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 ABSTRACT 

 Herein, the free vibrations of inhomogeneous nonlocal visco 

thermoelastic sphere with three-phase-lag  model of generalized 

thermoelasticity have been addressed. The governing equations and 

constitutive relations with three-phase-lag model have been solved by 

using non-dimensional quantities. The simple power law has been 

presumed to take the material in radial direction. The series solution 

has been established to derive the solution analytically. The relations of 

frequency equations for the continuation of viable modes are developed 

in dense form. The analytical results have been authenticated by the 

reduction of nonlocal and three–phase–lag parameters. To investigate 

the quality of vibrations, frequency equations are determined by 

applying the numerical iteration method. MATLAB software tools 

have been used for numerical computations and simulations to present 

the results graphically subject to natural frequencies, frequency shift, 

and thermoelastic damping. The numerical results clearly show that the 

variation of vibrations is slightly larger in case of nonlocal elastic 

sphere in contrast to elastic sphere. 

                                       © 2021 IAU, Arak Branch. All rights reserved. 

 Keywords: Functionally graded material; Nonlocal elasticity; Three-
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1    INTRODUCTION 

 HE theories of linear thermo-elasticity were established by Nowacki [1] thoroughly. Lord and Shulman (LS) 

[2], Green and Lindsay (GL) [3], Green and Naghdi (GN) [4] and more authors developed the theories of 

generalized thermoelasticity. After a span of time, a dual-phase-lag (DPL) heat conduction model which includes the 

effect of microscopic interactions was developed by Chandrasekharaiah [5] and Tzou [6]. Roy Choudhuri [7] 

derived another thermoelastic model based on three-phase-lag (TPL) model of heat conduction in the context of 

generalized thermoelasticity. In this model, three different phase–lags, namely q , T  and   have been considered 

in the classical Fourier’s law: q K T   as *( , ) ( , ) ( , ) ,q Tq P t K T P t K P t               where *K , 
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 and  are additional material constant, thermal displacement gradient and phase-lag of thermal displacement 

gradient respectively. TPL model has importance in exploring various applications related to nuclear boiling, 

electron phonon interactions, scattering, etc. Some of the applications of the DPL and TPL models might be initiated 

in ref. [8-10].   

In mechanical point of view, the elasticity in the context of non-locality was explored by Eringen [11]. He 

addressed a unique foundation for the improvement of basic field equations for the continuation of continuum 

nonlocal elastic theories. Moreover, in this model which was based on the theory of non-locality, the applied stress 

at a specific point of continuum elastic body does not only depend upon the strain at that particular point, but also at 

all other surrounding points of the strain of the body. The theories of elasticity in the context of non-locality have 

been employed to the propagation of a plane wave in the context of classical and non-classical theories. A few 

researchers of such works are Ghadiri et al. [12], Li et al. [13], Zarei et al. [14], Najafizadeh et al. [15] etc. Bachher 

and Sarkar [16] investigated a nonlocal thermoelasticity theory for the fractional derivative of heat transfer with 

voids. Mondal et al. [17] explored the nonlocal thermoelastic waves in the DPL model with voids material. 

Asbaghian Namin and Pilafkan [18] investigated the influences of boundary conditions and small scale effect on the 

vibrations of nano-plates in the context of classical theory. Elastic nonlocal thermoelasticity of type II was 

thoroughly investigated by Sarkar et al. [19]. Othman et al. [20-21] studied the visco thermoelastic  waves and the 

effect of magnetic field on thermoelasticity theories with two temperatures. Soltani et al. [22] studied the vibrations 

of single walled fluid filled nanotube in the context of nonlocal theory of elasticity. Marin et al. [23] studied the 

mixed initial value problems for porous bodies in the context of micropolar continuum mechanics. The initial studies 

on vibrating spheres were explored by Lamb [24], Sato and Usami [25, 26], etc. The coupling between elastic and 

thermal fields for spheres and cylinders were explored by Hsu [27], Keles and Tutuncu [28], Sharma et al. [29-31], 

Nejad et al. [32], Sharma [33], Biswas and Mukhopadhyay [34], Biswas [35], Sharma et al. [36-37], Manthena et al. 

[38–39], Sharma and Mittal [40], etc. Riaz et al. [41] investigated the effect of heat transfer on Eyring Powell fluid 

model through a rectangular channel. Bhatti et al. [42] explored the numerical study of Hall current impact and heat 

transfer on the propulsion of fluid particle suspended with wall properties. In the reference of LS model, Sharma et 

al. [43–44] conducted an analysis of stress free vibrations by considering nonlocal elastic hollow cylinder with void 

and diffusion. Biswas [45] expressed equations of steady oscillations in the context of nonlocal thermoelastic 

medium with the voids material. Pramanik and Biswas [46] presented the analysis of surface waves in the reference 

of nonlocal thermoelastic medium with a state space approach. 

