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 ABSTRACT 

 The general solution of equations of saturated porous media with incompressible fluid for two 
dimensional axi-symmetric problem is obtained in the transformed domain. The Laplace and 
Hankel transforms have been used to investigate the problem. As an application of the approach 
concentrated source and source over circular region have been taken to show the utility of the 
approach. The transformed components of displacement, stress and pore pressure are obtained. 
Numerical inversion technique is used to obtain the resulting quantities in physical domain.  Effect 
of porosity is shown on the resulting quantities. A particular case of interest is also deduced from 
the present investigation.                                          © 2013 IAU, Arak Branch. All rights reserved. 

 Keywords: Axi-symmetric; Incompressible porous medium; Pore pressure; Laplace transform; 
Hankel transform; Concentrated source and source over circular region 

1    INTRODUCTION 

 HE dynamic response due to various sources in a saturated porous media with incompressible fluid are of great 
interest in geophysics, acoustic, soil and rock mechanics and many earthquake engineering problems.  

Biot [1] derived the basic equations of poroelastisity on the basis of energy principles. Privost [2] rederived these 
equations by use of mixture theory.  Zienkiewicz, Chang and Bettess [3], Zienkiewicz and Shiomi [4] derived the 
basic equations of poroelasticity by the use of principal of continuum mechanics. Gatmiri and Kamalian [5] adopted 
the later approach because it is more flexible and is based on a set of parameters with a clear physical interpretation 
to discuss different type of problem. Gatmiri and Nguyen [6] investigated two dimensional problem for saturated 
porous media with incompressible fluid. Gatmiri and Jabbari [7, 8] discuss time domain Green’_s functions for 
unsaturated soil for two dimensional and three dimensional solution. Gatmiri, Maghoul and Duhamel [9] also 
discuss the two dimensional transient thermo-hydro-mechanical fundamental solution of multiphase porous media in 
frequency and time domains. Gatmiri and Eslami [10] discuss the scattering of harmonic waves by a circular cavity 
in a porous medium by using complex function theory approach. Kumar, Singh and Chadha [11] discuss 
axisymmetric problem in microstrecth elastic solid. Kumar and Singh [12] also discuss elastodynamics of 
an axisymmetric problem in microstrecth viscoelastic solid. Kaushal, Kumar and Miglani [13] discuss the response 
of frequency domain in generalized thermoelasticity with two temperature. Kumar, Garg and Miglani [14] also 
discuss elastodynamics of an axisymmetric problem in an anisotropic liquid-saturated porous medium. 

Oliveira, Dumont, Selvadura [15] discuss boundary element formulation of axisymmetric problems for an elastic 
half space. The influence of the finite initial strains on the axisymmetric wave dispersion in a circular cylinder 
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embedded in a compressible elastic medium has been discussed by Akbarov and Guliev [16].Gordeliy, Detourna 
[17] investigated the displacement discontinuity method for modelling  axisymmetric cracks in an elastic half-space. 

In the present paper, we obtain the components of displacement, stress and pore pressure due to concentrated 
source and source over circular region in the time domain and frequency domain in saturated porous media with 
incompressible fluid. The resulting quantities are shown graphically to depict the effect of porosity. 

2    GOVERNING EQUATIONS 

Following Gatmiri and Nugyen [6], the basic equations are 
Equation of motion: 
 

,    ij j i i f if u w    (1) 

 
Constitutive relation: 

 

, , ,( )ij k k ij i j j i iju u u p          (2) 

 
Flow conservation for the fluid phase: 
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Generalized Darcy’s law: 
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where iu  is the displacement of the solid skeleton, p denote the fluid pressure, iw  represents the average 

displacement of the fluid relative to the solid. The elastic constants  and   are drained Lame’s constant. f is the 

fluid density, s  is the solid density, (1 )  s fn n    is the density of solid-fluid mixture and  fm
n


 is the 

mass parameter where n is the porosity,   is the permeability coefficient.   and M are material parameters which 
describes the relative compressibility of the constituents. if  and   denotes the body force and the rate of fluid 
injection into the media. 

