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 ABSTRACT 

 We have solved the governing equations for the buckling of rectangular functionally graded plates 
which one of its edges has small non-zero deflection and moment. For the case that the material 
properties obey a power law in the thickness direction, an analytical solution is obtained using the 
perturbation series. The applied in-plane load is assumed to be perpendicular to the edge which 
has non-ideal boundary conditions. Making use of the Linshtead-Poincare perturbation technique, 
the critical buckling loads are obtained. The results were then verified with the known data in the 
literature. 
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1    INTRODUCTION 

ECENT studies on buckling behavior of functionally graded (FG) structures such as beams, plates and shells 
are mostly carried out using the classical boundary conditions (e.g. see Refs. [1-3]). The following edge 

conditions widely have been considered in many papers: (i) all edges clamped, (ii) all edges simply supported, (iii) 
two opposite edges clamped and the others free, (iv) two opposite edges simply supported and the others free, and 
(v) two opposite edges clamped and the others simply supported. These classical boundary conditions provide 
idealized edge support. Gorman [4] utilized the superposition method to obtain the buckling loads and free vibration 
frequencies for a family of elastically supported rectangular plates subjected to one-directional uniform in-plane 
loading. Two edges running in the direction of the in-plane loading were assumed to be free and lateral displacement 
was forbidden along the other two edges which were given uniform elastic rotational support. Pakdemirli and 
Boyaci [5, 6] developed the concept of non-ideal boundary conditions to the beam problem. They considered a 
simply supported Euler-Bernoulli beam with an intermediate supporter which allows small deflections. Aydogdu 
and Ece [7] reported the improved buckling loads and natural frequencies of non-ideal rectangular isotropic plates. 
They expanded the critical buckling loads and frequencies in perturbation series in powers of the small parameter 
associated with the non-ideal boundary conditions. 

The objective of the present paper is understanding the effect of non-ideal boundary conditions on the buckling 
loads of rectangular plates which are made of functionally graded materials. The plate is assumed to have 
functionally graded properties in the thickness direction. Formulation is based on the assumption that the FG plate 
has a non-zero deflection and a non-zero moment on one of its edges. The FG plate is subjected to perpendicular 
loading on the edge associated with the sliding support. The Linshtead-Poincare perturbation technique is utilized to 
derive the differential equation system of rectangular FG plates. The governing equations are reduced to an ordinary 
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differential equation using the Levy type solution method. Analytical critical buckling loads are obtained for 
variation of aspect ratio and inhomogeneity parameter. 

2    MATHEMATICAL FORMULATIONS 

A rectangular FG plate of constant thickness h with in-plane dimensions Lx and Ly, Young’s modulus E, Poisson’s 
ratio ν and mass density ρ are considered. The Kirchhoff plate equation can be written as 
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The transverse displacement of an in-plane loaded FG plate in the dimensionless form is governed by the 

following differential equation 
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in which yx LLL /=  describes the aspect ratio of the plate. The dimensionless variables are introduced by 
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Here, x and y are the dimensional Cartesian coordinates measured along the adjacent edges of the plate, w is the 
dimensional transverse displacement, Nx and Ny are dimensional in-plane loads, Wr is any reference displacement, 
and D is the flexural rigidity of the FG plate. It is well-known that there are a number of different boundary 
conditions associated with a rectangular plate. In this study a non-zero deflection and moment are assumed to be on 
one of the edges of the plate. The boundary conditions along 0=x , 0=y  and 1=y  are simply supported and 
along 1=x  is non-ideal simply supported which are defined as 
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where 10 ≤< ε  and )(yf  and )(yg  are continuous functions. The transverse displacement may be expressed as 
 

)sin()( ymxXw π=  (6) 
 

where m represents a positive integer and )(xX  is unknown continuous function to be determined. The assumed 
displacement satisfies the boundary conditions at 0=y  and 1=y . For boundary conditions at 0=x  and 1=x , we 
have 
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Note that )(xX depends on the variable x  and the continuous functions )(yf  and )(yg can be written as 

 
)sin()( ymayf π=  (10) 
)sin()( ymbyg π=  (11) 

 
where a and b are constants. Thus the boundary conditions (7-9) reduce to 
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The FG rectangular plate is considered to be under uni-axial compression where the externally applied in-plane 
load is perpendicular to the edge associated with the sliding support. For this case of loading, we should set Ny = 0. 
Substituting Eq. (6) into Eq. (2) which gives the following ordinary differential equation 
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Using the Linshtead-Poincare perturbation technique [8], the displacement and buckling load are expanded in 

power series as 
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Substituting Eqs. (14) and (15) into Eq. (13) and balancing the terms of same order and neglecting the terms 

higher order than (ε2) lead to the following equations 
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The above equations are subject to the following boundary conditions 
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Solution of Eqs. (16) and (17) can be expressed as 

 
)sin()cos()sin()cos()( 202010100 xDxCxBxAxX λλλλ +++=  (20) 

)cos(
)(2

)sin()cos()(sin)(cos)( 444
01

23

212111111 xnx
DmLn

DNLn
xDxCxBxAxX xx π

π
λλλλ

−
++++=  (21) 

 
where 
 

i

mnL
D

L
N

D

L
N

D

L
NmnL x

x
x

x
x

x

2

)(4)(2 2
2

0

2

0

2

0
2

1

−++−
±=λ  

(22) 



J. Mohammadi and M. Gheisary                   94  
 

© IAU, Arak Branch 

i

mnL
D

L
N

D

L
N

D

L
NmnL x

x
x

x
x

x

2

)(4)(2 2
2

0

2

0

2

0
2

2

−−+−
±=λ  

(23) 

   
Application of the boundary conditions (18) and (19) results in 
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Thus, the displacement function )(xX  can be written as 
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and the critical buckling load is as follows 
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where D0 and D1 are arbitrary constants. The analysis and the associated results are not valid when nmL =  and 

knmL =/22 with n and k being positive integers. 

