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ABSTRACT
In the present research, free vibration and modal stress analyses of thin circular plates with
arbitrary edge conditions, resting on two-parameter elastic foundations are investigated. Both
Pasternak and Winkler parameters are adopted to model the elastic foundation. The differential
transform method (DTM) is used to solve the eigenvalue equation yielding the natural frequencies
and mode shapes of the circular plates. Accuracy of obtained results is evaluated by comparing the
results with those available in the well-known references. Furthermore, effects of the foundation
stiffness parameters and the edge conditions on the natural frequencies, mode shapes, and
distribution of the maximum in-plane modal stresses are investigated.
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1 INTRODUCTION

ANY practical examples of plate-type engineering components with specified edge conditions resting on

elastic foundations may be found in the aerospace, marine, civil, automotive, electronic, and nuclear
industries. In some circumstances, the plate may be modeled as a plate resting on elastic foundations. Face sheets of
sandwich structures with honey comb or very soft cores are some examples. Numerous free vibration studies of the
circular plates may be found in literatures. An extensive survey of the early investigations on the free vibration of
the circular plates was given by Leissa [1]. Some researchers have developed analytical solutions for axisymmetric
vibration of circular plates with edge supports and expressed the natural frequencies in terms of Bessel’s functions
[2-5]. In this regard, natural frequencies of circular plates with different combinations of free, simply-supported, and
clamped boundary conditions have been reported by Irie et al. [6]. It is worth to mention that other methods, such as
the Homotopy [7-9] and the differential quadrature methods [10, 11], have been used by other researchers to solve
free vibration and nonlinear dynamic problems.

In recent years, Rokni et al. [12] developed an axisymmetric vibration analysis for variable thickness circular
plates with various combinations of the edge boundary conditions. Liew and Yang [13] used a three dimensional
elasticity approach to analyze axisymmetric vibration of a circular plate with uniform thickness using Ritz solution
procedure. Zhou et al. [14] used the three dimensional elasticity approach for free axisymmetric vibration analysis of
circular plates with simple edge conditions, employing Chebyshev-Ritz method to solve the resulted governing
equations. Recently, the subject of plates resting on elastic foundations has been adopted by many researchers to
model the interaction between a metal plate and its elastic substrate, especially when the substrate exhibits both
shear and transverse flexibilities. It is known that Winkler model of an elastic foundation is the most preliminary
one. In this model, the vertical displacement is assumed to be proportional to the contact pressure at each arbitrary
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point. Investigations on free vibration, buckling and bending behaviors of plates with Winkler-type foundations have
been performed by many researchers. For instance, Chen et al. [15] derived solutions of various orders for
axisymmetric vibrations of the thin plates, Berger plate, and Winkler plate. Gupta et al. [16] investigated
axisymmetric buckling and vibration of polar orthotropic circular plates resting on Winkler foundations. Gupta et
al. [17] analyzed free axisymmetric vibrations of non-homogeneous isotropic circular plates with nonlinear
thickness variations on the basis of the classical plate theory employing the differential quadrature method (DQM).
Although Winkler model is simple and widely used, it is not accurate enough [18]. To overcome this problem, some
researchers have proposed various two-parameter foundation models, which may capture the real behavior more
precisely, such as Vlasov foundation [19], the generalized foundation [20], and Pasternak foundation [21]. Many
other researchers have used the mentioned models. For instance, Zhou et al. [22] presented an excellent investigation
on the 3-D free vibration of thick circular plates resting on a Pasternak-type foundation by using the Chebyshev—
Ritz method.

In the present study, another powerful method called the differential transform method (DTM) is used to analyze
free vibration of FG circular plates resting on two-parameter elastic foundations, analytically. In contrast to many
available researches in the field, it is focused on the non-axisymmetric vibration and the modal stress analysis. DTM
is a semi-analytical technique that formulates the Taylor series in a totally different manner. With this technique, the
given differential equation and the relevant initial conditions are transformed into recurrence equations that finally
lead to a system of algebraic equations which give the coefficients of the power series solution. This method is
useful for obtaining exact and approximate solutions for linear and nonlinear differential equations. There is no need
to use linearization or perturbation techniques, and significant computational times and round-off errors are avoided.
This method is well addressed in [23-25]. In the present study, the convergence and accuracy of the applied method
are evaluated and compared with Refs. [1, 8]. Then effects of the elastic foundation on the natural frequencies, mode
shapes, and modal stresses are evaluated for different boundary conditions.