Eqs. (1) and (4) with the aid of (2) and (3) in the absence of body force and the rate of fluid injection into the 
media ,reduce to: 
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3    FORMULATION OF THE PROBLEM 

We consider a saturated porous media with incompressible fluid whose boundaries are parallel to the plane z=0 in 
the cylindrical polar coordinate system ( , ,r Z ). We consider a two-dimensional axi-symmetric problem with 

symmetry about z-axis, so that all the quantities are remained independent of    and 0





.The complete 

geometry of the problem is shown in the Fig. 1(a),1(b).  We assume the components of displacement vector as: 

( ,0, )


r zu u u  (7) 

 
Eqs. (5) and (6) with the aid of (7) can be written as: 
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We define the non-dimensional quantities 
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where   is the constant having the dimensions of frequency. 

Using dimensionless quantities defined by (11) in Eq. (8)- (10) yield , 
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To simplify the problem, we introduce the potential functions as: 
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We define the Laplace and Hankel transforms as follows: 
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( ) ( )
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where nJ  is the Bessel function of the first kind of index n.  

Substituting the values of ru  and zu   from (15) in (12) and (14) and applying the integral transforms defined by 
(16) and (17) on resulting quantities, we obtain 
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Eliminating p from (18) and (20) yields 
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Solving (21) and (19) and assuming that ,   and 0p   as z we obtain the value of ,   and p as: 
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The displacement components ru and zu  are obtained with the aid of (15)-(17) and (22)-(24) as: 
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                                (a)                                               (b) 

Fig. 1  
(a)Concentrated source acting on the saturated porous media with incompressible fluid half space. (b) Source over the circular 
region acting on the saturated porous media with incompressible fluid half space. 

4    BOUNDARY CONDITIONS AND SOLUTION OF THE PROBLEM  

The boundary conditions at z=0 are 

1 3 2( , ) , ( , ) , ( , )    zz zrPF r t P F r t p P F r t    

 
where 1P , 3P  are the magnitudes of the forces and 2P  is the constant pressure applied on the boundary and ( , )F r t is 
the known function defined later in the manuscript. 

Applying  Laplace and Hankel transforms, we have 
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The  stress components are obtained with the aid of (2),(7),(11),(16) and (17) as: 
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5    DERIVATION OF SECULAR EQUATIONS 

Substituting the value of ru , zu and p  from (25),(26) and (24) in the boundary condition (27) and with help of (28) 
and (29) after some simplifications, we obtain 
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Case 2. For tangential force 1 2 0 P P  
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Case 3. For pressure force 1 3 0 P P  
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6    APPLICATION 
6.1 Time domain 

Case 1.Concentrated source: 
The solutions due to concentrated source is obtained by substituting 

 

1( , ) ( ) ( )F r t F r t  (33) 

 
where 
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1
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Applying Laplace and Hankel transform on (33) and (34), we obtain 

1
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2
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Case 2.Source over circular region: 
The solution due to source over the circular region of non-dimensional radius a is obtained by setting 

1( , ) ( ) ( )F r t F r t , where 
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1
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Applying Laplace and Hankel transforms on these quantities, we obtain, 
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In both the cases, we have taken ( ) ( )t H t , so Laplace transform of ( )t  gives , 
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6.2 Frequency domain 

In this case, we assume the time harmonic behaviour as: 

( , , )( , , ) ( , , )( , , ) , , i i i i i t
r z r zu u p r z t u u p r z t e i F S  

 
In frequency domain, we take ( )  i tt e  . 
The expressions for displacement, stress and pore pressure in frequency domain can be obtained by replacing i  

in the expressions of time domain (30) - (32) along with ( )s  to be replaced by i te    for concentrated source. 

6.3 Special case 

In the absence of porous incompressible fluid, the boundary conditions reduce to 
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1 3( , ) , ( , )     
zz zrPF s P F s     

 
and we obtain the constituting expressions for stress components in elastic half space as: 
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Taking 3 0P  and 1 0P  in Eqs. (35) and (36), we obtain respectively the stress components for the normal and 

tangential forces. 

