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 ABSTRACT 

 In this work, a new mathematical model of thermoelasticity theory has been considered in 
the context of a new consideration of heat conduction with fractional order theory. A 
functionally graded isotropic unbounded medium is considered subjected to a periodically 
varying heat source in the context of space-time non-local generalization of three-phase-
lag thermoelastic model and Green-Naghdi models, in which the thermophysical 
properties are temperature dependent. The governing equations are expressed in Laplace-
Fourier double transform domain and solved in that domain. Then the inversion of the 
Fourier transform is carried out by using residual calculus, where poles of the integrand 
are obtained numerically in complex domain by using Laguerre’s method and the 
inversion of Laplace transform is done numerically using a method based on Fourier series 
expansion technique. The numerical estimates of the thermal displacement, temperature 
and thermal stress are obtained for a hypothetical material. Finally, the obtained results are 
presented graphically to show the effect of non-local fractional parameter on thermal 
displacement, temperature and thermal stress. A comparison of the results for different 
theories (three-phase-lag model, GN model II, GN model III) is presented and the effect of 
non-homogeneity is also shown. The results, corresponding to the cases, when the material 
properties are temperature independent, agree with the results of the existing literature.  

© 2014 IAU, Arak Branch. All rights reserved.   
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1    INTRODUCTION 

TUDYING the modification of heat conduction equation from diffusive to a wave type may be affected either 
by a microscopic consideration of the phenomenon of heat transport or in a phenomenological way by 

modifying the classical Fourier law of heat conduction. The first is due to Cattaneo [1], who obtained a wave-type 
heat equation by postulating a new law of heat conduction to replace the classical Fourier law. Puri and Kythe [2] 
investigated the effects of using the Maxwell-Cattaneo model in Stock's problem for a viscous fluid and they note 
that, the non-dimensional thermal relaxation time defined as to rCP , where C  and rP  are the Cattaneo and Prandtl 

number, respectively, is of order 210 . 
Differential equations of fractional order have been the focus of many studies due to their frequent appearance in 

various applications in fluid mechanics, viscoelasticity, biology, physics and engineering. The most important 
advantage of using fractional differential equations in these and other applications is their non-local property. It is 
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well known that the integer order differential operator is a local operator but the fractional order differential operator 
is non-local. This means that the next state of a system depends not only upon its current state but also upon all of its 
historical states. This is more realistic, and this is one reason why fractional calculus has become more and more 
popular [3–5]. 

Although the tools of fractional calculus were available and applicable to various fields of study, the 
investigation into the theory of fractional differential equation started quite recently [3]. The differential equations 
involving Riemann-Liouville differential operators of fractional order 0 1    appear to be important in modeling 
several physical phenomena [6] and therefore seem to deserve an independent study of their theory parallel to the 
well-known theory of ordinary differential equations. 

Recently, a considerable research effort is expended to study anomalous diffusion, which is characterized by the 
time-fractional diffusion-wave equation by Kimmich [8] as follows: 

 
2 , 0 2c I c b b      (1) 

 
where   is the mass density, c  is the concentration,   is the diffusion conductivity and the notation I   is the 

Riemann-Liouville fractional integral, introduced as a natural generalization of the well-known   fold repeated 

integral written in a convolution-type form. 
It should be noted that the term diffusion is often used in a more generalized sense including various transport 

phenomena. Eq. (1) is a mathematical model of a wide range of important physical phenomena [9–12], for example, 
the sub-diffusive transport occurs in widely different systems ranging from dielectrics and semiconductors through 
polymers to fractals, glasses, porous and random media. Super-diffusion is comparatively rare and has been 
observed in porous glasses, polymer chain, biological systems, transport of organic molecules and atomic clusters on 
surface. One might expect the anomalous heat conduction in media where the anomalous diffusion is observed. 