2 THE GOVERNING EQUATIONS

Consider a thin circular plate resting on a two-parameter elastic foundation, as shown in Fig. 1. Based on the
classical bending theory of the plates [26], the displacement field is described as follows:

u =u(r,0,t)=w(r,0,1)
u =u(r,0,t)=—zw, (1)

u, =u,(7,0,t) =—zw,

The strain-displacement relations of the plate in a non-axisymmetric deformation may be written as

2)

Fig. 1
Shearing layer A circular plate resting on a two-parameter
elastic foundation.
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The two-parameter elastic foundation model p(x,y) =k w—k V'w, introduces a more realistic model for the

foundations by taking into account the curvature and the displacement of the foundation layer. k; is usually referred
to as the shear modulus of the foundation. Therefore, based on Eq. (1), the resulted equation of motion of the plate is
given as [26]

oIw_ (4)
or’

DV'w—kNV'w+kw+p

where w is the transverse deflection, V' is the biharmonic operator, &, is the Winkler elastic coefficient of the
foundation. p and D are the mass density per unit area and the flexural rigidity of the plate respectively. When

free vibrations are considered, deflection of a circular plate in the polar coordinates may be expressed as follows:
w= f)e ®)

where m is an integer number of the circumferential half waves, @ is the natural frequency, and i =+/—1 is the
imaginary number. Substituting Eq. (5) into Eq. (4) yields

d’ 2d Bd B d A 6
L 24 BAL B 2Ly oy RV ©
a' rdrt ©drr rdr r
where
A=m'—4m’ and B=2m"+1 (6a)

and the other dimensionless parameters are defined as follow:

Dimensionless frequency: Q= a’w\fp/D (6b)
Dimensionless Winkler normal stiffness of the foundation: K = (a’/D)k, (6¢)
Dimensionless stiffness of the shearing layer of the foundation: K = (a’ / D)k, (6d)

In Eq. (6), it is assumed that f'is the dimensionless deflection, a is the plate radius, r is the dimensionless radial
coordinate, and @ is the dimensionless tangential coordinate. Three types of the edge conditions are defined at the
outer edge of the circular plate (r=1). These conditions may be written in terms of the dimensionless deflection
function f{r) as follows:

Free edge:
2 2 ™)
M.|,_:‘ =—-D Qﬁ—v[li_i_m’ f] :0
dr’ rdr 1’
v|, =L LT (my=2m SO (3 mmy)
ar’  rdr r dr p
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Simply-supported edge:

e (g ®)
7)., =0, M,|,.=—DQ+V[—1+m—zf]=0
dr’ rdr r
Clamped edge:
d )]
o), =0, Ly =0
dar

where M, is the radial bending moment per unit length, V, is the effective radial shear force per unit length, and v is
Poisson’s ratio. It is obvious that Eq. (6) is a fourth-order differential equation and subsequently, four boundary
conditions are required to determine the integration constants. One may obtain two of those from the boundary
conditions of the outer edge of the circular plate. However, the remaining two conditions must be investigated
within the regularity conditions at the center of the plate. Wu et al. stated two more boundary conditions at the
center of the solid circular plate [11]. Denoting number of the circumferential half waves by m, circular plates with
even m and odd m values have symmetric and antisymmetric modes, respectively. Therefore, one can obtain the
regularity conditions at the center of the circular plate (»=0) in terms of the number of the nodal diameters (or
number of the circumferential half waves) as follows:

Antisymmetric case:

2 10
f@)|,, =0, M,|,u:ﬂ,_0:o, for m=1,3,5,... (10)
dar’
Symmetric case:
: 11
1,020, V,,,,U:ﬂ , =0, for m=2,4,6,... (an
dr ar’

