
.                  
Copyright: © 2025 by the authors. Submitted for 
possible open access publication under the terms

and conditions of the Creative Commons Attribution (CC BY) license 
(https://creativecommons.org/licenses/by/4.0/).

                                                                                 

Journal of Solid Mechanics Vol. 17, No. 1 (2025) pp. 1-16
DOI: 10.60664/jsm.2025.3081787

Research Paper

Stress Generation Due to Moving Load on 
Gravitational Magneto-Elastic Orthotropic Half-Space 
with Parabolic Irregularity

N. Dewangan1 *, S.A. Sahu 2, S. Chaudhary 3

1 Department of Mathematics, Govt. Pt. Shyamacharan Shukla College, Dharsiwa, Raipur, Chhattisgarh, 
India                                                                                                                                                                
2 Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), 
Dhanbad, India                                                                                                                                               
3 IIT(ISM,), Dhanbad, India

Received 26 August 2023; Received in revised form 29 October 2024; Accepted 15 January 2025

ABSTRACT
This paper aims to calculate the compressive and tensile stresses in 
an irregular gravitational, magneto-elastic orthotropic half-space 
under a moving load at a constant speed. Expressions of normal and 
shear stresses have been obtained analytically in closed form. The 
prominent effects of irregularity depth, irregularity factor, gravity 
parameter and magneto-elastic coupling parameter on normal stress 
as well as on shear stress are computed numerically and analyzed by 
using graphs. Also surface plots have been made to analyze the 
effect of irregularity on normal and shear stress. It is observed that 
both normal and shear stresses are affected not only by the depth of 
irregularity but also affected by magneto-elastic parameter, gravity 
parameter and different types of irregularity like rectangular and 
parabolic irregularity in the medium. Some particular cases also 
have been obtained which is deduced from the present study and 
matched with the existing result. This current study may be useful in 
geo-mechanics and geo-engineering where stresses get developed in 
the irregular body frames (viz. bridges, roadways, airport runways, 
railway, underground railways, etc.) due to moving load which is 
the cause of fracture.
                               

Keywords: Magneto-elastic; Moving load; Seismology; Solid earth 
physics; Irregularity.

______
*Corresponding author. Tel.: 8878427915.
E-mail address: nidhi.dewangan86@gmail.com (N. Dewangan)



Stress Generation Due to Moving Load on Gravitational Magneto-Elastic ….                          2

Journal of Solid Mechanics Vol. 17, No. 1 (2025)  

1    INTRODUCTION

O develop a better understanding of the behaviour of the media under certain load moving on the surface, 
produced stresses play a key role. It is therefore interesting to calculate the stresses due to moving load in 

medium with the variable thickness under gravity and magnetism. Over the last 20 years, studies on the moving load 
problems are of primary importance due to both the theoretical and practical significance. Although stress is often 
induced within the manufacturing process techniques such as fabrication, a far greater concern within many 
structures in the stress arising from external loads may also be considered. Moreover, moving loads have a 
significant effect on dynamic stresses in elastic structures and cause them to vibrate intensively. It may be seen that 
the stresses developed due to the normal moving load on the orthotropic structure can be employed to determine the 
strength, endurance, and durability of the structure. These investigations can be utilized in many branches of modern 
transportation engineering, such as the design of track/road beds, parking garages, ballistic systems (i.e., rail guns), 
aircraft runways, high-speed precision machining, magnetic disk drives, and so forth. Irregularities may occur due to 
some natural or artificial phenomena, in roads, bridges, etc., possess large span but small depth. So, the problem of 
moving load over an irregular, gravitational orthotropic half space may be significant in the geophysical fracture. 
These structures are often irregular which may be of rectangular, parabolic or much-complicated irregularity shape. 
Stresses get affected by such irregularities, and therefore, it requires attention and analysis. These interesting facts 
motivated us for the present study. In the past several decades, a lot of researchers have extensively studied the 
dynamic response of a half-space subjected to a moving load. [Sneddon, 1952] was the first to use the method of 
Fourier integral transform to determine the stress distribution in half-space for the case of a normal uniform load 
moving steadily on the surface of an isotropic material with subsonic velocity. The steady state solution of the 
problem of moving normal load over an elastic half-space was given by [Cole and Huth, 1958]. Stresses developed 
in a transversely isotropic elastic half space due to normal moving load over a rough surface have been determined 
by [Mukherjee, 1969]. The problem of moving load on a plane resting on an elastic half-space has been solved by 
[Sackman, 1961] and [Miles, 1966]. Some notable work concerned with the problem of moving load on an elastic 
half-space has been done by [Achenbach et al., 1967],[Olsson, 1991], [Kota and Singh, 1991], [Alkeseyeva, 2007], 
etc. [Selim, 2007] discussed the static deformation of an irregular initially stressed medium. The dynamic response 
of a normal moving load in the plane of symmetry of a monoclinic half-space was studied by [Chattopadhyay and 
Saha, 2006]. Much work has been discussed dealing with irregularity by [Chattopadhyay et al., 2013]. [Singh et al., 
2014, 2016] studied the problem on moving load in different types of structure. [Liou and Sung, 2008] estimated the 
stresses in an anisotropic half-plane under a moving load applied over the surface of the half-plane at a subsonic 
speed. Later [Liou and Sung, 2012] investigated the response of an anisotropic half-plane under a moving load at all 
speeds. [Fu, 2005] has presented the integral representation of the surface-impedance tensor for incompressible 
elastic material using the Stroh formalism.