7    NUMERICAL RESULTS AND DISCUSSION 

With the view of illustrating the theoretical results and for numerical discussion we take a model for which the value 
of the various physical parameters are taken from Gatmiri and Ngyun[6]: 

5 4 3
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The values of normal stress zz , tangential stress zr  and pore pressure p for fluid saturated  incompressible 

porous medium (FSPM) and empty porous medium (EPM) are shown due to concentrated source and source applied 
over the circular region.The computation are carried out for two values of dimensionless time t=0.1 and t=0.5 at z=1 
in the range 0 10 r . 

The solid lines either without central symbols or with central symbols represents the variations for t=0.1, 
whereas the dashed lines with or without central symbols represents the variations for t=0.5.Curves without central 
symbols correspond to the case of FSPM whereas those with central symbols corresponds to the case of EPM. 

7.1 Time domain 

Fig.2 shows the variation of normal stress component zz  w.r.t distance r for both FSPM and EPM due to 

concentrated normal force. The value of zz  starts with initial increase and then oscillates for FSPM as r  increases 
and in case of EPM, its value oscillates as r increases for both values of time. Fig. 3 shows the variation of normal 
stress component zz  w.r.t distance r for both FSPM and EPM due to concentrated tangential force. The value of 

zz  oscillates for FSPM as r increases for both values of time whereas in case of EPM , the value of zz  starts with 
sharp decrease and then oscillates for both values of time as r increases. Fig. 4 shows the variation of normal stress 
component zz  w.r.t distance r for FSPM due to concentrated pressure source. The value of zz  is more in the range 
3 6 r  and less in the range 6 9 r  for FSPM as r increases for time t=0.1 whereas for the time t=0.5 its value 
converges near the boundary surface.  

Fig. 5 shows the variation of pore pressure p w.r.t distance r for FSPM due to concentrated normal force. The 
value of p starts with initial decrease and then oscillates for FSPM as r increases for time t=0.1 whereas for the time 
t=0.5 the value of p decreases sharply and then oscillates as r increases. 
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Fig. 6 shows the variation of pore pressure p w.r.t distance r for FSPM due to concentrated tangential force. The 
value of p converges near the boundary surface for FSPM as r increases for time t=0.1 whereas for the time t=0.5 
the value of p decreases sharply and then oscillates as r increases. Fig.7 shows the variation of pore pressure p w.r.t 
distance r for FSPM due to concentrated pressure source. The value of p converges near the boundary surface for 
FSPM as r increases for time t=0.1 whereas for the time t=0.5 the value of p increases sharply and then oscillates as 
r increases. Fig.8 shows the variation of tangential stress zr w.r.t distance r for both FSPM and EPM due to 

concentrated normal force. The value of zr first decreases and then oscillates for FSPM as r increases for both 

value of time where as the value of zr  decreases sharply and then oscillates for EPM as r increases for both value 

of time. Fig.9 shows the variation of tangential stress zr w.r.t distance r for both FSPM and EPM due to 

concentrated tangential force. The value of zr first increases monotonically and then converges near the boundary 
surface for FSPM and EPM as r increases for both value of time. 

Fig.10 shows the variation of tangential stress zr w.r.t distance r for FSPM due to concentrated pressure source. 

The value of zr first increases and then oscillates for FSPM as r increases for time t=0.1 where as for the time t=0.5 

the value of zr  starts with initial increase and then converges near the boundary surface. Fig.11 shows the variation 

of normal stress zz  w.r.t distance r for both FSPM and EPM due to normal force over circular region. The value of 

zz  starts with initial increase and then oscillates for FSPM and EPM as r increases for both value time.  

Fig.12 shows the variation of normal stress zz  w.r.t distance r for both FSPM and EPM due to tangential force 

over circular region. The value of zz  starts oscillates for FSPM as r increases for both value time and the value of 

zz  for EPM first decreases gradually and then starts oscillating  as r increases for both value time. Fig.13 shows the 

variation of normal stress zz  w.r.t distance r for FSPM due to pressure source over circular region. The value of 

zz  first increases monotonically and then oscillates for FSPM as r increases for time t=0.1 where as for the time 

t=0.5 the value of zz  converges near the boundary surface as r increases. 
Fig. 14 shows the variation of pore pressure p w.r.t distance r for FSPM due to normal force over circular region. 