3 THE TRANSFORMED FORM OF THE GOVERNING EQUATIONS
3.1 A brief description of the differential transform method (DTM)

The differential transformation technique, which is used in this paper was first proposed by Zhou in 1986 and is one
of the analytical methods that has been proposed for solving ordinary and partial differential equations. This method
has been developed based on the Taylor series expansion and is a useful tool to obtain analytical solutions for the
differential equations. In this method, certain transformation rules are applied and the governing differential
equations of the system and their relevant boundary conditions are transformed into a set of algebraic equations. The
differential transforms of the original functions and the solution of these algebraic equations give the desired
solution of the problem. The basic definitions and the application procedure of this method can be expressed as
below. Consider a function f{r) which is analytic in a domain R and let r=r, represent any point in R. The function
f(r) may be represented by a power series whose center is located at r,. The differential transform of the kth
derivative of the function f{r) is given by

d'f(r) (12)

dr*

_ 1
k)

where f{(r) is the original function and £}, is the transformed function. The inverse transformation of the function f{r)
is defined by

fO)=3 2 —r)'F, (13)

Combining Egs. (12) and (13), one may write:
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= (r—r)
f(r)=;—k!

d'f@)

dr

(14)

r=n

In Eq. (14), it is obvious that the concept of the differential transform is derived from Taylor’s series expansion.
In this study, the lower case letters represent the original functions and the upper case letters are used for the
transformed functions. In practical applications, the function f{r) may be expressed by a finite Taylor series as:

Sy =y n)

d'f)
= k!

dr

(15)

r=n

which implies that Z (r—r,)'F is negligibly small. Here, choice the N value depends on the convergence criterion
of the natural frequencies.
3.2 Basic mathematical operations of the differential transformation method

Some of the rules that are frequently used in the differential transformation method are introduced in Table 1.

3.3 Transformations of the free vibration governing equations

Employing the differential transformation rules defined in Table 1, transformation of Eq. (6) around »y=0 leads to:

k—1+2

AF + B~k —1+DE , —BY8(—2)(k — I+ 1)k~ +2)F (16)
125U =3k — I+ 1)k — [+ 2)(k — [ +3)EF .
FSS(U— Ak — 14Dk — 1+ 2)(k—1+3)k — 1 +4)F

= (Q —K )Y 5(I—4)F,

K|S 8=k —1+ D)k~ 1+ DF, +38(—3)k— 1+, —m*Y 51— 2)F,

Simplifying Eq. (16) and using the last rule listed in Table 1, the equation of motion can be transformed into the
following recurrence equation:

Table 1
The transformation rules in the DTM
Original function Transformed function
f(r):g(r)ih(r) FKZGKin
f(f") = /’ig(l’) Fk = /IGk
S () =g(r)- h(r) k
Fe=, .G Hia
g(r) G ->"'G-H
)= e A e B 28
h(r) £ H,
d'g(r) (k+n)!
=—=7 F = G
J() o ) o Ok
=r 1 k=
fr)=r E—d(k—n)—{ n
0 k=n
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e (@ —K) . ((k+2) —m")K, - (17)
G ABRA O+ k- Dk I (h+2) A B+ Ak +2) +k+ Ak +3) (k+2)

From Eq. (17), the following equations can be obtained for k =0, 1, 2, ..., n:

F_ (@ -K) F (2" —m)K
‘" A—B@4-2)+(4-3-2) " A-B(4-2)+(4-3-2) °
o (@ -K) (3 —m)K,
' A-B(5-3)+G4-3) " A-B(5-3)+(5-4-3)°
F (@ -K)) F @ —m)K.
" A—B(6-4)+ (654 A-B6-4)+(6-5-4) "
_ @ —m)HK . Q-K, r { (X -K) @ —m)HK . @ —m)HK
A—B(6-4)+(6-5-4) A—B(4-2)+(4-3-2) " |A-B(6-4)+(6-54) A—B6-4)+(6-5-4) A—B(4-2)+(4-32)
F— (' -K)) F (5" —m)K,
" A-B(7-5)+(1-6-5 ' A—B(7-5+(7-6-5) °
B (5 —m)K . (@ —K) O -K N 5—-m K ' ¥-m K
A—B(1-5)+(7-6-5) A—B(5-3)+(5-4-3) ' |A—B(7-5+(7:6"-5) A—B(7-5)+(7-6"-5) A—B(5-3)+(5-4-3)|°
o (@ -K) Py (2k—2y —m"K
* A—-BQREQRk—-2)+2k)QRk -1y (2k—2) 7 A—BQRk)2k—2)+Qk)2k -1y’ (2k—-2) "
(Q-K) Py ((2k =3y —m)K.

Fo Bk Dk —3)+ 2k D2k —2) (2% —3) A Bk D)2k —3)+ 2k —D2k 2y 2k—3) "

(18)

Thus, it can be deduced that the even terms (F,;) depends finally on Fjand F, and the odd terms (F,.;) depends
lastly on F and Fj.

3.4 Transformation of the boundary/regularity conditions

By applying rules of Table 1 to the boundary conditions of the outer edge (r=1), presented in Egs. (7-9), the
following equations are obtained:

Free edge:
S (k(k 1)+ vk —m*v)E =0 (19)
z(k(k =Dk —2)+k(k =D+ (m’v —2m* =Dk + Bm* —m’v))F, =0
Simply-supported edge:
SSE =0, S (k(k—1)+vk—m'v)F, =0 (20)
Clamped edge:
21)

At the center of the circular plate (=0), the boundary conditions which are derived from the regularity
conditions appeared in Egs. (10) and (11) can be transformed as follows:
Antisymmetric case:

© 2010 IAU, Arak Branch



A Semi-Analytical Solution for Free Vibration and Modal Stress Analyses of Circular Plates ... 69

F=F=F=--F,=F, =0, for m=13,5,... (22)
Symmetric case:

F=F=F=-F, =F,_ =0, for m=2,4,6,... (23)

1 4k+1 4k

4 SOLUTION PROCEDURE

The frequency equations can be derived by imposing all the boundary conditions appeared in Eqgs. (19-23). For a
circular plate, the axisymmetric edge conditions of the outer edge may be one of the following types: simply-
supported, clamped or free. It can also be assumed that the regularity conditions at the center are either symmetric or
antisymmetric, depends on the number of nodal diameters (being even or odd). Hence, six combinations may be
possible.

To clarify the procedure of obtaining the final frequency equation, the procedure is explained for one of the
mentioned cases: a circular plate with free edges resting on a two-parameter clastic foundation experiencing a
symmetric vibration (m = 0, 2, 4, ...). However, all the cases have been treated in the present research. For plates
with symmetric modes, based on Eq. (23), only even terms (F>;) exist and the odd terms may be omitted. Then Eq.
(19) may be rewritten as follows:

w (24)
32Kk -1 +v(2)-mPv]Fy =0

k=0

S (2K)(2k —1)(2k —2) + (2k)2k —1) + (m’'v —2m’ —1)(2k) + (B’ —m’v) F, =0 (25)

and by using Eq. (17) one may obtain the following expressions:

YIQ)F+YI(QF =0 (26)
YU E+YI(QE =0

where ¥, ¥1,, 1, and ¥, are polynomials of Qcorresponding to the nth term. It can be readily seen that the ¥,
¥1,, Ps1, and ¥, terms represent the closed form series expressions appeared in Eq. (26). Eq. (26) can be expressed
in the following matrix form:

Q) YIQIE| |0 27
@ wr@IE] (o
Existence of a non-trivial answer requires that:

PO w©)| (28)
PUQ) PUQ)|

and by solving Eq. (28) the dimensionless frequencies may be obtained. In determining the value of nth natural
frequency, the following convergence criterion may be taken into account:

Q' —a|/er|<s i=12,..n (29)

where Q; is the jth estimated eigenvalue (jth natural frequency) and & is a sufficiently small number taken as