In current study, we represent free vibrations of three-phase-lag (TPL) model of isotropic functionally graded 

nonlocal visco thermoelastic sphere. The simple law of exponent has been assumed that the material is graded i.e. 

inhomogeneous in radial direction. The Fröbenious method [48, 50] of the power series is established to investigate 

the solution analytically. To discover the behavior of vibrations, the frequency relations are explained by employing 

numerical iteration method by using MATLAB software tools. The obtained analytical results have been presented 

graphically subject to natural frequencies, frequency shift, and quality factor related to thermoelastic damping to 

check the effects of different theories of thermoelasticity such as TPL, DPL, GN-III, LS and CTE. Using grading 

index parameter, tractions and vibrations may be managed by controlling the values of the index parameter as we 

need. The study may have applications that graded index parameter act as a regulator of variation of variations. 

2    FORMULATION OF THE PROBLEM 

2.1 The mathematical model 

Here, we consider thermally conducting thermo-visco-elastic thick-walled sphere/disk of inner radius 
IR  and outer 

radius 
O IR R , at uniform temperature 

0T  initially in undisturbed state. Here the components of temperature and 

displacement in spherical coordinated system ( , , )r    can be expressed as ( , )T r t  and 

( , ) , 0ru u r t u u    , respectively. The governing equations for isotropic inhomogeneous nonlocal visco 

thermoelastic sphere of inner, outer radii, IR , O IR R respectively in the context of three-phase-lag model 

(TPL) [7] of generalized thermoelasticity with Eringen’s nonlocal elasticity [11] (without heat sources and body 

forces) are: 
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2.1.1 Strain displacement relations 
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2.1.2 Constitutive relations 
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2.1.3 Equation of motion  
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2.1.4 Equation of heat conduction 
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(4) 

 

where the superscript ‘L’ in stresses denotes local elasticity; e is the cubical dilatation. 

Here
2

* * 2

2

2
, , , ; , ,L

rr ij ije e e e t K t K i j r
r rr

   
 

            


. Note that Eq. (4) reduces 

to different theories of generalized visco thermoelastic ity as below:  

I. TPL model: 0, 0, 0T qt t t   . 

II. DPL model: 0, 0, 0T qt t t   , * 0K  . 

III. GN III model: 0T qt t t   . 

IV. LS model: 
2 *

0 0, 0 , 0T q qt t t t t K      . 

Here, the material has been considered to be isotropic and graded due to simple power law as reported in Sharma 

et al. [31] in such a way that 

 

   0 0 0 0 0
* * * *

e
I

r
, , , , K , K , , , , K , K
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       
 

  
 

           

 

(5) 

 

Here the exponent   denotes the degree of in-homogeneity. The parameters 0 0 0 0 0
* *

e, , , , K , K     are 

homogenous corresponding items of the respective quantities. Noda and Jin [47] observed that in comparison to 

thermal conductivity and elastic modulus, the linear thermal expansion coefficients are not significant contributors 

and therefore must be considered as homogenous (constant). For the visco thermoelastic sphere, the material 

parameters are defined in the following manner 
*

e e e, ,
t t t

        
       

          
       

0 0 0 1 0 01 1 1 ,  

where  e e e T    3 2 and e e T

e

( )    





 0 1

0

3 2
. The quantities e e, 

 
are well known Lame’s 

parameters, , 0 1  are the mechanical relaxation time parameters. Solving Eqs. (3) and (4) by using Eqs. (1), (2) 

and (5), for the unknown radial displacement and temperature, we obtain the following equations: 
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where m

m
m m
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 
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2, 2 ( 1) 2 , . 

2.2 Regular and initial boundary conditions  

It is believed that the generalized inhomogeneous nonlocal visco thermoelastic  sphere is initially undisturbed and  

rest position, hence initial boundary conditions are: 

  

atrr I I
T r u r

T r u r r r R R
t t

 
      

 

( ,0) ( ,0)
( ,0) 0 , ( ,0) 0 , ( ,0) 0 ,            

 

(8) 

 

The analysis is conducted on the surface of the sphere by considering traction free, thermal boundary conditions 

at the inner, outer radii Ir R , O IR R  respectively. Mathematically, there are two sets of boundary conditions 

as given below: 

For traction-free thermally insulated surfaces of the sphere, we have 
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(9) 

 

For traction-free isothermal surfaces of the sphere, we have 

 

atrr I IT r R R   0 ; 0 ,            (10) 

