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 ABSTRACT 

 The analysis of rotational effect on the characteristics of plane waves 

propagating in a half space of generalized thermo-piezoelectric medium is 

presented in context of linear theory of thermo-piezoelectricity including 

Coriolis and centrifugal forces. The governing equations for a rotating 

generalized thermo-piezoelectric medium are formulated and solved for 

plane wave solutions to show the propagation of three quasi plane waves in 

the medium. A problem on the reflection of these plane waves is considered 

from a thermally insulated/isothermal boundary of a rotating generalized 

thermo-piezoelectric solid half space. The expressions for reflection 

coefficients of three reflected waves are obtained in explicit from. For 

experimental data of LiNbO3 and BaTiO3, the speeds of various plane waves 

are computed. The reflection coefficients of various reflected waves are also 

obtained numerically by using the data of BaTiO3. The dependence of speeds 

of plane waves and reflection coefficients of various reflected waves is 

shown graphically on the rotation parameter at each angle of incidence.   

                                                © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 IEZOELECTRICITY is the study of charge gathered in certain solids due to an applied mechanical force. 

Piezoelectric crystals produce electric field due to an applied mechanical force and vice-versa. Quartz, Rochelle 

Salt and Tourmaline are widely used natural occurring piezoelectric crystals. For example, Quartz crystals are used 

in the control of the frequency of oscillators and in the production of very selective filters. Rochelle salt is used in 

most of low-frequency transducer applications and Tourmaline is used for measuring hydrostatic pressures. Barium 

Titanate (BaTiO3) is one of widely used piezoelectric ceramics. Due to linear coupling between mechanical and 

electrical fields in piezoelectric materials, the ceramics are used as transducers, actuators, sensors and filters. Voigt 

[41] established a linear theory of piezoelectricity. The general formulation of piezoelectricity was developed by 

Toupin [40]. The classical texts by Cady [7], Tiersten [39], Maugin [21], Ikeda [16], Yang [43] and Eringen and 

Maugin [13] are referred for detail on the linear theory of piezoelectricity. Wave phenomenon in piezoelectric media 

has its applications in generation and transmission of disturbances in electro-acoustic devices like transducers and 

resonators. Reflection and transmission of acoustic energy at a surface plays an important role in the fields of signal 
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processing, transduction and frequency control [5, 18, 29, 31]. The characteristics of reflected and refracted waves at 

such boundaries provide information regarding the resolution characteristics of acoustic transducers. The reflection 

and refraction of plane waves in piezoelectric anisotropic materials is an important topic of research for last four 

decades. See for example, Lothe and Barnett [20], Noorbehesht and Wade [25],  Alshits et al. [3],  Every and 

Neiman [14], Nayfeh and Chien [24], Alshits and Shuvalov [4],  Zhang et al. [44],  Shuvalov and Clezio [35],   

Clezio and Shuvalov [10],  Burkov et al., [6], Pang et al. [28], Chen et al., [9], Darinskii et al. [11],  Singh [37-38] 

and Kuang and Yuan [17].  

Thermo-piezoelectric materials are being considered for use in the performance of existing aerospace structures. 

In general, the thermo-piezoelectric materials provide fast response times, good dynamic behavior, the capability to 

be used as either sensors or actuators, simple integration into a structure, low power requirement, a readily 

obtainable commercial supply and long familiarity through previous applications in transducers. Thermal effects 

greatly influence the performance of piezoelectric actuators and sensors, especially when they are required to 

operate in severe temperature environments. The governing equations of a thermo-piezoelectric material were 

derived by Mindlin [22-23]. Nowacki [26] established a uniqueness theorem for the solutions of differential 

equations of thermopiezoelectricity on the basis of energy balance. Chandrasekharaiah [8] obtained the governing 

equations of a temperature-rate-dependent thermopiezoelectricity theory which predicts a finite speed of propagation 

for thermal signals. Wave propagation phenomenon in thermo-piezoelectric materials is studied by Pal [27], Sharma 

and Kumar [33], Singh [36], Sharma and Walia [34], Abd-Alla and Alshaikh [1], Abd-Alla et al. [2] and Ponnusamy 

[30]. 

The objective of this paper is to study the wave propagation in a generalized thermo-piezoelectric medium. 

Problems on plane wave propagation and reflection phenomenon in this medium are not studied yet in literature. 