£=0.00001 in the present study. The corresponding eigenfunction, f{r), describing the instantaneous deflected shape

of the circular plate can be obtained by substituting Eq. (26) into Eq. (13). Following a similar procedure, the final
frequency equations of other types of the boundary and regularity conditions can be derived.
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5 RESULTS AND DISCUSSION

In this section, as a first stage, convergence and accuracy of the results of the employed method is investigated. In
the second stage, results of free vibration analyses of isotropic plates with different edge conditions resting on two-
parameter foundations are assessed. Finally, distributions of the dimensionless modal stress components are plotted
and discussed. Poisson’s ratio is assumed to be v = 0.3. Convergence and accuracy of the method is investigated by
comparing results of the first three non-dimensional natural frequencies of circular plates without elastic
foundations, with those of some well-known references. The natural frequencies results are derived for different
number of terms of the series solution (V) and are given in Table 2. There is an excellent agreement with results of
reference [11]. The high rate convergence of the method is quite evident and it is found that choosing few terms of
the solution series (relatively small N) may yield accurate results. Furthermore, the high accuracy of the method may
be noticed. To validate the results, the obtained first three dimensionless frequencies are compared with those
reported by Refs. [1, 11] in Table 3.

Table 2
Convergence and accuracy of the first three non-dimensional natural frequencies of the free circular plate without elastic
foundation, for various numbers of terms of the series solution ()

N=40 N=50 N=60 N=70 Ref. [11]
m=0 Q, 9.0031 9.0031 9.0031 9.0031 9.003
Q, 38.4432 38.4432 38.4432 38.4432 38.443
Q, 87.7502 87.7502 87.7502 87.7502 87.75
m=1 Q, 20.4746 20.4746 20.4745 20.4745 20.475
Q, 59.8116 59.8116 59.8116 59.8116 59.812
Q, 118.9573 118.9573 118.9573 118.9573 118.957
m= Q, 5.3583 5.3583 5.3583 5.3583 5.358
Q, 35.2601 35.2601 35.2601 35.2601 35.26
Q, 84.3662 84.3662 84.3662 84.3662 84.366
Table 3
A comparison among the first three dimensionless natural frequencies
Edge condition Dimensionless frequency Source Number of nodal diameters, m
0 1 2 3
Simply- supported Q Present 4.9351 13.8982 25.613 39.9573
Ref. [1] 4.977 13.94 25.65 -
Ref. [11] 4.935 13.898 25.613 39.957
Q, Present 29.72 48.4789 70.117 94.5489
Ref. [1] 29.76 48.51 70.14 -
Ref. [11] 29.72 48.479 70.117 94.549
Q, Present 74.1561 102.7733 134.2978 168.6749
Ref. [1] 74.2 102.8 134.33 -
Ref. [11] 74.156 102.772 134.298 168.675
Clamped Q Present 10.2158 21.2604 34.877 51.03
Ref. [1] 10.2158 21.26 34.88 51.04
Ref. [11] 10.216 21.26 34.88 51.03
Q, Present 39.7711 60.8287 84.5826 111.021
Ref. [1] 39.771 60.82 84.58 111.01
Ref. [11] 39.771 60.829 84.583 111.021
Q, Present 89.1041 120.0792 153.815 190.3037
Ref. [1] 89.104 120.08 153.81 190.3
Ref. [11] 89.104 120.079 153.815 190.304
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As it may be noticed form results of Tables 2 and 3, there is an excellent agreement among the present results
and results of references [1] and [11]. Results of circular plates resting on elastic foundations are listed in Tables 4-