3    METHODOLOGIES  

3.1 Solution of the model 

Non-dimensional parameters are introduced as: 
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(11) 

 

Plugging the dimensionless quantities from Eqs. (11) in Eq. (2) and Eqs. (6) and (7), we obtain: 
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3.2 Time harmonic vibrations 

Here the time harmonic vibrations are presumed as: 
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 We now set up the transformation as already used by Sharma et al. [31]: 
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R R

V V
i R g

R R


  



 
   

 






   
       

   


    
             

*

*

*
0 0

0

2 *0
0 0

0 0

,

2(1 2 ) ,

           

 

 

 

(23) 

 

where n a m a b h a
 




  
       

 

2 * 2 * * * 2 *0
2

0

1 1
( ) , , , 2(1 2 ) ,

2 2
R

d d
R

R dR dR

 
   

 

2 1
,  

b
g

  



  
 
 
 

2 *
* 0 0

0

2(1 2 )
. 

3.3 Extended power series solution 

From differential Eq. (22), it is noticed that R  0  is regular singular point, and therefore the model is extended by 

using series solution as earlier presented by Tomantschger [48], hence we must have non–trivial solution given as: 

 

k s k

kk

AV R
R

BR






  
   

   


0

( )

( )
           

 

(24) 

 

Here k is defined as Fröbenius parameter; the parameter s  represents the eigenvalue (complex or real) and 

k kA B, represent the unknowns to be evaluated through the boundaries. Here the explanation for 

I I IR r R R  , 0  is valid and therefore the domain for the system of differential Eqs. (22) is R 1 . 

Substituting the solution (24) in the differential Eq. (22) and on simplification, we obtain  

 

k s k

kk

a a h A
R

a a h BRR






         
          

         


11 12 11

2
22 21 220

0 0 01 1
0

0 0 0
           

 

(25) 

 

where   a s k n a B s k b a s k a a A s k b             2 2 * * 2 * 2 * *
11 21 22 12( ) , ( 1), ( ) ( ) , ( ) , A

 


 * 0

*
0

,  

q qB im h i h        * 4 * * 3
4 0 11 0 22, / , .  

Equating lowest power of coefficient of sR i e R 2;( . . )  to zero in Eq. (25), we obtain: 
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A ss n

B ss a

   
      

2 2
0

2 * 2
0

( )0
0

( )0 ( )
           

 

(26) 

 

The above homogenous Eq. (26) must have a non-trivial solution if and only if the determinant of matrix 

vanishes. The solution of Eq. (26) provide us the indicial equation whose roots are 

 

s n s n s a s a     * *
1 2 3 4, ,            (27) 

 

It is clear that the roots s s s s1 2 3 4, , , satisfy the property that s s s s   2 1 4 3, . Here the roots s s1 2,  are 

complex and the roots s s3 4, being real and hence, the principle terms in the series solution (24) have the 

following type  R I Rs i s ss
I I

A A A
R R R s R i s R

B B B

     
       

     

0 0 0

0 0 0

cos( ) sin ( )log log . 

Due to Neuringer [50], the dealing of complex case is unlikely the development that the differential equation is 

needed to solve once previously rather than twice in later. This is relevant to point out that without non-locality 

effect, viscosity, and thermal effects, i.e.  0 0 ,   0 1ˆ ˆ0 and q T      0  which implies that 

q T i             1
0 1 0 . Consequently, all the roots s s s s1 2 3 4, , , of the indicial equation turn into 

real. For indicial roots, the Eq. (26) directs us to write  

 

   j j

j j
A s B s

j j

  
  

  
0 0

1 , 1 , 2 0 , 1 , 2
,

0 , 3 , 4 1 , 3 , 4
           

 

(28) 

 

Again, by taking the coefficient of next lower degree term equal to zero i.e. sR 1  in Eq. (25), and on 

simplification we obtain 

 

j j j

j jj

A s D s A s

B s B sD s

    
     

    
    

1
1 12 0

1
1 021

( ) 0 ( ) ( )

( ) ( )( ) 0
           

 

(29) 

 

where the values of  andj jD s D s1 1
12 21( ) ( ) are defined in Appendix (A.1). 

Similarly, by taking the powers of s kR   equal to zero, Eq. (25) gives the recurrence relation for 

 k j k jA s B s k


( ) ( ) ; ( 1 , 2 , 3,...)  and therefore, we can write 

 

k k
k j j k j j k j

k k
k j k j k jj j

A s G s A s G s A s

B s B s B sG s G s

 

 

        
          

        
        

2 12 1 11

2 121 22

( ) 0 ( ) ( ) ( ) 0 ( )

( ) ( ) ( )( ) 0 0 ( )
           

 

(30) 

 

where the values of 
k k k k

j j j jG s G s G s G s11 12 21 22( ), ( ) , ( ) , ( ) are given in Appendix (A.2). 