The present paper is organized as: In next section, the governing equations of a rotating generalized thermo-

piezoelectric medium are formulated in context of generalized theories of thermoelasticity given by Lord and 

Shulman [19] and Green and Lindsay [15].  In section 3, the medium is assumed to be transversely isotropic with z-

axis as the poling direction and the governing equations are obtained in x-z plane.  These equations in x-z plane are 

solved for plane waves to show the propagation three plane waves in the medium. In section 4, a problem on the 

reflection of plane waves from thermally insulated as well as isothermal boundaries of a rotating generalized thermo 

piezoelectric solid half space is solved and the expressions for reflection coefficients of various reflected waves are 

obtained explicitly. In section 5, the numerical values of speeds of plane waves are obtained by using data of 

LiNbO3 and BaTiO3. The reflection coefficients of various reflected waves are also computed for material 

parameters of BaTiO3. The speeds and reflection coefficients are depicted graphically to show the effect of rotation 

at each angle of an incident wave. The numerical results of speeds and reflection coefficients are discussed in detail 

with concluding remarks.   

2    GOVERNING EQUATIONS 

Following the theories of Lord and Shulman [19], Green and Lindsay [15] and Schoenberg [32], the governing 

equations of a rotating generalized thermo-piezoelectric medium in the absence of body force, free charge and inner 

heat source, are  

   

    , , 0 ,2 , , 0,ji j i i i i i
ii

u u u q T D           
  

 
 

(1) 

 

 1 ,ij ijkl kl kij k ijC e E T T        (2) 

                         

 *

1 ,i ikl kl ik k iD e p E d T T      (3) 

 

, ,i ij j o iq K T T b T   (4) 

 

     *

, ,kl kl o kl k k o k o i id E E C T T b T                (5) 
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 , ,

1
,

2
ij i j j ie u u    

, .i iE    
(6) 

 

In the above equations, a comma followed by a suffix denotes material derivative and a superposed dot denotes 

the derivative with respect to time. 
ij  are the components of a stress tensor, 

ij  are the components of a strain 

tensor,
iE  are the components of an electric field vector, 

ijK  are the coefficients of thermal conductivity, 
ijklC  are 

the elastic constants,   is an electric potential function, 
ij  are thermal moduli, ,ijk ie b  are the piezoelectric 

constants, T is temperature increment, iD  are the components of electric displacement, iu  are the components of 

displacement vector, iq  are the components of heat flux vector, ij  are the coefficients of linear thermal expansion, 

  is mass density, t is time,   is entropy density, T   is absolute temperature, ikp  are the dielectric constants, EC  

is the specific heat at constant strain, *

id  is pyroelectric constants, 
1,o   are thermal relaxation times and 

oT  is the 

reference temperature chosen such that 
 

1
oT T

T

 



. The use of symbol   makes the above equations possible 

for two different theories of generalized thermopiezoelectric materials. For the L-S theory 1 0, 1     and for G-L 

theory 1 0   and 0  . The thermal relaxation times 
o  and 1  satisfy the inequality 

1 0o    for G-L theory 

only.  

3    TWO-DIMENSIONAL SOLUTION 

The material is assumed to be transversely isotropic with z-axis as the poling direction. Making use of Eqs. (2) to (6) 

into Eq. (1), we obtain the following governing equations in x-z plane 

 

      2

11 1,11 44 13 3,13 44 1,33 15 31 ,13 1 1 1 1 32 ,C u C C u C u e e T T u u u                  (7) 

 

    2

44 3,11 44 31 1,13 33 3,33 15 ,11 33 ,33 3 1 3 3 1,3
2 ,C u C C u C u e e T T u u u                   (8) 

 

       *

1 ,11 3 ,33 1 1,1 1,1 3 3,3 3,3 3 ,3 ,3 ,E o o o o oK T K T C T T T u u u u d                    
 

 (9) 

 

   *

33 3,33 15 3,11 31 15 1,13 11 ,11 33 ,33 3 1 ,3
0,e u e u e e u p p d T T           (10) 

 

where 

 

1 11 3 33 1 11 3 33 33 333 31 311 15 131 113, , , , , , , ,E oK K K K C C T e e e e e e e              

11 1111 13 1133 44 1313 31 3311 33 3333 1 11 33 1 13 31 3

3 13 1 33 33 3

, , , , , ( ) ( ) ,

2 ( ) .