The extension of the earth is made up of solids, liquids and occluded gases. The solids are commonly called 
rocks. When mineral occurs with specific geometrical outlines, they are called crystals. Crystals are solids bounded 
by natural plane surfaces or faces. A variety of crystal forms are possible. The orthotropic form is one of them. 
Orthotropic materials are those in which the mechanical or thermal properties are unique and independent in three 
mutually perpendicular directions. Wood, cold-rolled steel, ceramics as well as bone exemplify orthotropic 
materials. Orthotropic materials have many advantages for use as aircraft structural materials, including their 
formability, high speed, strength and stiffness, resistance to cracking by fatigue loading and their immunity to 
corrosion. The effect of rotation, magnetic field, initial stress and gravity on Rayleigh waves in a homogeneous 
orthotropic elastic half-space have been shown by [Abd-Alla et al., 2010]. The theory of generalized surface waves 
in a magneto-elastic half-space of orthotropic material under the influence of initial stress and gravity field was 
developed by [Abd-Alla et al., 2004]. [Abd-Alla et al., 2012] discussed the propagation of Rayleigh waves in a 
rotating orthotropic material elastic half-space under initial stress and gravity. The existence of Rayleigh waves in a 
magneto-elastic initially stressed conducting medium is given by [Datta, 1986]. [Itou, 2016] calculate the stresses 
produced in an orthotropic half-plane under a moving line load. Recently, some more problems on moving load have 
been discussed by [Bian et al., 2016], [Malekzadeh and Monajjemzadeh, 2015], [Kim and Quinton, 2016], [Kiani, 
2017].

The motive of this paper is to highlight the effect of gravity, irregularity depth, magneto-elastic coupling 
parameter and irregularity type in produced stresses due to normal moving load with constant velocity on the free 
surface of an irregular magneto-elastic orthotropic half-space with gravity. Expression of normal stress and shear 
stress are obtained in closed form. Calculated stresses and their dependence on various parameters are shown using 
graph the as prime outcome of the study.  The response of moving load over a surface is a subject of investigation 
because of its possible application in determining the strength of a structure.

T
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2    FORMULATION OF THE PROBLEM  

Let us consider an irregular, magneto-elastic orthotropic half-space under gravity and shear load F moving with a 
constant velocity c along the free surface of the half-space. The coordinate system is taken in such a way that 

 z axis is vertically downward and x axis is along the surface. We assume the irregularity with span 2a and depth l . 

The origin is placed at the middle point of the irregularity as shown in Fig. 1.
The equation of irregularity is

  ,z x (1)

   2 2

0,

2
,

x a
x

a x x a
a


 
 

 

(2)

where  is the perturbation parameter, with the condition 1
2

l

a
  � . The assumption is justified in real scenario 

where the span of irregularity (2a) in earth’s layer is very large as compared to the depth of irregularity  l . When 

line load is applied to the free surface on gravitational, magneto-elastic orthotropic half-space along a line coincident 
with z axis, a deformation is produced in a plane strain. For a plane strain deformation, parallel to ,x z plane, the 
components of displacement are

   1 1 2 3 3, , , 0, , , and 0.u u x z t u u u x z t
y


   



Fig. 1
Geometry of the problem.