6.
Table 4
First three dimensionless natural frequencies of circular plates with free edges, resting on elastic foundations
m O Q, Q,
K,=10, K=0 0 9.5423 38.5730 87.8072
1 20.7173 59.8951 118.9994
2 6.2219 35.4016 84.4254
K=100, K=0 0 13.4557 39.7225 88.3182
1 22.7861 60.6418 119.3769
2 11.3451 36.6507 84.9567
K,~=1000, K=0 0 32.8794 49.7783 93.2743
1 37.6724 67.6567 123.0888
2 32.0735 47.3632 90.0980
K,=0, K=5 0 10.3647 40.4694 89.9512
1 22.2804 61.9350 121.2010
2 6.2968 37.2121 86.5412
K,=0, K=10 0 11.5491 42.3970 92.0992
1 23.9399 63.9870 123.4036
2 7.0940 39.0621 88.6624
K,=0, K=15 0 12.6093 44.2385 94.1977
1 25.4828 65.9741 125.5673
2 7.7968 40.8241 90.7334
K.~=10, K=5 0 10.8364 40.5928 90.0068
1 22.5037 62.0157 121.2422
2 7.0463 37.3462 86.5989
K,=100, k=10 0 15.2768 43.5604 92.6405
1 25.9445 64.7637 123.8081
2 8.7907 40.3218 89.2245
Table 5
First three dimensionless natural frequencies of circular plates with simply supported edges, resting on elastic foundations
m (] Q, Qg
K,=10, K=0 0 5.8614 29.8878 74.2234
1 14.2534 48.5820 102.8220
2 25.8078 70.1883 134.3350
K,=100, K=0 0 11.1515 31.3573 74.8273
1 17.1219 49.4996 103.2587
2 27.4962 70.8265 134.6696
K,=1000, K=0 0 32.0056 43.3968 80.6171
1 34.5421 57.8890 107.5284
2 40.6945 76.9181 137.9707
K,=0, K=5 0 7.3039 32.1815 76.6392
1 16.3293 50.9540 105.2609
2 28.0711 72.5994 136.7882
K,=0, K=10 0 9.0732 34.4679 79.0443
1 18.4425 53.3144 107.6911
2 30.3303 74.9996 139.2341
K,=0, K=15 0 10.5493 36.6117 81.3785
1 20.3371 55.5746 110.0676
2 32.4324 77.3253 141.6377
K=10, K=5 0 7.9590 32.3365 76.7044
1 16.6327 51.0521 105.3084
2 28.2486 72.6682 136.8248
K,=100, K=10 0 13.5027 35.8892 79.6744
1 20.9791 54.2441 108.1544
2 31.9363 75.6633 139.5927
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Table 6
First three dimensionless natural frequencies of circular plates with clamped edges, resting on elastic foundations
m (O) Q, Q,
K,=10, K=0 0 10.6941 39.8967 89.1602
1 21.4943 60.9108 120.1208
K,=100, K=0 0 14.2956 41.0091 89.6635
1 23.4948 61.6452 120.4949
K,~=1000, K=0 0 33.2320 50.8109 94.5492
1 38.1052 68.5575 124.1734
K,=0, K=5 0 11.7805 41.8191 91.3113
1 23.1465 62.9725 122.3307
K,=0, K=10 0 13.1455 43.7694 93.4658
1 24.8814 65.0445 124.5412
K=0, K~=15 0 14.3703 45.6342 95.5713
1 26.4955 67.0512 126.7133
Ky=10, K=5 0 12.1975 41.9385 91.3660
1 23.3616 63.0518 122.3718
K,=100, K=10 0 16.5168 44.8972 93.9993
1 26.8157 65.8087 124.9415
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Fig. 2

Mode shapes of circular plates with free edges resting on elastic foundations: (a) m=0; (b) m=1.
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Mode shapes of circular plates with simply-supported edges resting on elastic foundations: (a) m=0; (b) m=1.
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Mode shapes of circular plates with clamped edges resting on elastic foundations: (a) m=0; (b) m=1.

The first three dimensionless natural frequencies are presented for various combinations of the elastic foundation
coefficients (K,, and K;). While one of the mentioned foundation coefficients is set equal to zero in the first cases, to
evaluate influence of the coefficients individually, in the last two cases of each table, both Winkler (X,,) and elastic
coefficient of the shearing layer (Pasternak coefficient, K;) are assumed to be non-zero. It is obvious that both
Winkler and elastic coefficient of the shearing layer have significant effect on the dimensionless natural frequency.
For identical values, effect of Pasternak coefficient is more remarkable. Furthermore, results reveal that increasing
each of the foundation coefficients leads to an increased plate stiffness and subsequently, higher Q, Moreover,
results show that for circular plates with free edges, in contrast to other boundary conditions, the smallest Q; is
achieved at m=2.