C C C C C C C C C C C C C e

C C e

  

  

        

  
 

 

 

Here 
1  and 

3  are coefficients of thermal expansion. The plane wave solution of Eqs. (7) to (10) are now 

sought in the following form 

 

     1 3

1 3 1 3, , , , , , ,
k xp zp vt

u u T Ad Ad kB kC e



 

  (11) 

 

where k is wave number, A, B, C are arbitrary constants and 
1 3,d d  are components of unit displacement vector, 
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1p  and 
3p are components of unit propagation vector. Making use of Eq. (11) into Eqs. (7) to (10) and after 

elimination of A, B and C, we obtain following cubic velocity equation  

 
3 2

1 2 3 0,oA A A A       (12) 

 

where 2v   and  

 
2

2 2 2

4 5 3 5 3 42
( ) 4 ( ),o oA D L dp L dp D 



 
     

2 2 2 2 2 2 2

1 1 5 3 5 4 3 2 5 3 2 3 1 3 5 1 4 2 4 5 5 3

2
2 2 2 2 2 2 2 2

4 4 3 2 1 3 2 5 1 3 4 3 1 4 4 5 5 1 3 4 6 4 62

(

) 2 ( ) 4 ,

o

o

A D L dp D L dp D L dp L L p p d D D D D D D L p

D L p L p p L L p p D L p D L D L p p D D D D

   

  
 

  



        

 
        

 

2 2 2 2 2 2

2 1 4 6 2 4 6 5 6 6 2 1 3 1 2 4 1 2 5 3 1 5

2 2 2 2 2 2 2 2 4 2 2
31 5 4 3 1 5 5 3 1 4 4 4 1 1 3 1 5 1 3 5 1 2 1 3

2 2 2 4 2 2 2 2

5 1 3 1 3 1 2 5 1 3 4 1 3 1 3 5 1 2 1 3

( )oA D D D D D D D D D L p p D D D D D L dp D D

D D L dp D D L p D D L p D L p p L L d p p D L L p p

D L L d p p L L L p p D L L p p D L L p p L

 

   

  

 

 



       

     

     2 4

1 2 4 1 3

2 2 2 2 2 2 2 4 2 2 2 2

2 2 1 3 2 3 2 1 3 2 4 1 3 5 2 3 1 3 5 1 5 1 3

2 2 2 2 2 2 2 2 2

4 1 4 1 3 2 2 5 1 3 2 4 3 1 5 2 4 1 3 5 3 1 ,

L L d p p

D L p p D L L d p p L L p p D L L p p D L L p p

D L L p p D L L p p D D L p D L L p p D L p

      

    

 

2 2 2 2 2 2 2 2 2

3 1 2 4 6 1 5 6 4 6 1 1 3 2 6 2 1 3 5 6 1 2 1 32 .A D D D D D D D D D L p p D D L p p D D L L p p       

 

 

And  

 
2

0 2
1 ,




    

2 2 2 2

1 11 1 44 3 2 44 1 33 3,D C p C p D C p C p    ,
2 2 2 2

3 1 1 3 3 4 11 1 33 3,D K p K p D p p p p     

2 2 3

5 15 1 33 3 6,
E

D
D e p e p D

C
   , 1 44 13 2 15 31,L C C L e e    ,

3 1 4 1 5 1, , ,L L L d         

 
*

3 3

1 1

, ,
d

d



 

 
2

1 1, 1m mv      ,
2

1

1 2

1

,o

E

T

C c





 2 11

1 , , .o o

C
c

 
   

  

  
      

 
 

 

 

Eq. (12) may be solved numerically by Cardan’s method to obtain the three values of . The real parts of these 

three values of   corresponds to the phase speeds 
1 2,V V  and 

3V of three quasi plane waves, namely, quasi-P (qP), 

quasi-Thermal (qT) and quasi-SV (qSV) waves, respectively. 