Considering the Maxwell equations (governing by electromagnetic field) in the absence of displacement current 
with assumption that the medium is perfectly electric conductor [Roychoudhuri and Mukhopadhyay 2000], we have
curl h j

 
(3)

curl
e

h
E

t
 

 





(4)

div 0h 


(5)
where

0( )h curl u H 
  

and
0 ( , , ).H H h x z t 

  
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We have considered an orthotropic elastic solid under constant primary magnetic field 0H


acting on y -direction, 

gravity field g and an initial compression S along the x -direction. 

The dynamics of body forces may be expressed as

1 30, XX g   (where g is the acceleration due to gravity). 
The compressive stress due to gravity is considered to be hydrostatic and hence, the state of initial 

stress ijT becomes [Datta, 1986].

11 33T T   and
13 0.T  (6)

The pre-stressed half-space possess the following conditions

0
x





and 0.g

z

 
 


(7)

Using equations (3), (4), (5), (6) and (7) into the three-dimensional form, we have
2

1311 12 1
2x

TT T u
g F

x y z x t

 
  

    
    

                                              (8)

2
2312 22 2

2y

TT T u
F

x y z t


  
   

   
                                                                                 (9)

2
13 23 33 3

2z

T T T uu
g F

x y z x t
 

   
    

    
(10)

where 1 2,u u and 3u are the displacement components in ,x y and z directions respectively,  is the density of the 

half-space , F is the Lorentz’s forces.

Equations (8), (9) and (10) reduces to into two dimensions  ,x z as [Datta, 1986]
2

1311 1
2x

TT u
g F

x z x t

 
 

   
   

(11)

2
13 33 3

2z

T T uu
g F

x z x t
 

  
   

   
(12)

where

    31
11 11 13

uu
T c c

x z


 

 
, 31

13 55

uu
T c

z x

     
, 31

33 13 33 .
uu

T c c
x z


 

 
(13)

Using equations (1) and (2), we get

 
2 22 2 2 2

23 3 31 1 1 1
11 13 55 55 02 2 2 2

2 e

u u uu u u u
c c c c g H

x z x x zx z x t
  

      
               

(14)

 
2 2 2 22 2

23 3 3 31 1 1
55 13 55 33 02 2 2 2

2 e

u u u uu u u
c c c c g H

x z z z xx z z t
  

      
               

(15)

3    BOUNDARY CONDITIONS  

The boundary condition for the motion produced by a moving load with a velocity c along 1x -axis may be written as

     13

0

cosT F x ct F k x ct dk at z x 


       (16)

 33 0T at z x  (17)

where k and t are the wave number and time respectively and  1x is the Dirac delta function.
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4   SOLUTION OF THE PROBLEM

Solution of the equations (14) and (15) may be considered as

 1

0

cos ,k zu Ae k x ct dk


  (18)

 3

0

sin ,k zu Be k x ct dk


  (19)

where q is a parameter independent of .k
Introducing equations (18) and (19) into equations (14) and (15), we get

 2
55 0,A c a B f qb      (20)

  2 0,A f b B e d       (21)

where
2 2 2 2 2

11 0 13 55 0 55 33 02 , 2 , , 2 .e e ea c c H b c c H e c c d c H             

After solving equations (20) and (21), we have
4 2

1 2 0,      (22)

where
2 2

55
1 2

55 55

and .
ad c e b ae f

c d c d
 

  
 

Roots of equation (22) are
2 2

1 1 2 1 1 22 2
1 2

4 4
and .

2 2

     
 

     
 

From equations (18) and (19), we get

 1 2
1 1 2

0

( ) cosk z k zu A e A e k x ct dk 


    (23)

 1 2
3 1 1 2 1

0

( ) sink z k zu A a e A b e k x ct dk 


    (24)

where

   
2 2 2 2 2 2

11 55 1 0 11 55 2 0
1 22 2

13 55 1 0 1 13 55 2 0 2

2 2
and .

2 2
e e

e e

c c c H c c c H
a a

c c f H c c f H

     
     

     
 

     

Due to non-uniformity of the boundary, the terms 1A and 2A in (23) and (24) are functions of . We set the 

following approximations due to small value of  .