Youssef [15] derived a new formula of heat conduction as follows: 
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Ezzat established a new model of fractional heat conduction equation by using the new Taylor series expansion 

of time-fractional order, developed by Jumarie [16] as: 
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El-Karamany and Ezzat [17] introduced two general models of fractional heat conduction law for a non-

homogeneous anisotropic elastic solid. Uniqueness and reciprocal theorems are proved, and the convolutional 
variational principle is established and used to prove a uniqueness theorem with no restriction on the elasticity or 
thermal conductivity tensors except symmetry conditions. The two-temperature dynamic coupled Lord-Shulman and 
fractional coupled thermoelasticity theories result as limit cases. For fractional thermoelasticity not involving two-
temperatures, El-Karamany and Ezzat [18] established the uniqueness, reciprocal theorems and convolution 
variational principle. The dynamic coupled and Green-Naghdi thermoelasticity theories result as limit cases. The 
reciprocity relation in case of quiescent initial state is found to be independent of the order of differintegration [17] 
and [18]. Fractional order theory of a perfect conducting thermoelastic medium not involving two temperatures was 
investigated by Ezzat and El-Karamany [19]. The finite thermal wave propagation in an infinite half-space under 
this theory have been studied by Sur and Kanoria [20]. 

In view of experimental evidence in support of the finiteness of the speed of propagation of heat wave, 
generalized thermoelasticity theories are more acceptable than the conventional thermoelasticity theories in dealing 
with practical problems involving very short time intervals and high heat fluxes, like those occurring in laser units, 
energy channels and nuclear reactor, etc. 

Green and Naghdi [21] developed three models for generalized thermoelasticity of homogeneous and isotropic 
materials which are labeled as Models I, II and III. The nature of those theories are such that when the respective 
theories are linearized, Model I reduced to the classical heat conduction theory (based on Fourier's law). The 
linearized versions of Model II and III permit propagation of thermal waves at finite speed. Model II, in particular, 
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exhibits a feature that is not present in the other established thermoelastic models as it does not sustain dissipation of 
thermal energy [22, 23]. 

Later, Roychaudhuri [24] established a model of a coupled thermoelasticity theory that includes three phase lags 
in the heat flux vector, the temperature gradient and in the thermal displacement gradient. The more general model 
established reduces to the previous models in special cases. According to this model 

( , ) ( , ) ( , )          
qq P t K P t K P t * , where K  is the thermal conductivity and K *  is the additional 

material constant. For practical, relevant problems, particularly heat transfer problems involving very short time 
intervals and the problems of very high heat fluxes, the hyperbolic equation gives significantly different results to 
the parabolic equation. According to this phenomenon the lagging behavior during heat conduction in solids, should 
not be ignored, particularly when the elapsed times during a transient process are very small, say about 710 s  or the 
heat flux is very high. Three-phase-lag (3P) model is very useful for the problems of nuclear boiling, exothermic 
catalytic reactions, phonon-electron interactions, phonon scattering etc., where the delay time q  captures the 

thermal wave in behavior (a small scale response in time), the phase lag   captures the effect of phonon-electron 

interactions (a microscopic response in space), the other delay time   is effective, since in 3P model, the thermal 

displacement gradient is considered as a constitutive variable. Quintanilla [25] and Racke studied the stability of 
solutions in three-phase-lag heat conduction, and Quintanilla [26] studied the spatial behavior of solutions for the 
three-phase-lag heat conduction equation by a semi-infinite cylinder. Different thermoelastic problems have been 
studied by employing this model of generalized thermoelasticity by several researchers [27–29].  

Thermal shocks and very high temperatures inevitably give rise to severe thermal stresses causing catastrophic 
failure of structural components such as aircraft engines, turbines, space vehicles etc. To avoid such type of failures, 
functionally graded materials (FGM) are used as discussed by Aboudi at al. [30] and Wetherhold and Wang [31]. 
These materials are characterized by a microstructure that is spatially variable on a macro scale and were developed 
initially for high temperature applications. In these materials, the spatial variation of thermal and mechanical 
properties influences strongly the response to loading. Sugano [32] has presented analytical solution for one 
dimensional transient thermal stress problem of non-homogeneous plate where the thermal conductivity and 
Young's modulus vary exponentially, whereas Poisson's ratio and the coefficient of linear thermal expansion vary 
arbitrarily in the thickness direction. Qian and Batra [33] have studied the problem of a transient thermoelastic 
deformation of a thick functionally graded plate with edges held at a uniform temperature. 