4    REFLECTION FROM A STRESS FREE SURFACE 

We consider an incident plane wave (qP or qT or qSV) at the free surface of a rotating generalized thermo-

piezoelectric solid half space with free surface along x-axis and z-axis pointing into the medium.  Corresponding to 

an incident wave making 
0 with normal, there will be three reflected waves as qP, qT and qSV waves making 

angles
1 2,  , and

3  with normal to the free surface as shown in Fig. 1. The appropriate displacement components, 

temperature change and electric potential for incident and reflected waves are given by 

 

   
    1 3

1 1 ,
k p x p z V t

u A d e
 

    

  
(13) 
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     
    1 3

3 3 ,
k p x p z V t

u A d e
 

     

  
(14) 

                         

     
    1 3

,
k p x p z V t

T F A e
 

     

  
(15) 

 

     
    1 3

,
k p x p z V t

G A e
 

   


 

  
(16) 

 

where Re( ),( 0, 1,2,3)V v    ,  
F


 and 

 
G


are given by 

 

 

       

 

1 15 31 1 3

1 1 1

( )
,

( )

Q e e p p G
F

i
V p

   





 


  
 





 

       

         
2 2 2

3 3 1 1 1 2

3 15 31 1 3 1 1 15 1 33 3

,
( ) ( )

p Q p Q
G

e e p p p e p e p

   



    

 

 

 
 


   
  

 

 

 

And  

 

                   

                   

           

2 2

2 2

2

1 0 1 3 11 1 1 44 3 1 13 44 1 3 3

2

2 0 3 1 44 1 3 33 3 3 13 44 1 3 1

0 0

1 1 3 0 1 0 3 3

[ 2 ] ( ) ,

[ 2 ] ( ) ,

sin , cos , ( 0,1,2,3), cos , sin , cos , si

Q V d i d C p d C p d C C p p d

Q V d i d C p d C p d C C p p d

p d p d p d

         



         



   

  







     


      


      

         n , ( 1,2,3).  

 

 

 

The required boundary conditions at free surface 0z   are 

 
( )

( ) ( ) ( )

33 310, 0, 0
T

hT
z


   


   


 

 

(17) 

 
 

0,


  (electrically shorted), 
 

3 0,D

 (charge free) (18) 

 

where 0h   corresponds to thermally insulated surface, h   corresponds to isothermal surface and 

 

 
            33 31 1,1 33 3,3 33 3 3 1, ,C u C u e T T
     

       
        

31 44 1,3 3,1 15 1, ,C u u e
   

     

            3 31 1,1 33 3,3 33 3 3 1, .D e u e u p d T T
     

       

 

 

The displacement components, temperature change and electric potential given by Eqs. (13) to (16) satisfy the 

boundary conditions (17) and (18) with following Snell’s law 

 
       0 1 2 3

1 1 1 2 1 3 1 ,ok p k p k p k p k    1 1 2 2 3 3 .o ok V k V k V k V      (19) 

 

And the reflection coefficients of reflected qP, qT and qSV waves for thermally insulated case are obtained in 

explicit from as: 

 
 

 

 

 

 

 

1 2 3

0 0 0

31 2, , ,
A A A

A A A

 
  
  

 
 

(20) 

 

where 
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             
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   


 
      

 
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Fig.1 

Geometry of the problem showing incident and reflected waves. 

5    NUMERICAL RESULTS AND DISCUSSION 

Following material parameters are used for numerical computations of speeds of plane waves and reflection 

coefficients of various reflected waves: 

 
Material Constants LiNbO3

 
 (T0 = 298 K)   (Weis and Gaylord [42]) BaTiO3 (T0 = 293 K)  (Dunn [12]) 

  (kg m-3)    4.647  103     4.2  103   

C11 (N m-2)    2.03  1011    1.50  1011 

C33 (N m-2)    2.424  1011   1.46  1011 

C44 (N m-2)    0.595  1011   0.44  1011 

C13 (N m-2)    0.752  1011   0.66  1011 

e31  (C m-2)    0.23  - 4.35          
e33 (C m-2)    1.33  17.5 

e15 (C m-2)    3.7  11.4 

p11  (C N-1m-2) 85.2 1115  8.85  10-12 

p33 (C N-1m-2) 28.7 1260  8.85  10-12 

CE (J kg-1K-1)     0.633   0.188 

K1 (W m-1K-1)     4.0   1.0 

K3 (W m-1K-1)     4.5   1.5 

d3* (N C-1K-1) 
    0.133  105   0.133   105 

 

The cubic Eq. (12) is solved numerically for a range of angle of propagation varying from 0  to 90 . The phase 

speeds of qP, qT and qSV waves are computed for LiNbO3.  The speeds of these waves are plotted in Fig. 2 (a-c) 

against the angle of propagation when 5



 , 10, 15 and 9

0 1 0.5 10 s     . The speed of qP wave is 0.15689  

10
4
 m.s

-1
 at 0 0  . It decreases with an increase in angle of propagation and attains a value 0.14435  10

