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 ABSTRACT 

 An analytical framework is developed for the thermoelastic analysis of 

annular sector plate whose boundaries are subjected to elastic reactions. 

The exact expression for transient heat conduction with internal heat 

sources is obtained using a classical method. The fourth-order 

differential equation for the thermally induced deflection is obtained by 

developing a new integral transformation in accordance with the 

simply supported elastic supports that are subjected to elastic reactions. 

Here it is supposed that the movement of the boundaries is limited by 

an elastic reaction, that is, (a) shearing stress is proportional to the 

displacement, and (b) the reaction moment is proportional to the rate of 

change of displacement with respect to the radius. Finally, the 

maximum thermal stresses distributed linearly over the thickness of the 

plate are obtained in terms of resultant bending momentum per unit 

width. The calculation is obtained for the steel, aluminium and copper 

material plates using Bessel's function can be expressed in infinite 

series form, and the results are depicted using a few graphs.  

                                   © 2021 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 LTHOUGH considerable attention has been given to the structural bending analysis and its associated 

thermal stress in a body due to its usage in different engineering application. It is also observed that the thermo-

mechanical properties of the materials of which the structural profiles are made depend on the internal heat source 

and different broad temperature range of sectional heat supply. It further complicates the thermoelastic deflection 

solutions in connection with a different mode of supports which generates the nonlinearity of the system of 

equations, boundary conditions and so on. Therefore, few theoretical thermoelastic deflection studies on different 

structural objects with different supports have been investigated so far. For example, Khdeir and Reddy [1] 

investigated the thermoelastic bending response of cross-ply rectangular laminated plates using a higher-order 

theory and obtained the exact solutions using the state-space approach for different combinations of free, clamped, 

and simply supported edge conditions. Tsai and Hocheng [2] investigated the three-dimensional transient 

temperature heat conduction problem of the workpiece using the finite difference method, and the thermally-induced 
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deflection was analyzed by the numerical Simpson's 3/8 multiple integral methods. Kim and Noda [3] adopted 

Green's function approach for analyzing the deflection and the transient temperature distribution of a plate made of 

functionally graded materials by using the Galerkin method and the laminate theory. Green–Lagrange nonlinear 

strain-displacement relation was used by Na and Kim [4] for obtaining the thermoelastic deflection of functionally 

graded plates under uniform pressure and thermal load. Qian et al. [5] used the exact three-dimensional 

thermoelasticity theory to study the displacements and stresses in simply supported laminated rectangular plates 

within uniform temperature field, and it is observed that the numerical results agree well with the finite element 

solutions. Hasebe and Han [6] derived the thermoelastic thin-plate-bending solution for the elliptic hole under 

uniform bending heat flux using these Green's functions and the principle of superposition. Varghese et al. [7-11] 

have proposed various realistic thermoelastic-induced solutions for small and large deflection in the elliptic profile 

involving the Mathieu functions and also their derivatives using the classical method or integral techniques. Mirzaei 

[12] obtained the solution of thermal moments and buckling of the temperature-dependent composite plate, which is 

in a super elliptical profile reinforced with carbon nanotubes based on the Ritz method of the polynomial type. Very 

recently, Elsheikh et al. [13] obtained the closed-form solutions for the governing time-dependent heat conduction 

equation of the thin circular plate using Green's function method and variable separation technique. Past studies on 

the annular sector plates tend to be mostly limited to classical boundary conditions. It is widely believed that an 

accurate analytical solution is only feasible for an annular sector plate that is simply supported or clamped edges. 

However, many engineering applications usually encounter a variety of possible boundary conditions, such as 

restricted elastic reactions during edge movements. Therefore, as a result, such structural components are prone to 

deformations, bucking and bending for which proper analysis is required to be made when the boundary conditions 

are comprised of the involvement of elastic reactions that are generating during thermal expansion. It is also noted 

during the investigation that engineers and researchers are more interested in normal stress instead of shear stress 

since it is more prominent. However, there are cases in which the heat flow within a thin plate is considered for 

practical importance; in that case, the shear stress becomes more influential. Thus, the concept of shearing stress and 

reaction moment with the assumption that that the deflection of the plate is very small in comparison with its 

thickness will be of great interest to designers, engineers, scientists and researchers. Hence, to the best of authors' 

knowledge, there exists rare attentiveness on this topic of research in which displacement is taken into consideration 

for calculating bending stresses.  The primary purpose of the current work is to take advantage of the movement of 

the boundaries restricted by an elastic reaction to fill this important gap in the problem of the plane stress field. 