3    RESULTS AND DISCUSSIONS 

Here, we analyzed analytically the buckling of rectangular FG plates with sliding support and material module 
varying only in the thickness direction. The critical buckling loads of rectangular FG plates under perpendicular 
loading are presented. Aydogdu and Ece [7] have carried out the buckling analysis of rectangular isotropic plates 
with non-ideal boundary conditions under the influence of mechanical loading. The results are simulated using the 
present formulation for the same isotropic rectangular plate with non-ideal simply supported boundary conditions. 
The results are compared with those reported by Aydogdu and Ece [7] and are listed in Table 1 for perpendicular 
loading. Throughout the numerical computation, we let ε = 0.1 and a = b = D0 = 1. 

The effects of the functionally graded material configuration can be seen in the coefficient of the flexural rigidity 
of FG plate, D, especially by the inhomogeneity parameter, k. For FG plates, when the inhomogeneity parameter 
increases the flexural rigidity decreases and consequently the critical buckling load decreases. Based on the 
assumptions of Aydogdu and Ece [7], the parameter D should set equal to unity when compared to rectangular 
isotropic plates. The trend in the results of critical buckling loads obtained from the present approach tally well with 
that of Aydogdu and Ece [7]. It may be observed that the results of ideal and non-ideal buckling loads are very close 
to each other. For the odd values of parameter n, the non-ideal buckling loads are higher than the ideal buckling 
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loads. For even values of n, the results show different treatment. As the aspect ratio is increased, the critical buckling 
loads are increased for perpendicular loading. For isotropic case (k = 0), D reduces to the flexural rigidity of isotopic 
plate with negative sign and therefore the gradient of variations reverses. It is necessary to note that the critical 
buckling loads cannot be calculated for n = 0. Table 2 demonstrates that the critical buckling loads are not affected 
by the aspect ratio for m = 0. For example, an FG rectangular plate with non-ideal boundary conditions consist of 
aluminum and alumina is considered. 
 
 
Table 1 
Non-dimensional critical buckling loads of FG rectangular plate with sliding support for perpendicular loading 

(m,n) Lx=Ly Ideal buckling load  Non-ideal buckling load 
(1,1)  0.1   10.067 D   10.319 D 
 0.2   10.674 D   10.927 D 
 0.4   13.280 D    13.548 D 
    13.280*   13.548* 

 0.6   18.254 D   18.587 D 
 0.8   26.545 D   27.054 D 
 1   39.478 D   40.358 D 
    39.478*   40.358* 

 1.5 104.247 D 107.677 D 
 2 246.740 D 257.040 D 
 2.5 518.770 D 543.566 D 
    
(1,2) 0.1   39.676 D   39.550 D 
 0.2   40.271 D   40.145 D 
 0.4   42.699 D   42.571 D 
 0.6   46.904 D   46.768 D 
 0.8   53.122 D   52.964 D 
 1   61.685 D   61.481 D 
 1.5   96.382 D   95.859 D 
 2 157.913 D 156.531 D 
 2.5 259.231 D 256.037 D 
    
(1,3) 0.1   89.023 D   89.107 D 
 0.2   89.617 D   89.701 D 
 0.4   92.012 D   92.096 D 
 0.6   96.074 D   96.161 D 
 0.8 101.908 D 102.001 D 
 1 109.660 D 109.769 D 
 1.5 138.791 D 138.992 D 
 2 185.329 D 185.785 D 
 2.5 255.033 D 257.000 D 
  255.033* 257.000* 

*Ref. [7]    
 
 
Table 2 
Comparison of the non-dimensional critical buckling loads of FG rectangular plate with sliding support for perpendicular loading 
when (m,n) = (0,1) 

Lx=Ly Ideal buckling load  Non-ideal buckling load 
0.1 9.869 D 9.932 D 
0.2 9.869 D 9.932 D 
0.4 9.869 D 9.932 D 
0.6 9.869 D 9.932 D 
0.8 9.869 D 9.932 D 
1 9.869 D 9.932 D 
1.5 9.869 D 9.932 D 
2 9.869 D 9.932 D 
2.5 9.869 D 9.932 D 
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The material properties of the aluminum and alumina that comprise the FG plate are given as Em = 70 GPa, Ec = 
380 GPa, and ν = 0.3. Also, the plate thickness is chosen to be 0.1 mm. Fig. 1 highlights the influences of 
inhomogeneity parameter and non-ideal boundary conditions on the variation of the critical buckling loads of 
rectangular plates. 
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Fig. 1 
Effect of non-ideal boundary conditions on the critical buckling loads of an FG rectangular plate for perpendicular loading (m = 
1), (a): n = 1; (b): n = 2; (c): n = 3. 
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CONCLUSION 

This paper presents an analytical method for buckling analysis of rectangular FG plates with non-ideal boundary 
conditions on one of its edges. The effects of the sliding support, aspect ratio, and inhomogeneity parameter on the 
critical buckling loads are discussed. The results show that the transverse displacement and critical buckling loads 
may increase or decrease and this is dependent on the half wave number, n. The analytical results presented in this 
paper serve as important benchmark values for researchers and engineers to clarify any idealized problems. 
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