4
 m.s

-1
 

at
0 89  .  The speed of qT wave is 0.36557e-04  10

4
 m.s

-1
 at

0 0  . Initially, it oscillates with an increase in 

angle of propagation and then increases very sharply to a value 0.23902e-02  10
4
 m.s

-1
 at

0 89  . The speed of 

qSV wave is 0.06864  10
4
 m.s

-1
 at 0 0  . It increases to its maximum value 0.07512  10

4
 m.s

-1
 at 0 46  and 



                                                                                      Reflection From Free Surface of a Rotating Generalized ….                      63 
 

© 2018 IAU, Arak Branch 

then decreases to a minimum value 0.06827  10
4
 m.s

-1
 at

0 89  .  These variations are shown by solid curves in 

Fig.2 (a-c). Comparing solid curves with the dashed curves, it is observed that the speeds of qP and qSV waves 

decreases with the increase in rotation rate. The phase speeds of qP, qT and qSV waves are also computed and 

plotted in Fig. 3(a-c) for BaTiO3. For 5



  (solid curves in Figs. 2 and 3), the qP and qSV waves are observed 

faster in BaTiO3 than as in LiNbO3. However, the qT wave propagate slower in BaTiO3 than as in LiNbO3. 
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Fig.2 

Variations of speeds of qP, qT and qSV waves against angle of 

propagation for LiNbO3. 
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Fig.3 

Variations of speeds of qP, qT and qSV waves against angle of 

propagation for BaTiO3. 
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Numerical simulations of reflection coefficients are restricted for an incident qP wave on a thermally insulated 

stress free surface of BaTiO3. With the help of Eq.(20), the reflection coefficients of reflected qP, qT and qSV waves 

are obtained numerically against the angle of incidence of qP wave when 5



 , 10, 15 and. The reflection 

coefficient of reflected qP wave is 0.9997 at 
0 1  and it decreases to its minimum value 0.6110 at

0 46  . 

Thereafter, it increases to a value 0.9891 at
0 89  .  The reflection coefficient of reflected qT wave is 0.27323e-12 

at
0 1  . It oscillates with the increase in angle of incidence. The reflection coefficient of reflected qSV wave is 

0.1253 at 
0 1  and it increases to its maximum value 1.2186 at

0 37  . Thereafter, it decreases to value 0.0504 

at
0 89  . These variations are shown by solid curves in Fig. 4 (a-c). Comparing solid curves with the dashed 

curves in Fig. 4 (a-c), it is observed that the reflection coefficients of reflected qP wave decrease with an increase in 

rotation rate, whereas the reflection coefficients of reflected qSV wave increase. The reflection coefficients of 

reflected qT also change with the change in rotation rate.  

 

 

0 15 30 45 60 75 90
Angle of propagation

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
m

pl
itu

de
 ra

tio

Reflected qP wave







 
(a) 

0 15 30 45 60 75 90
Angle of propagation

0.0E+0

3.0E-12

6.0E-12

9.0E-12

1.2E-11

1.5E-11

Am
pl

itu
de

 ra
tio

Reflected qT wave







 
(b) 

  

0 15 30 45 60 75 90
Angle of propagation

0.00

0.34

0.68

1.02

1.36

1.70

Am
pl

itu
de

 ra
tio

Reflected qSV wave







 
(c) 

 

 

 

 

 

 

 

 

Fig.4 

Variations of amplitude ratios of qP, qT and qSV waves against 

the angle of incidence of qP wave for BaTiO3. 

 

6    CONCLUSIONS 

From theory and numerical results, the following points are concluded: 

(i) Plane wave solution of governing equations of a rotating generalized thermo-piezoelectric medium results 

into a cubic velocity Eq. (12) with complex coefficients. The roots of this cubic equation suggests the 

propagation of three coupled plane waves namely qP, qT and qSV waves in a rotating generalized thermo-

piezoelectric medium.  

(ii) The expressions for reflection coefficients of reflected qP, qT and qSV waves are obtained in explicit form.  

(iii) The speeds of qP, qT and qSV waves are computed numerically for LiNbO3 and BaTiO3
 
at different values 

of rotation rate. For 5



 , the qP and qSV waves are observed faster in BaTiO3 than as in LiNbO3. 