The article is organized as follows. In Section 2, the mathematical statement of the problem is presented. In 

Section 3, solutions of temperature distribution are expressed in terms of Bessel function and thermal-induced 

deflection is solved using a new integral transform. Section 4 is devoted to numerical analysis, and graphs are 

explained. Finally, some conclusions are drawn in Section 5. In Appendix Section, the calculus of the required 

integral transforms and its essential properties explained which is capable of solving the differential equation 

subjected to elastic reaction type boundary conditions. 

2    FORMULATION OF THE PROBLEM    

The geometry and cross-section in Fig. 1 show an annular sectoral plate composed of two radial and two 

circumferential edges within the cylindrical coordinate systems.  

 

 

 

 

 

 

 

Fig.1 

Geometry and dimensions of a sector plate and its cross-

section. 
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The thin isotropic elastic plate is having a constant thickness , inner radius a, outer radius b,  and sector angle 

2 . The plate geometry occupies the space D  as , , / 2 / 2a r b z          , shown as a dark region in 

Fig. 1. The centre of the plate in the middle surface is taken as the origin. 

2.1 Temperature distribution 

The governing differential equation for the heat conduction with internal heat sources is given by 
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In which ( , , , )T T r z t  is the temperature distribution in the thin plate, a ramp-type internal heat source as 

0 0/ ( / ) ( ) ( , ) [ ( / 2)]Q w C Q f t g r z       with 
0w  as the quantity of heat generated by heat sources per unit 

time and volume, ( , )g r 
 
is an assumed function of internal heat source, [ ]  is the Dirac delta function, thermal 

diffusivity is / ,k C   k being the conductivity,   is the material density, C  is the specific heat of the material, 

respectively, and 
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In which 
0f  is constant and 

0t  is a fixed time parameter. The initial condition and boundary conditions for 

temperature are 
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2.2 Thermally-induced deflection 

The thermally-induced deflection, dependent on the angle  , governed by a differential equation 
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where ( , , )w r t  is the flexural displacement along the z-direction, D is the flexural rigidity of the plate given as 

3 2/12(1 )D E   , inertia loading term is taken as 2 2( / )w t   ,   is the mass density, ( , , )TM r t  is the 

thermally induced resultant moment as: 
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with   and  E  symbolize as the coefficient of linear thermal expansion and Young's Modulus of the material of the 

plate, respectively. The initial boundary conditions are given as: 
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In which ( , )f r 
 

and
 

( , )h r   are the assumed functions. Marchi and Diaz [14,15] treated axisymmetric 

vibration of annular plates by means of the integral-transform method, and the method was extended to a plate with 

elastic edge conditions. We shall suppose that the movement of simply supported boundaries at r a  and r b  is 

limited by an elastic reaction. Therefore, ( , , )w r t  shall satisfy the boundary conditions as: 
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where w  is the flexural displacement, /w r   is the rate of change of displacement with respect to the radius, 
3 3 2 2 2/ (1/ ) / (1/ ) /w r r w r r w r       

 

[16] is the shearing stress, 2 2/ (1/ ) /w r r w r    

 

[17] is the

 

reaction 

moment, and both the proportionality constants 
1k  and 

2k  depend on the thermoelastic properties of the 

surrounding medium, respectively.  

The classical homogeneous boundary conditions can be simply considered as special cases when the elastic 

reactions are considered as zero. 

2.3 Thermally induced stresses 

The thermal bending stresses components over the thickness of the plate is expressed as: 
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In which resultant bending momentum per unit length [17] is 
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Eqs. (1) to (9) constitutes the mathematical formulation of the problem under consideration. 

3    THE SOLUTION TO THE PROBLEM   

3.1 Solution for the temperature distribution 

Applying the Laplace transform of Eq. (1), one obtains 
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In which T  is the transformed function of T, and p is transformed Laplace parameter. As a solution of Eq. (10) 

satisfying Eq. (11), we assume 
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In which msA  is the constant to be determined from boundary conditions and ( )m msC r  denotes a cylinder 

function of order m as: 
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In which 
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Using Eqs. (12) and (14) gives a relation between nsf  and msA as: 
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Then the Eq. (12) with the aid of Eq. (16), yields 
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Inverting Eq. (17) by Laplace inversion theorem, the temperature field is obtained as: 
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The function is given in Eq. (18) represents the temperature ( , , , )T r z t  at every instance and at all point of the 

thin annular sector plate with a finite height when there are conditions of heat contour acting on surfaces 

,r a ,r b / 2,z   / 2,z   and when on the faces ,      the temperatures are reached. 