Figs. 2-4 show the first two mode shapes for circular plates with free, simply-supported and clamped edge
conditions, resting on elastic foundations. Only two typical numbers of the nodal diameters, i.e. m=0 and m=1, are
considered here to save space. These cases represent symmetric and antisymmetric regularity conditions,
respectively. As it may be expected from results shown in Tables 4-6, effect of Pasternak’s coefficient of the elastic
foundation (Kj) on the mode shapes is more remarkable than influence of Winkler’s coefficient (X,,). For this reason,
curves indicating effect of Winkler’s coefficient are not included. Meanwhile, effect of K on the first mode shape is
more noticeable. From Fig. 3, it may be readily noticed that for the simply-supported circular plate, both the K,, and
K have almost ignorable effects on the shape modes. Finally, effect of the foundation stiffness on the maximum
values of the modal stress components of the radial sections is investigated. Variations of the dimensionless radial
and tangential modal stress components in the radial direction are depicted in Figs. 5-7, for various edge conditions.
Figures are drawn for the fundamental natural frequency (i.e., m=0, z=h/2 andQ,). The dimensionless stress

components are defined as follows:

_ o.a
o =

' ER’
_ o a

" ER (30)
- r,a
T,= -

' Eh

As its effect on the mode shapes, Winkler coefficient (K,,) has ignorable effect on the dimensionless tangential
and radial stresses, but Pasternak coefficient (X,) may decrease or increase o and o, , depending on the type of the

edge condition. Fig. 8 shows the 3D plots of variations of the through-the-thickness dimensionless tangential and
radial stresses in the radial direction, for (m=0, €2 ) and various boundary conditions, for a better visualization.

Besides, Fig. 9 shows the 3D plots of variations of the through-the-thickness dimensionless radial stress in the radial
direction, for both (m=0, Q,) and (m=1, Q,), and various edge conditions.
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Fig. 5
Effect of Pasternak coefficient of the elastic foundation on the dimensionless stress components, for circular plates with free

edges: (a) radial stress; (b) tangential stress.
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Fig. 6

Effect of Pasternak coefficient of the elastic foundation on the dimensionless stress components, for circular plates with simply-
supported edges: (a) radial stress; (b) tangential stress.
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Fig. 7

Effect of Pasternak coefficient of the elastic foundation on the dimensionless stress components, for circular plates with clamped
edges: (a) radial stress; (b) tangential stress.

© 2010 IAU, Arak Branch



A Semi-Analytical Solution for Free Vibration and Modal Stress Analyses of Circular Plates ... 75

24

0.g

s -1.2

Fig. 8
Variations of the through-the-thickness non-dimensional stress components in the radial direction, for m=0 and Q; for a circular

plate with: (a) free edge; (b) simply-support edge; (c) clamped edge.
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Fig. 9
Variations of the through-the-thickness non-dimensional radial stress in the radial direction for various edge conditions.
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To obtain the maximum dimensionless radial stress, value of 8 is considered to be zero for m=1. It is obvious that

will increase.

ax r,min

by increasing Q;, |5',v,m and |5'_

6 CONCLUSIONS

Free vibration and modal stress analyses of thin circular plates with arbitrary edge conditions resting on two-
parameter elastic foundations is investigated in the present paper. The differential transform semi-analytical
procedure is employed. Comparisons made with results of well-known references confirm accuracy of the present
formulations. Some sensitivity analyses are performed to evaluate effect of the foundation parameters and edge
conditions on the dimensionless natural frequencies, mode shapes, and modal stresses of the circular plates.
Furthermore, effects of the foundation parameters and the edge conditions on the natural frequencies, mode shapes,
and distribution of the maximum in-plane modal stresses are investigated.
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