1 10 11 2 20 21,A A A A A A     (25)

Using equation (25) in equations (23) and (24), we get

      1 2
1 10 11 20 21

0

cos ,k z k zu A A e A A e k x ct dk  


      (26)

      1 2
3 10 11 1 20 21 1

0

sin ,k z k zu A A a e A A b e k x ct dk  


      (27)

Using boundary conditions and equations (13) and (14), we get

   10 1 1 20 2 1
55

,
F

A a A b
kc

 


    (28)

       10 1 1 20 2 1 10 1 1 1 20 2 1 2 ,A a A b A a k A b k              (29)
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10 1 20 2 0,A P A P  (30)

10 1 20 2 10 1 1 20 2 2 ,A P A P A Pk A P k      (31)

after solving the equations (28) to (31), we get
2 1 1 2 2 1

10 20 11 21
55 55 55 55

, , ,
FP FP FP FP

A A A A
kc G kc G c G c G

   
   


    (32)

where
   
 
 

1 1 2 2 1 1

1 13 33 1 1

2 13 33 2 1

,

,

.

G a P b P

P c c a

P c c b

 





   

 

 

Substitute the value of equation (32) in equations (26) and (27), we obtained

 1 22 1
1 1 2 2 1

550

cos ,k z k zP PF
u P e P e k x ct dk

c G k k
    




              

    
 (33)

 1 22 1
3 1 2 1 2 1 1

550

sin ,k z k zP PF
u P a e P b e k x ct dk

c G k k
    




              

    
 (34)

Introducing the equations (33) and (34) into equation (13), we get the expression of the normal and shear stresses

  2 2
1 3 2 2 3 3 111 1 4

55 2 2 1 1

2 2
1 1 ,

x ct x P P xT P P

F c G Q Q Q Q

 


             
     

(35)

  2 2
1 2 133 2 1

3 2 2
55 2 1 2 1

1 1
2 ,

PP x ctT
x

F c G Q Q Q Q

 



           
     

(36)

   2 1 2 1 1 2 1 113 2 1
3 3

2 2 1 1

1
.

P b P aT Q Q
x x

F G Q Q Q Q

   
 



                      

(37)

where
   

     
     

3 11 13 1 1 4 11 13 1 2

2 2

1 1 3 1 2 2 3 1

2 2

1 1 3 1 2 2 3 1

, ,

, ,

, .

P c c a P c c b

Q x x ct Q x x ct

Q x x ct Q x x ct

 

 

 

   

     

      

From equation (35) to (37), it is observed that the stress components moving with uniform velocity c in x -
direction. The expression for shearing stress shows that at any plane parallel to the boundary, shearing stress attains 
the maximum value at x ct , i.e., at the point directly below the point of application of shearing load on the 
boundary and it is observed that normal stresses are zero at the point directly below the point on the boundary where 
the moving shearing load acts.
The maximum value at z  is given as

       13 1 2 1 2
2 1 1 1 2 1 1 12 2

2 1 2 1

1
.

T P P P P
b a b a

F G G


   

         
  

          
   

5   PARTICULAR CASES   

Case 1:

When half-space is irregular i.e.  0  , then equation (35) to (37), reduces to
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  2 311 1 4

55 2 1

,
x ct P PT P P

F c G Q Q
  

  
 

(38)

 1 233

55 2 1

1 1
,

PP x ctT

F c G Q Q
       
   

(39)

   2 1 2 1 1 2 1 113

2 1

1
.

P z b P z aT

F G Q Q

   


     
  

(40)

Equation (38) to (40) gives the expression for normal and shear stresses due to moving load on the free surface 
of gravitational, magneto-elastic orthotropic elastic half- space.

Case 2:

If the gravity is removed i.e.  0f  , then from equation (35) to (37) we get

  2 2
2 311 1 4 2 1

55 2 2 1 1

2 2
1 1 ,

x ct P PT P P z z

F c G Q Q Q Q

 


                     
(41)

  2 2
1 233 2 1

2 2
55 2 1 2 1

1 1
2 ,

P P x ctT
z

F c G Q Q Q Q

 




                   
(42)

   2 1 2 1 1 2 1 1
13 2 1

2 2 1 1

1
.

P b P aT Q Q
z z

F G Q Q Q Q

   
 



                          

(43)

where

   
2 2 2 2 2 2

11 55 1 0 11 55 2 0
1 22 2

13 55 1 0 1 13 55 2 0 2

2 2
and .

2 2
e e

e e

c c c H c c c H
a a

c c H c c H

     
     

       
   

   
 
 

1 1 2 2 1 1

1 13 33 1 1

2 13 33 2 1

,

,

.