The value of p decreases sharply and then oscillates as r increases for both value of time. Fig.15 shows the variation 
of pore pressure p w.r.t distance r for FSPM due to tangential force over circular region. The value of p converges 
near the boundary surface for FSPM as r increases for time t=0.1 whereas for the time t=0.5 the value of p decreases 
sharply and then oscillates as r increases. Fig.16 shows the variation of pore pressure p w.r.t distance r for FSPM 
due to pressure source over circular region. The value of p starts with initial increase and then oscillates for FSPM as 
r increases for time t=0.1 where as for the time t=0.5 the value of p  increases sharply in the range 0 5 r  and 
then starts decreasing as r increases. Fig. 17 shows the variation of tangential stress  zr w.r.t distance r for both 

FSPM and EPM due to normal force over circular region. The value of zr  first decreases and then oscillates for 

FSPM as r increases for both value of time where as  the value of zr  decreases gradually  and then oscillates for 
EPM as r increases for both value of time.  

Fig.18 shows the variation of tangential stress zr  w.r.t distance r for both FSPM and EPM due to tangential 

force over circular region. The value of zr  first increases monotonically and then converges near the boundary 

surface for FSPM for both value of time where as the value of zr  converges near the boundary surface for time 
t=0.1 and first increases monotonically and then converges near the boundary surface for the time t=0.5 for EPM as 
r increases. Fig.19 shows the variation of  tangential stress zr  w.r.t distance r for FSPM due to pressure source 

over circular region. The value of zr  increases sharply and then oscillates as r increases for FSPM for both value 
of time. 
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Fig. 2  
Variation of normal stress ZZ with distance r due to 

concentrated Normal force.                                           
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Fig. 3 
Variation of normal stress ZZ  with distance r due to 

concentrated tangential force. 
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Fig. 4 
Variation of normal stress ZZ  with distance r due to 

concentrated pressure source. 
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Fig. 5 
Variation of pore pressure p with distance r due to 
concentrated normal force. 
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Fig. 6 
Variation of pore pressure p with distance r due to 
concentrated tangential force. 
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Fig. 7 
Variation of pore pressure p with distance r due to 
concentrated pressure source. 
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Fig. 8 
Variation of tangential stress Zr  with distance r due to 

concentrated Normal force. 
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Fig. 9 
Variation of tangential stress Zr  with distance r due to 

concentrated tangential force. 
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Fig. 10 
Variation of tangential stress Zr  with distance r due to 

concentrated pressure source.           
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Fig. 11 
Variation of normal stress ZZ   with distance r due to 

normal force over circular region. 
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Fig. 12 
Variation of normal stress ZZ  with distance r due to 

tangential force over circular region. 
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Fig. 13   

Variation of normal stress ZZ  with distance r due to normal 

force over circular  region.      
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Fig. 14 
 Variation of pore pressure p with distance r due to normal 
force over circular region. 
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Fig. 15 
Variation of pore pressure p with distance r due to tangential 
force over circular region. 
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Fig. 16 
Variation of pore pressure p with distance r due to pressure 
source over circular region. 
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Fig. 17 
Variation of tangential stress Zr  with distance r due to 

normal force over circular region.  
       

 
 

0 2 4 6 8 10
Distance r

-2.5

-2

-1.5

-1

-0.5

0

FSPM(t=0.1)

FSPM(t=0.5)

EPM(t=0.1)

EPM(t=0.5)

T
a
n
g
e
n
tia

l s
tr
e
ss

 

r

 

 
 
 
 
 
 
 
 
Fig. 18 
Variation of tangential stress Zr  with distance r due to 

normal force over circular region.   
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Fig. 19  

Variation of tangential stress Zr  with distance r due to 

pressure source over circular region. 
 