Ghosh and Kanoria [34] studied the thermoelastic response in a functionally graded spherically isotropic infinite 
elastic medium having a spherical cavity. Kar and Kanoria [35] studied thermoelastic stresses, displacements and 
temperature distribution in a functionally graded orthotropic hollow sphere due to sudden temperature change on the 
stress-free boundaries of the hollow sphere in the context of GN-II, GN-III and 3P models of generalized 
thermoelasticity. Barik et al. [36] have studied a contact problem in FGM. In addition to these reports, thermoelastic 
analysis in FGM’s has been studied by a number of different researchers. 

The objective of the contribution is to consider one dimensional thermoelastic disturbance in an infinite isotropic 
functionally graded medium in the context of three-phase-lag thermoelastic model, GN model II (TEWOED) and 
GN model III (TEWED), in presence of distributed periodically varying heat sources where the heat equation 
consists of some nonlocal fractional parameters. All the thermophysical properties of the FGM under consideration 
are assumed to vary jointly as the exponential power of the space coordinate and a linear function of the 
temperature. The governing equations for this problem are taken into Laplace-Fourier transform domain. The 
solutions for thermal displacement, temperature, thermal stress in Laplace transform domain are obtained by taking 
Fourier inversion which is carried out by using residual calculus, where the poles of the integrand are obtained 
numerically in complex domain by using Laguerre's method. Then the inversion of Laplace transform has been 
carried out numerically by applying a method of numerical inversion of Laplace transform based on Fourier series 
expansion technique [37]. Numerical results for thermal displacement, temperature, thermal stress in physical space-
time domain have been obtained for a copper like material and have been presented graphically to show the effect of 
the fractional order parameter and nonhomogeneity. The dependencies of thermophysical properties on temperature 
have also been studied. 

2    BASIC FORMULATIONS 

The stress-strain-temperature relation is 
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 02 , , 1, 2,3ij ij ije i j              (4) 

 
where ij is the stress tensor, ,  are Lame’s constants, (3 2 ) t      , t  is the coefficient of linear thermal 

expansion, 0 is the reference temperature,  is the temperature field, the cubical dilatation iie  and ije is the 

strain tensor given by   

 , ,
1 .
2ij i j j ie u u   

 
(5) 

 
Stress equation of motion in absence of body force is  
 

, ; , 1, 2,3;i ij ju i j     (6) 

 
where ( 1,2,3)iu i  are the displacement component and  is the density. 

Heat equation corresponding to generalized thermoelasticity based on the fractional order three-phase-lag 
thermoelasticity model [39] is 
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(7) 

 
where K * is an additional material constant, K is the thermal conductivity, c  is the specific heat at constant strain, 

Q is the rate of internal heat generation per unit mass,     K K* * ; the delay time  is called the phase-lag of 

thermal displacement gradient. Other delay time T is called the phase-lag of temperature gradient and q is called 

the phase-lag of the heat flux. Here, dot denotes derivative with respect to time. 
For 0q T       , Eq. (7) reduces to the GN theory type III and for 0q T       and K K * Eq.(7) 

reduces to GN theory type II. 
For functionally graded solid, the parameters , , K , ,K *   and 

* are no longer constant but become space 

and temperature dependent whereas   is taken to be space dependent. Thus, we replace , , K , ,K *  ,  and 
*  

by 0 1 2( ) ( ),f x f 


 0 1 2( ) ( ),f x f 


 0 1 2( ) ( ),K f x f 


  0 1 2( ) ( ),
K f x f *  0 1 2( ) ( ),f x f 


 0 1 2( ) ( )f x f 


 and   1 20

( ) ( )


f x f *  

respectively, where 0 , 0 , 0K , 0 ,K *
0  and 0  are assumed to be constants, ( )f x


is a given non-dimensional 

function of the space variable ( , , )x x y z


and    0 00
.    K K* *  Then, the corresponding Eqs. (4), (6) and (7) 

take the following form  

  1 2 0 0 0 0( ) ( ) 2 ,ij ij ijf x f e             
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3    FORMULATION OF THE PROBLEM 