G a P b P

P c c a

P c c b

 





      

 

 

   3 11 13 1 1 4 11 13 1 2, .P c c a P c c b     

Equations (41) to (43) gives the expressions of normal and shear stresses due to moving load on the free surface 
of irregular magneto-elastic half-space.

Case 3:

When magneto-elastic coupling parameter is removed, then eq. (35) to (37), becomes

  2 2
2 311 1 4 2 1

55 2 2 1 1

2 2
1 1 ,

x ct P PT P P z z

F c G Q Q Q Q

 


                     
(44)
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  2 2
1 2 133 2 1

2 2
55 2 1 2 1

1 1
2 ,

P P x ctT
z

F c G Q Q Q Q

 




                   
(45)

   2 1 2 1 1 2 1 1
13 2 1

2 2 1 1

1
.

P b P aT Q Q
z z

F G Q Q Q Q

   
 



                          

(46)

where

   
2 2 2 2

11 55 1 11 55 2
1 2

13 55 1 13 55 2

and .
c c c c c c

a a
c c f c c f

   
 

     
   

   
 
 

1 1 2 2 1 1

1 13 33 1 1

2 13 33 2 1

,

,

,

G a P b P

P c c a

P c c b

 





       

  

  

   3 11 13 1 1 4 11 13 1 2, .P c c a P c c b       

Equation (44) to (46) gives the expression in irregular orthotropic half-space with gravity which is matched with 
[Singh et al., 2016].

6.    NUMERICAL EXAMPLE AND DISCUSSION

For the considered structure, we use the following data [Prosser and Green, 1990]
9 2 9 2 9 2

11 13 33

9 2 2
55

14.295 10 / , 3.3 10 / , 108.4 10 /

5.27 10 / , 1422 / .

c N m c N m c N m

c N m kg m

     

  
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(a)                                                                                        (b)

Fig. 2

Variation of normal stress 11

F

 
 
 

against depth for different irregularity depths  3x for different values of (a) irregularity 

factor 1x

a
 
 
 

, (b) magneto-elastic parameter  U .

(a)                                                                                         (b)

Fig. 3

Variation of normal stress 11

F

 
 
 

against depth for different irregularity depths  3x for different values of (a) gravitational 

parameter  f and (b) irregularity depth  l in case of parabolic irregularity as well as rectangular irregularity.
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Fig. 4

Variation of normal stress 33

F

 
 
 

against depth for different irregularity depths  3x for different values of irregularity 

factor 1x

a
 
 
 

.

(a)                                                                      (b)
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                                            (c)

Fig. 5

Variation of normal stress 33

F

 
 
 

against depth for different irregularity depths  z for different values of (a) irregularity depth 

 l and (b) gravitational parameter  f (c) magneto-elastic parameter  U in case of parabolic irregularity as well as rectangular 

irregularity.

Fig. 6

Variation of normal stress 13

F

 
 
 

against depth for different irregularity depths  z for different values of irregularity factor 1x

a
 
 
 

.
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(a)                                                                                       (b)

                                             (c)

Fig. 7

Variation of normal stress 13

F

 
 
 

against depth for different irregularity depths  z for different values of (a) irregularity 

depth  l and (b) gravitational parameter  f (c) magneto-elastic parameter  U in case of parabolic irregularity as well as 

rectangular irregularity.
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Fig. 8

Variation of shear stress 13

F

 
 
 

against depth  z and 

gravitational parameter  f in case of parabolic irregularity.

Fig. 9

Variation of shear stress 13

F

 
 
 

against depth  z and irregularity 

depth  l in case of parabolic irregularity.

Fig. 10

Variation of shear stress 13

F

 
 
 

against depth  z and magneto-

elastic parameter  U in case of parabolic irregularity.

Fig. 11

Variation of normal stress 11

F

 
 
 

against depth  z and 

gravitational parameter  f in case of parabolic irregularity.
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Fig. 12

Variation of shear stress 11

F

 
 
 

against depth  z and magneto-

elastic parameter  U in case of parabolic irregularity.

Fig. 13

Variation of shear stress 11

F

 
 
 

against depth  z and irregular 

depth  l in case of parabolic irregularity.

7.    GRAPHICAL INTERPRETATION

Figure 2(a), 2(b) and Figure 3(a), 3(b), represents the variation of normal stress 11

F

 
 
 

with respect to the depth. It is 

noticed that the produced normal stress increases initially with the depth and becomes constant after a certain depth. 