7.2 Frequency domain 

Fig. 20 shows the variation of normal stress component zz  w.r.t distance r for both FSPM and EPM due to 

concentrated normal force. The value of zz  first increases monotonically and then start oscillating for FSPM  as r 

increases for both value the time where as its value oscillates as r increases for t=0.1 and converges near the 
boundary surface for t=0.5 for EPM. Fig.21 shows the variation of normal stress component zz  w.r.t distance r for 

both FSPM and EPM due to concentrated tangential force. The value of zz  first decreases sharply and then start 
oscillating for FSPM as r increases for both value the time where as its value oscillates as r increases for both value 
the time for EPM. 

Fig. 22 shows the variation of normal stress component zz  w.r.t distance r for FSPM due to concentrated 

pressure source. The value of zz  first decreases and then start oscillates for FSPM as r increases for both value of 
time. Fig. 23 shows the variation of pore pressure p w.r.t distance r for FSPM due to concentrated normal source. 
The value of p first increases sharply and then start oscillates for FSPM as r increases for both value of time. 
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Fig. 24 shows the variation of pore pressure p w.r.t distance r for FSPM due to concentrated tangential source. 
The value of p decreases and then start oscillates for FSPM as r increases for both value of time. Fig. 25 shows the 
variation of pore pressure p w.r.t distance r for FSPM due to concentrated pressure source. Fig. 26 shows the 
variation of tangential stress zr w.r.t distance r for both FSPM and EPM due to concentrated normal force. The 

value of zr first increases sharply and then start oscillates for time t=0.1 where as for the time t=0.5 the value of 

zr  first increases and then converges near the boundary surface as r increases for FSPM and for EPM it value first 

increases monotonically and then start oscillates for time t=0.1 where as for the time t=0.5 the value of zr   

converges near the boundary surface as r increases. Fig. 27 shows the variation of tangential stress zr  w.r.t 

distance r for both FSPM and EPM due to concentrated tangential source. The value of zr  decreases gradually for 

time t=0.1 where as for the time t=0.5 the value of zr  first increases and then converges near the boundary surface 
as r increases for FSPM and for EPM it value first decreases monotonically and then start oscillates for time t=0.1 
where as for the time t=0.5 the value of zr converges near the boundary surface as r increases.  

Fig. 28 shows the variation of tangential stress zr w.r.t distance r for FSPM due to concentrated pressure 

source. The value of zr  decreases gradually and then start oscillates for time t=0.1 where as for the time t=0.5 the 

value of zr first decreases and then converges near the boundary surface for FSPM as r increases.  
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Fig. 20  
Variation of normal stress ZZ  with distance r due to normal 

force (frequency domain).    
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Fig. 21 
Variation of normal stress ZZ  with distance r due to 

tangential source (frequency domain). 
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Fig. 22 
Variation of normal stress ZZ  with distance r due to 

pressure source (frequency domain).          
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Fig. 23 
Variation of pore pressure p with distance r due to normal 
force (frequency domain). 
 

 

0 2 4 6 8 10
Distance r

-2

0

2

4

6

P
o
re

 p
re

ss
u
re

 p

FSPM(t=0.1)

FSPM(t=0.5)

 

 
 
 
 
 
 
 
 
 
 
Fig. 24 
Variation of pore pressure p with distance r due to tangential 
force (frequency domain).                                
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Fig. 25 
Variation of pore pressure p with distance r due to pressure 
source (frequency domain). 
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Fig. 26 
Variation of tangential stress Zr  with distance r due to 

normal force (frequency domain).                            
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Fig. 27 
Variation of tangential stress Zr  with distance r due to 

tangential force (frequency domain). 
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Fig. 28 
Variation of tangential stress Zr  with distance r due to 

pressure source (frequency domain). 

8   CONCLUSIONS 

Near the application of the source, the porosity effect decreases the values of zz  for normal force, tangential force 

and pressure source where as it decreases the values of zr  for normal force and tangential force but increase the 
values for pressure source, due to concentrated source in  the time domain. In frequency domain, porosity effect 
increases the values of zz  and zr  and p for normal force, tangential force and pressure source for source over 

circular region. Also away from the source, the porosity effect decreases the values of zz   for normal force and 

increases the values for tangential force and pressure source whereas it decreases the value of zr  for normal force 
and monotonically increases for tangential force and pressure source. In the intermediate region, the values of   

zz zr and p oscillates for all the sources in both the domains. 
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