However, the qT wave propagate slower in BaTiO3 than as in LiNbO3. The effects of angle of propagation 
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as well as rotation rate are observed significantly on the speeds of plane waves. The nature of dependence 

of the speeds of qP, qT and qSV waves on the angle of propagation is different in LiNbO3 and BaTiO3.  

(iv) The reflection coefficients of reflected qP, qT and qSV are also computed for BaTiO3 for an incident qP 

wave. The effects of rotation at each angle of incidence are observed on the reflection coefficients of all 

reflected waves.  

The present theoretical derivations and numerical simulations may be of use for further investigation on 

characteristics of waves in thermo-piezoelectric materials. 

REFERENCES 

[1] Abd-alla A.N., Alsheikh F.A., 2009, Reflection and refraction of plane quasi longitudinal waves at an interface of two 

piezoelectric media under initial stresses, Archive of Applied Mechanics 79(9): 843-857. 

[2] Abd-alla A.N.,  Hamdan A.M., Giorgio I.,  Vescova D.D.,  2014, The mathematical model of reflection and refraction 

of longitudinal waves in thermo-piezoelectric materials, Archive of Applied Mechanics 84(9): 1229-1248. 

[3] Alshit V.I., Lothe J., Lyubimov V.N., 1984, The phase shift for reflection of elastic waves in hexagonal piezoelectric 

crystals, Wave Motion 6: 259-264. 

[4] Alshits V.I., Shuvalov A.L., 1995, Resonance reflection and transmission of shear elastic waves in multilayered 

piezoelectric structures, Journal of Applied Physics 77(6): 2659-2665. 

[5] Auld B.A., 1981, Wave propagation and resonance in piezoelectric materials, Journal of Acoustical Society of America 

70(6): 1577-1585. 

[6] Burkov S.I.,  Sorokin B.P.,  Aleksandrov K.S., Karpovich A.A.,  2009, Reflection and refraction of bulk acoustic waves 

in piezo electrics under uniaxial stress, Acoustical Physics 55(2): 178-185. 

[7] Cady W.G., 1946, Piezoelectricity, McGraw-Hill, New York. 

[8] Chandrasekharaih D.S., 1984, A temperature rate dependent theory of piezoelectricity, Journal of Thermal Stresses 7: 

293-306. 

[9] Chen J.Y., Chen H.L., Pan E., 2008, Reflection and transmission coefficients of plane waves in magneto-electro-elastic 

layered structures, Journal of Vibration and Acoustics 130: 031002. 

[10] Clezio E.L., Shuvalov A., 2004, Transmission of acoustic waves through piezoelectric plates: Modeling and 

Experiment, IEEE Ultrasonics Symposium 1: 553-556. 

[11] Darinskii A.N., Clezio E.L., Feuillard G., 2008, The role of electromagnetic waves in the reflection of acoustic waves 

in piezoelectric crystals, Wave Motion 45(1): 428-444. 

[12] Dunn M. L., 1993, Micromechanics of coupled electro-elastic composites: effective thermal expansion and pyroelectric 

coefficients, Journal of Applied Physics 73: 5131-5140. 

[13] Eringen A.C., Maugin G.A., 1990, Electrodynamics of Continua: I Foundations and Solid Media, Springer Verlag, 

New York. 

[14] Every A.G., Neiman V.I., 1992, Reflection of electroacoustic waves in piezoelectric solids: Mode conversion into four 

bulk waves, Journal of Applied Physics 71(12): 6018-6024. 

[15] Green A.E., Lindsay K.A., 1972, Thermoelasticity, Journal of Elasticity 2: 1-7. 

[16] Ikeda T., 1996, Fundamentals of Piezoelectricity, Oxford Science Publications, Oxford University Press. 

[17] Kuang Z.B., Yuan X.G., 2011, Reflection and transmission of waves in pyroelectric and piezoelectric materials, 

Journal of Sound and Vibration 330(6): 1111-1120. 

[18] Kaung Z. B., 2013, Theory of Electroelasticity, Springer. 

[19] Lord H., Shulman Y., 1967, A generalised dynamical theory of thermoelasticity, Journal of Mechanics and Physics of 

the Solids 15: 299-309. 

