investigate the displacements of 
nanocomposite plate under sinusoidal mechanical loading. In these figures, one can easily find that increasing the 
length to thickness ratio will increase the displacements in all directions. It is also shown that increasing the length 
to width ratio will decrease all the displacements. As it is expected, the displacements in the Z direction are much 
greater than displacements in the x and y directions. 
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Fig 4. 
Deflections of nanocomposite plate subjected to sinusoidal mechanical loading. 

5    CONCLUSIONS 

In this work, the static behavior of arbitrary straight-sided quadrilateral nanocomposite plates subjected to 
mechanical loading was presented. Three-dimensional elasticity theory as a suitable theory for investigating both 
thin and thick plates was used. The differential quadrature method as a numerical tool was adopted to solve the 
governing equations. Different parameters such as skew angles and thickness of nanocomposite skew plate were 
studied. As it was expected, it was shown that increasing the skew angle and thickness of nanocomposite skew plate 
will decrease the vertical displacements. At the end, it is worth to mention that the above equations can be used for 
all straight-sided quadrilateral nanocomposite plates under both mechanical and thermal loading.   

APPENDIX A  
DQ weighting coefficients 

The DQM [20-23] has attracted appreciable attention over the past two decades. The idea of the DQM is to quickly 
compute the derivative of a function at any grid point within its bounded domain by estimating a weighted linear 
sum of values of the function at a small set of points related to the domain. In order to illustrate the DQ 
approximation, consider a function ( , )f   having its field on a rectangular domain 0 a    and 0 . b   Let, in 

the given domain, the function values be known or desired on a grid of sampling points. According to DQ method, 
the rth derivative of a function ( , )f   can be approximated as: 

 

( ) ( )

1 1( , ) ( , )

( , )
( , ) 1,2,.... 1,2,..., 1

i j

N Nr
r r

im m j im mjr
m m

f
A f A f for i N and r N

 
 

 
     

  
      

    (A.1) 

 
From this equation, one can deduce that the important components of DQ approximations are weighting 

coefficients and the choice of sampling points. In order to determine the weighting coefficients a set of test functions 
should be used in Eq. (A.1). For polynomial basis functions DQ, a set of Lagrange polynomials are employed as the 
test functions. The weighting coefficients for the first-order derivatives in  -direction are thus determined as: 
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where L is the length of domain along the  direction and 
1,

( ) ( )
N

i i k
k i k

M


 

      

The weighting coefficients of second order derivative can be obtained as, 

 
2[ ] [ ][ ] [ ]ij ij ij ijB A A A      (A.3) 

 
In a similar manner, the weighting coefficients for  -direction can be obtained.  

In numerical computations, Chebyshev-Gauss-Lobatto quadrature points are used, that is,  
 

1 ( 1) 1 ( 1)
{1 cos[ ]};    {1 cos[ ]} =1,2,…, =1,2,…,

2 ( 1) 2 ( 1)
ji i j

for i N and j N
a N b N  

 

    
   

 
 (A.4) 

APPENDIX B 

The matrices ijA   coefficients 
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