3.2 Solution for thermal deflection 

Putting Eq. (18) in Eq. (5), one obtains 
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By means of a new integral transform (refer Appendix) over the variable r and taking into account the boundary 

conditions (7), the Eq. (4) is transformed into  
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Using the Laplace transform, the differential Eq. (20) taking into account the initial conditions (6), one yield 
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In which / 2D   . Now taking Laplace inverse transform and then taking the inverse of the new integral 

transform (refer Appendix), one obtains the solution of thermal deflection as: 
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3.3 Solution for bending moments 

On substituting Eq. (22) in Eq. (9), one obtains the resultant bending momentum as: 
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3.4 Solution for the associated stresses 

Now using Eqs. (23)-(25) in Eq. (8), one obtains the associated stresses expressions as: 
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4    NUMERICAL RESULTS , DISCUSSION AND REMARKS   

For the interests of the simplicity of calculation, we introduce the following dimensionless values 
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 (29) 

 

Substituting the above Eq. (29) into Eqs. (18), (22), one obtains the expressions for the dimensionless 

temperature, deflection and thermal stresses respectively for our numerical discussion. The thermo-mechanical 

properties are considered as specific heat at constant pressure as shown in Table 1.  

 
 

Table 1 

Thermo-mechanical properties at room temperature. 

Parameters Units Copper Aluminium Steel 

Calorific value Kcal/Kg0C 0.092 0.22 0.049 

Modulus of Elasticity Gpa 110 70 190 

Shear Modulus GPa 45 27 80 

Poisson Ratio  0.34 0.33 0.29 

Thermal Expansion coefficient 10 -6 m/m0C 17.6 23.6 11.5 

Thermal Conductivity W/mK 401 237 51.9 

Density Kg/m3 8940 2712 7870 

Thermal Diffusivity m2/s 1.11   10-5 9.7   10-5 1.88   10-5 

 

The physical parameter for the sector plate is considered as 0 2a . m , 1b m , 0 08. m, 0 0.3t   and 

0 150T C . Considering the initial boundary conditions of the thermally-induced deflection as ( , ) 0,f r   ( , ) 0h r     

and the internal source term which is partially constant in the r- direction and which follows a quadratic parabola in 

the   direction 
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 (30) 

 

where y -intercept of the equation is c. The ms  0.529, 0.679, 0.826, 0.977, 1.129, 1.282, 1.436, 1.599, 1.746, 

1.902,… are the roots of the transcendental equation ( )m msC r  ( ) [ ( ) / ( )] ( )m ms m ms m ms m msJ r J a Y a Y r    . 

Numerical results were obtained by taking the first 10 terms for n in an odd number and 48 terms for s in the series. 

In order to examine the influence of internal heat generation on the plate, the numerical calculations were performed 

for all the variables, and numerical calculations are depicted in the following figures with the help of Mathematica 

software. Fig.2-4 analyzed the numerical results of the temperature distribution, thermal deflection and thermal 

stresses in the annular sector plate under the action of a ramp-type quadratic parabola internal heat source.  
 

 
(a) 

 
(b) 

Fig.2 

a) Temperature distribution along r -direction for different values of  . b)Temperature distribution along time for different 

values of .z  

 

Fig 2(a) represents the analysis of temperature distribution along the radial direction for the various angles. Since 

the plate is subjected to a compressive force acting along the inner edge, the maximum temperature distribution 

attains at the outer edge. The variation in the temperature distribution may be due to the available ramp-type internal 

source term which is partially constant in the r  direction and which follows a quadratic parabola in the 

  direction. Fig. 2(b) notify variation in the temperature distribution along the time-invariant. It is observed that 

temperature distribution varies directly with respect time. It is understood from the figure that the temperature is 

zero initially and goes on increasing linearly with time up to a certain interval. It is also to be noticed that the 

temperature suddenly drops to zero and becomes steady due to the relation 0.   