[20] Lothe J., Barnett D.M., 1976, Integral formalism for surface waves in piezoelectric crystals: Existence considerations, 

Journal of Applied Physics 47: 1799-1807. 

[21] Maugin G.A., 1988, Continuum Mechanics of Electromagnetic Solids, Elsevier Science Publishers, Amsterdam, New 

York, Oxford. 

[22] Mindlin R.D., 1972, High frequency vibrations of piezoelectric crystal plates, International Journal of Solids and 

Structures 8(7): 895-906. 

[23] Mindlin R.D., 1974, Equations of high frequency vibrations of thermo-piezoelectric crystal plates, International 

Journal of Solids and Structures 10(6): 625-637. 

[24] Nayfeh A.H, Chien H.T., 1992, The influence of piezoelectricity on free and reflected waves from fluid loaded 

anisotropic plates, Journal of Acoustical Society of America 91(3): 1250 -1261. 

[25] Noorbehesht B., Wade G., 1980, Reflection and transmission of plane elastic waves at the boundary between 

piezoelectric materials and water, Journal of Acoustical Society of America 67(6): 1947-1953. 

[26] Nowacki W., 1978, Some general theorems of thermo-piezo-electricity, Journal of Thermal Stresses 1: 171-182. 



66                       B.Singh and B.Singh 

 

© 2018 IAU, Arak Branch 

[27] Pal A.K., 1979, Surface wave in a thermo-piezoelectric medium of monoclinic symmetry, Czechslovak Journal of 

physics 29: 1271-1281. 

[28] Pang Y., Wang Y.S., Liu J.X., Fang D.N.,  2008, Reflection and refraction of plane waves at the interface between 

piezoelectric and piezo magnetic media,  International Journal of Engineering Science 46(11): 1098-1110. 

[29] Parton V.Z., Kudryavtsev B.A., 1988, Electromagnetoelasticity: Piezo electrics and Electrically conductive Solids, 

Gordon and Beach, New York. 

[30] Ponnusamy P., 2016, Elastic waves in generalized thermo-piezoelectric transversely isotropic circular bar immersed in 

fluid, Advances in Applied Mathematics and Mechanics 8(1): 82-103. 

[31] Rosenbaum J.F., 1988, Bulk Acoustic Wave Theory and Devices, Artech House, Boston. 

[32] Schoenberg M., Censor D., 1973, Elastic waves in rotating media, Quarterly of Applied Mathematics 31: 115-125. 

[33] Sharma J.N., Kumar M., 2000, Plane harmonic waves in piezothermoelastic materials, Indian Journal of Engineering 

and Material Sciences 7: 434-442. 

[34] Sharma J.N., Walia V., 2007, Effect of rotation on Rayleigh waves in piezothermoelastic half-space, International 

Journal of Solids and Structures 44: 1060-1072. 

[35] Shuvalov A.L., Clezio E.L., 2010,  Low-frequency dispersion of fundamental waves in anisotropic piezoelectric plates, 

International Journal of Solids and Structures 47: 3377-3388. 

[36] Singh B., 2005, On the theory of generalized thermoelasticity for piezoelectric materials, Applied Mathematics and 

Computation 171: 398-405. 

[37] Singh B., 2010, Wave propagation in a pre-stressed piezoelectric half-space, Acta Mechanica 211: 337-344. 

[38] Singh B., 2013, Propagation of shear waves in a piezoelectric medium, Mechanics of Advanced Materials and 

Structures 20: 434-440. 

[39] Tiersten H.F., 1969, Linear Piezoelectric Plate Vibrations, Plenum, New York. 

[40] Toupin R.A., 1956, The elastic dielectric, Archive for Rational Mechanics and Analysis 5: 849-915. 

[41] Voigt W., 1910, Lehrbuch der Krystallphysik, Mathematischen Wissenschaften, band XXXIV, Leipzig und Berlin, B.G. 

Teubner. 

[42] Weis R.S., Gaylord T.K., 1985, Summary of physical properties and crystal structure, Applied Physics A 37: 191-203. 

[43] Yang J., 2005, An Introduction to the Theory of Piezoelectricity, Springer, New York. 

[44] Zhang Q.M., Geng X., Yuan J., 1996, Reflection of plane waves at medium composite interfaces and input acoustic 

impedance of laminated piezo ceramic polymer composites, Journal of Applied Physics 80(9): 5503-5505. 