We now consider a functionally graded infinite isotropic thermoelastic body at a uniform reference temperature 0  

in the presence of periodically varying heat sources distributed over a plane area. We shall consider one-dimensional 
disturbance of the medium, so that the thermal displacement vector u


and the temperature field   can be expressed 

in the following form  
 

 ( , ),0,0 , ( , ). 

u u x t x t   (11) 

 
It is assumed that material properties depend only on the x  coordinate. So, we can take 1( )f x


 as 1( ).f x   

In the context of linear theory of generalized thermoelasticity in absence of body forces based on three-phase lag 
thermoelasticity model [39] the constitutive equation, strain component, the equation of motion and the heat 
equation can be written as follows: 
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We now introduce the following non-dimensional variables 
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where l  is a standard length and v  is a standard speed. Then, after removing primes, Eqs. (12)-(15) can be written 
in non-dimensional form as follows: 
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 and it is to be noted that 

GN theory type III and GN theory type II can be recovered from Eq.(20) by taking 0 ;q T       and 

0q T       , K TC C respectively. 

We assumed that the medium is initially at rest. The undisturbed state is maintained at reference temperature. 
Then we have 
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3.1 Exponential variation of nonhomogeneity 

We take 1( ) kxf x e  and 2 ( ) 1 , f e *  where k  is a dimensionless constant and e* is the empirical material 

constant. For linearity of the governing partial differential equations of the problem, we have to take into account the 

condition that 0

0

1,
 



 which gives us the approximation of the function 2 ( )f   in the following form 

2 2 0 0( ) ( ) 1  f f e  * .Then, the corresponding equations reduce to  
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 Let us define Laplace-Fourier double transform of a function ( , )g x t  by 
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Applying Laplace-Fourier double integral transform to the Eqs. (22)-(25) and using the relation (21), we get  
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Solving Eqs. (29) and (30) for ˆ ( , )u p  and ˆ ( , )p   we get 
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The solutions for thermal stress and strain in Laplace-Fourier transform domain can be obtained from Eqs. (27) 

and (28) using (31) and (32) as follows: 
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Inverse Fourier transforms of the Eqs. (31), (32), (39) and (40) give the following solutions for thermal 

displacement, temperature, and thermal stress and strain in Laplace transform domain  
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3.2 Periodically varying heat source 

We assume that the heat source is distributed over the plane 0x   in the following form  
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Thus, the expressions for thermal displacement, temperature, thermal stress and strain in Laplace transform 

domain take the following form 
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Applying contour integration to the Eqs. (46)-(49) we obtain 
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where jA ’s and jB ’s are given by 
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4    NUMERICAL INVERSION OF LAPLACE TRANSFORM 

Let ( , )f x p  be the Laplace transform of a function ( , )f x t . Then, the inversion formula for Laplace transform can 

be written as: 
 

1( , ) ( , ) ,
2π

d i
pt

d i

f x t e f x p dp
i

 

 

    
 

(56) 

 

where d  is an arbitrary small real number greater than the real part of all the singularities of ( , )f x p . 

Taking p d iw  , the preceding integral takes the form 

 

( , ) ( , ) ,
2π

dt
itwe

f x t e f x d iw dw




    
 

(57) 

 
Expanding the function ( , ) ( , )dth x t e f x t  in a Fourier series in the interval [0,2 ]T  we obtain the approximate 

formula [37],  
 

( , ) ( , ) ,Df x t f x t E    (58) 

 
where 
 

0
1

1( , ) for 0 2
2 k

k

f x t c c b t b T




    
 

(59) 

 
and 

π π, .
ik tdt
T

k

e ik t
c e f x d

T T

     
  

  
 

(60) 

 
The discretization error DE  can be made arbitrary small by choosing d  large enough [37]. Since the infinite 

series in Eq. (59) can be summed up to a finite number N  of terms, the approximate value of ( , )f x t  becomes 
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0
1

1( , ) for 0 2 .
2 

 
N

N k
k

f x t c c b t b T   
 

(61) 

 
Using the preceding formula to evaluate ( , )f x t  we introduce a truncation error TE  that must be added to the 

discretization error. Next, the   algorithm is used to accelerate the convergence [37]. 
The Korrecktur method uses the following formula to evaluate the function ( , )f x t  

 
2( , ) ( , ) ( , 2 ) .dT

Df x t f x t e f x T t E
        (62) 

 
where the discretization error .D DE E   Thus, the approximate value of ( , )f x t  becomes  

 
2( , ) ( , ) ( , 2 ),dT

NK N Nf x t f x t e f x T t
     (63) 

 
where N   is an integer such that .N N   

We shall now describe the   algorithm that is used to accelerate the convergence of the series in Eq.(61). Let 

2 1,N q   where q  is a natural number and let 
1

m

m k
k

s c


   be the sequence of partial sum of the series in (61). 