 

 
(a) 

 
(b) 

Fig.3 

a) Thermal deflection along time-direction for different value of .r b) Contour plot of deflection along r  plane
 
 for a fixed 

value of .  
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Fig 3(a) shows thermal deflection along the time-invariant for different values of r . It can be noticed that the 

deflection attains the maxima following a normal bell curve for every instance of the time within the range 

00    . The comprehensive peak of deflection can be observed as shown in the figure, maybe due to internal heat 

generation, and that varies with respect to the material properties under consideration. Fig 3(b) exhibits the thermal 

deflection in isolines contour plot along  r   plane for a fixed value of dimensionless time .  The defection in the 

red area near the outer edge shows maximum displacement, maybe due to the available internal heat generation, 

while the dark blue colour area indicates the zero deflection at the centre of the plate. It is seen that thermal 

deflection is higher in the first part due to the accumulation of thermal energy available in place of ramp-type 

quadratic parabolic heat generation.  The metals considered are steel, aluminium and copper and follows an exact 

relation Steel<Aluminium< Copper. The thermal deflection is shown in the contour plot shows that these values are 

directly proportional to their thermal diffusivity. 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

Fig.4 

a) Radial Stress ( )rr  along r -direction for different values 

of .z  b) Tangential Stress ( )  along r -direction for 

different values of time. c) Shear Stress ( )r  along r -

direction for different values of .  

 

The variation of normal stresses ,rr   and r  is shown in Figs.4(a), (b) and (c). Fig. 4(a) shows 

dimensionless radial stress along the radius of the circular plate for different thicknesses z . The effect of the ramp-

type heating causes the high tensile force can be easily seen at the outer edge of the thin plate, and compressive 

force occurs on the inner surface along the radial direction for different locations in the axial direction. This 

expansion and bending are in proportional to their thermal diffusivity. Fig. 4 (b) gives the analysis of dimensionless 

tangential stress along the radial direction at different time intervals below 
0t . It is observed from the figure that the 

high compressive stress occurs on the inner surface and the tensile stress appears on the inner surface along the 

radial direction. Fig. 4(c) displays dimensionless shear stress along the radial direction over different time intervals 

below 
0t . It is clear from the figure that the values of thermal shear stress decrease towards the inner part of the 

plate and their maximum value towards the outer part. The results obtained here are more useful in engineering 

problems, particularly in the determination of the state of strain in a thin circular plate. Also, any particular case of 

special interest can be derived by assigning suitable function ( , )g r  .  
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5    CONCLUSIONS 

In this manuscript, we have investigated the induced deflection and its associated bending stresses of the ring-type 

sector plate. The temperature distribution having an internal heat source is determined using the Laplace transform 

technique.  The thermally induced deflection is obtained using an extended integral transform with the boundary 

condition of elastic support. The above analytical technique proposed is very straightforward and can be widely 

applicable in other research activity. The obtain here can be summarised as follow:  

 This mathematical modelling is very efficient in handling different type of mechanical and thermal 

boundary condition during thermal bending analysis. 

 Neglecting the inertial term in Eq. (4), the static solution for thermoelastic deflection can be obtained.  

 The numerical values of the displacements and stresses for the plates of metals steel, aluminium and copper 

are in the proportion and follows relation Steel<Aluminium< Copper. It means these values are directly 

proportional to their thermal diffusivity. 

 The radial and tangential stresses are observed having an increasing trend, while the shearing stress is 

exponentially increasing. 

 The above dynamic deflection concept can be useful in predicting electro-plastic bending and other 

microsystem devices. 
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APPENDIX A 

The required integral transforms. The fourth-order differential equation is given as: 
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The solution of Eq. (A.1) assume to be  
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Applying the boundary conditions (A.2) to the above function (A.3), it reduces to matrix form, and the 

conditions that a solution exists to the eigenvalue equation can be given as: 
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and let assume that j  be the positive roots of Eq. (A.4).  Now the required integral transform can be obtained as: 
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In which kernel of the transform is taken as: 
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whose coefficients as the co-factor of the determinant given in Eq. (A.4) are given as: 
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Then the theorem of inversion can be provided in the form as: 
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The fundamental operational property can be obtained as:  
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 (A.9) 

 

Thus, we have developed an integral transformation so that it can be manipulated and solved much more easily 

when applied to Eq. (A.1) using the boundary conditions of the type (A.2) than in the original domain. 
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