In particular, the effect of irregularity factor 1x

a
 
 
 

, magneto-elastic parameter  U , gravitational parameter  f , 

irregularity depth  l and has been shown through these figures in case of parabolic irregularity as well as 

rectangular irregularity. It is found that the normal stress decreases with increasing value of irregularity depth, 
irregularity factor whereas stress increases with increasing value of gravitational parameter and magneto-elastic 
parameter. Fig. 3(b) elaborates a comparative study to distinctly mark the impact of type of irregularity in raised 
stresses. It is observed that normal stress developed due to moving load is supported more by rectangular irregularity 
as compared to the parabolic irregularity. In more contrast Figs. (4) and (5) help to analyse the effect of normal 

stress 33

F

 
 
 

with respect to depth  z in case of parabolic as well as rectangular irregularity. It seems that normal 

stress enhances with increasing values of irregularity factor and gravitational parameter and but decreases with 
irregularity depth and magneto-elastic parameter. Form Fig. 5(a) it is observed that normal stress developed due to 
moving load is supported more by parabolic irregularity as compared to the rectangular irregularity but in Fig. 5(b), 

rectangular irregularity is more prominent. The graphical representation for shear stress 13

F

 
 
 

has been made 

through Figs. (6) and (7) in case of both parabolic and rectangle irregularities. The graphs exhibit that the increasing 
value irregularity factor, gravitational parameter and magneto-elastic parameter shear stress decreases. The reverse 
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effect of irregularity depth on the amount of produced shear stress can also be seen through same figure. In Figs. 
7(a) and 7(c) it is observed that shear stress developed due to moving load is supported more by rectangular 
irregularity as compared to the parabolic irregularity. Surface plot of normal and shear stresses against depth, 
gravitational parameter, magneto-elastic parameter and irregularity depth in case of parabolic irregularity. From the 
surface plots (Figs. (8) to (10)), it is clear that the irregularity depth favours the developed shear stress whereas 
gravitational parameter and magneto-elastic parameter disfavour the developed shear stress. Surface plot (Figs. (11) 
to (13)) represent the variation of normal stress against depth, gravitational parameter, magneto-elastic parameter 
and irregular depth respectively. It is seen that the irregularity and magneto-elastic parameter support the developed 
normal stress whereas gravitational parameter disfavour the same.

8.    CONCLUSIONS

The present study deals with the stresses developed by the moving load in an irregular, magneto-elastic orthotropic 
half-space under gravity. Expressions of both normal and shear stresses have been obtained in closed form. 
Numerical computation has been carried out for both normal and shear stresses. It is observed that both normal and 
shear stresses are affected significantly by the depth, irregularity factor, depth of roughness but also hit by the 
gravitational parameter and magneto-elastic parameter. Moreover, the present study has been made to analyze the 
effect of different types (shapes) of irregularity on both the stresses. Some particular cases have been obtained which 
is deduced from the present study and matched with existing result. Following outcomes can be pointed out as major 
highlights of the problem: 

1. Normal stresses are zero at a point directly below the point on the boundary where moving load acts 
whereas shear stress attains its maximum value.

2. Normal stresses 11

F

 
 
 

due to moving load decreases as the irregularity factor and gravitational parameter 

increases but it increases with increasing value of depth of irregularity and magneto-elastic parameter.

3. As compared to normal stresses 11

F

 
 
 

, normal stresses 33

F

 
 
 

shows the reverse effect for different values 

of irregularity factor, gravitational parameter, depth of irregularity and magneto-elastic parameter.

4. Shear stress 13

F

 
 
 

due to moving load decreases with increasing value of irregularity factor, gravitational 

parameter and magneto-elastic parameter and it disfavour for depth of irregularity.
5. Moreover, in some cases normal and shear stresses developed due to moving shear load is supported more 

by rectangular irregularity as compared to the parabolic irregularity. Then we conclude that both normal 
and shear stresses are also affected by the shape of irregularity. 

The present study is likely to find application in the field of material science and engineering, aircraft 
engineering, etc. This current study may be useful in geo-mechanics and geo-engineering where stresses get 
developed in the irregular body frames (viz. bridges, roadways, airport runways, railway, underground railways, 
etc.) due to moving load which is the cause of fracture. Also, the magneto-elastic materials are likely to find its 
application in geophysical problems and certain issues in optics and acoustics. Moreover, the irregular, gravitational, 
magneto-elastic orthotropic media associated with a normal moving load will be a better practical insight of real 
earth scenario.
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