We define the   sequence by 0, 1,0,m m ms    and 1, 1, 1
, 1 ,

1 ; 1,2,3,r m r m
r m r m

r 
   



  


  

It can be shown that [37] the sequence 1,1 3,1 5,1 ,1, , , , N    converges to 0( , )
2D

c
f x t E   faster than the 

sequence of partial sums ms , 1,2,3,m    

The actual procedure used to invert the Laplace transform consists of using Eq.(69)together with the 
  algorithm. The values of d  and T  are chosen so according to the criterion outlined in [37]. 

5    NUMERICAL RESULTS AND DISCUSSIONS 

To get the solution for thermal displacement, temperature, thermal stress in space-time domain we have to apply 
Laplace inversion formula to the Eqs. (48)-(50), respectively. This has been done numerically using a method based 
on Fourier series expansion technique. To get the roots of the polynomials  M   and  M   in complex domain 

we have used Lagurre’s method. The numerical code has been prepared using Fortran-77 programming language. 
For computational purpose, copper like material has been taken into consideration. The values of the material 
constants are taken as follows [38]. 
 

11 2 11 2 8
00.0168, 1.387 10 N/m , 0.448 10 N/m , 1.67 10 /K, 1K         T t      

 
and the hypothetical values of the phase-lag parameters are taken as 0.001 , 0.05 , 0.05 ;q Ts s s       which 

agrees the stability condition of Quintanilla and Racke [40], that under three-phase-lag heat conduction, if 
2




   


T

q
q

K
K * * , where     K K* * , then the solutions are always exponentially stable. Also, we have 

taken 0Q 1, 1  * ,  P 1, 2, 0.6,T KC C C    so that the faster wave is the thermal wave.  

In order to study the effect of the fractional order parameter  on temperature, thermal stress and displacement 

distribution, we now present our results in their graphical representation (Figs. 1-3). Figs. 1-3 show the variation of 
temperature, thermal stress and displacement for three models (GN II, GN III and 3P) for 0.4, 0.1t k  and 

0.5,1.0,1.5   respectively when 0.0005.e*   
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Fig. 1  
variation of  vs. x for 1, 0.4k t   and 0.0005.e    

 
 

 

 
 
 
 
 
 
 
 

Fig. 2  
variation of xx vs. x for 1, 0.4k t   and 0.0005.e   

 
 

 

 
 
 
 
 
 
 
 
 

Fig. 3  
variation of u vs. x for 1, 0.4k t   and 0.0005.e   

 
 

Fig.1 depicts the variation of the temperature   against the distance x  for a non-homogeneous material 
( 1)k  and different fractional parameter. It can be seen from the figure that as the value of the fractional order 

parameter increases, the magnitude of the temperature increases near the plane 0x  and ultimately   approaches to 
zero. This is because the heat source varies periodically with time for a short duration. This can also be verified from 

the expression of   given in Eq. (51) involving ,ji xe  Im( ) 0j   for 0x  . For 1.5,   it is also observed that 

magnitude of   for GN II is greater than that of GN III which is again greater than 3P model when 0 0.6.x   After 

that, magnitude of   for GN II falls faster than that of GN III which is again faster than 3P model.  
Fig. 2 depicts the variation of the thermal stress xx versus the distance x  for 0.4t   and 1.k   It can be seen 

form the figure that xx is compressive in nature near the plane 0x   where the heat source is active. Also, for 

1.5,   the magnitude of xx is greater for GN II model compared to that of GN III, which is again greater than that 

of 3P model within the range 0 0.6x  . And for 1.5,  the magnitude of xx  decreases sharply for GN II model 

compared to that of GN III which again decreases sharply compared to that of 3P model. 
Fig. 3 shows the variation of thermal displacement u  versus the distance x  for time 0.4t   when 
0.5,1.0,1.5  . This figure shows that the displacement increases to reach its maximum at 0.3x  (for GN II), 

0.25x  (for GN III and 3P) and beyond this, u falls to zero for 0.5,1.0,1.5   respectively. It is also seen that in 

all models, as the fractional parameter   increases, the peak of the thermal displacement also increases. The 

magnitude of the displacement for GN II for a particular range of x (0 0.6)x   is maximum for 1.5   than that 
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of 1.0,   which is again greater than that for 0.5.   The rate of decay in the case of 3P is slower than that of GN 

III which is again slower than GN II model. 
 
 

 

 
 
 
 
 
 
 
 

Fig. 4  
variation of  vs. x for 1k  , 0.4, 0.6t  and 0.5,1.0,1.5.    

 
 

 

 

 
 
 
 
 
 
 
 
Fig. 5  
variation of xx vs. x for 1k  , 0.4, 0.6t  and 0.5,1.0,1.5.    

 
 

 

 

 
 
 
 
 
 
 
 
Fig. 6 
variation of u vs. x  for 1k  , 0.4, 0.6t  and 0.5,1.0,1.5.   

    
 
 

 

 
 
 
 
 
 
 
 
 

Fig. 7 
variation of  vs. x for 1k  , 0.6t  and different .e  

 
 
 

Figs. 4-6 shows the variation of the temperature, thermal stress and the displacement versus x  when 0.4,0.6t   

in case of a non-homogeneous material ( 1)k   and 0.0005e*  for 0.5,1.0   and 1.5 for GN II model. From the 



A. Sur  and M. Kanoria                   67 

© 2014 IAU, Arak Branch 

figure it is observed that with the increase of time t , magnitude of   also increases for different  . A similar 

qualitative behavior is seen in the graphical representations of the thermal stress and the displacement also. 
 
 

 

 
 
 
 
 
 
 
 

Fig. 8 
variation of xx vs. x for 1k  , 0.6t  and different 

.e  
 
 

 

 

 
 
 
 
 
 
 
 
Fig. 9 
variation of u vs. x for 1k  , 0.6t  and different 

.e  
 
 

  
 
 
 
 

 
 
 
Fig. 10 
variation of   vs. t for 6k  , 1.8  and 

0.1, 0.3.x   

 
 
Figs. 7-9 are plotted for GN II model to study the effect of the temperature dependent material parameter e*  on 

the all thermophysical quantities for weak conductivity ( 0.5)   and nonhomogeneity parameter 1k   and for 

plotted for 0.0,0.0001,0.0002,0.0003,0.0004e* . From these figures it seems that rise in magnitude of the material 

constant will also increase the magnitudes of the profile of the thermophysical quantities. Hence, whenever 
designing any FGM, dependence of temperature on the elastic parameters have significant effects. Fig.10 depicts the 
variation temperature ( )  versus t  for conductivity parameter 1.8   and nonhomogeneity parameter 6k   for 

0.1,0.3x   , respectively. It is evident from the figure that the oscillatory behavior of   is seen for 0.3 3.2t   

and after that the temperature almost disappears inside the body. i.e., the thermal wave is propagating with time and 
with increase of time, it reaches to a steady state. 
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6    CONCLUSIONS 

The present problem of investigating the thermophysical quantities in an isotropic functionally graded material 
subjected to a periodically varying heat source is studied in the light of generalized fractional order thermoelasticity 
theories with three relaxation times (3P lag model). The material properties are assumed to vary jointly as 
exponentially with distance and a linear function of temperature, except the density of the material, which varies 
only as exponentially with the distance. The analysis of the results permit some concluding remarks. 

1. The thermal stress, displacement and temperature have a strong dependency on the non-local fractional 
order parameter .  

2. The dependency of all the elastic constants on temperature has a high significance. So, while designing any 
FGM, this should be taken into consideration. 

3. Here, all the results for 1, 0  e*  and 0k   complies the results of Mallik and Kanoria [41]. 
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