For k  0, the Eq. (30) can be written as: 

 

j j j

j jj

A s D s A s

B s B sD s

    
    

    
    

2
2 11 0

2
2 022

( ) ( ) 0 ( )

( ) ( )0 ( )
           

 

(31) 

 

where the values of jD s2
11( ) , jD s2

22 ( ) are defined in Appendix (A.3). 
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Likewise, using k 1 in Eq. (30) and after simplification, we obtain: 

 

j j j

j jj

A s D s A s

B s B sD s

    
     

    
    

3
3 12 0

3
3 021

( ) 0 ( ) ( )

( ) ( )( ) 0
           

 

(32) 

 

where the values of andj jD s D s3 3
12 21( ) ( ) , are defined in Appendix (A.4). 

Plugging k  2 in Eq. (30), we obtain (after simplification) 

 

j j j

j jj

A s D s A s

B s B sD s

    
    

    
    

4
4 11 0

4
4 022

( ) ( ) 0 ( )

( ) ( )0 ( )
           

 

(33) 

 

where the values of jD s4
11( ) , jD s4

22 ( ) are defined in Appendix (A.5) and so on. By proceeding in this way, it is 

verified that the matrices 

k
j

k
j

D s

D s

 
 
 
 

2
11

2
22

( ) 0

0 ( )
 have a similar form to the matrix

a

a

 
 
 

11

22

0

0
, and the matrices 

k
j

k
j

D s

D s





 
 
 
 

2 1
12

2 1
21

0 ( )

( ) 0
are alike to 

a

a

 
 
 

12

21

0

0
. Hence, in general we have 

 

k
k j j j

k
k j jj

A s D s A s

B s B sD s

    
    

    
    

2
2 11 0

2
2 022

( ) ( ) 0 ( )

( ) ( )0 ( )
           

 

(34) 

 
k

k j j j

k
k j jj

A s D s A s

B s B sD s







    
    

    
    

2 1
2 1 12 0

2 1
2 1 021

( ) 0 ( ) ( )

( ) ( )( ) 0
           

 

(35) 

 

where 
k k k k

j j j jD s D s D s D s 2 2 2 1 2 1
11 22 12 21( ), ( ), ( ), ( ) are defined in Appendix (A.6) and (A.7). 

3.4 Convergence analysis 

This is to be noticed that the Eqs. (34) and (35), which may also be represented as: 

 

k j k j

k j k j

A s A sA A
O O

A s A sk kB B





         
                          

* *
2 2 1

* *
2 2 1

( ) ( )0 01 1
,

( ) ( )0 0
           

 

(36) 

 

The sequence in matrix  kZ  is convergent in the field which may be real or complex and k
k
Lim Z Z


( )  if 

each of the component k 2  converges. Upon utilizing above-mentioned facts, we find that both the 

matrices  k j k jA s B s

2 2( ) ( ) 0  and  k j k jA s B s 


2 1 2 1( ) ( ) 0 , when k   as observed earlier by 

Cullen [49]. Hence the solution given in Eq. (24) is uniformly convergent. It is observed from the above mentioned 

discussion that solution (24) may be written in the series solution as:  
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j j j js

jj j

D s D s A sV R
R I R R

R B sD s D s


                                

1 2
12 11 02

2 2 1 2
021 22

0 ( ) ( ) 0 ( )( )
( ) ...

( ) ( )( ) 0 0 ( )
           

 

(37) 

 

The matrices k
ij jD s i j k ( ), ( , 1,2; 1,2,3...)  have been defined in Appendices (A.6) and (A.7). Hence, the 

considered and derived sequences and series in Eq. (24) are analytic functions. 

3.5 Formal solutions 

The general solution in Eq. (16) with the assistance of Eq. (37) via Eq. (21) can be expressed as: 

 

j js sk k k a
j j j j

k j j

V R E D s R E D s R R i 
  

  

 
     

 
 

  
*2 4 12 2 1 2

11 12
0 1 3

( , ) ( ( ) ( ( ) exp( )            

 

(38) 

 

j js sk k k a
j j j j

k j j

R E D s R E D s R R i  
  

  

 
     

 
 

  
*2 412 1 2 2

21 22
0 1 3

( , ) ( ( ) ( ( ) exp( )            

 

(39) 

 

where E E E E1 2 3 4, , , are the constants to be determined by using boundary conditions. On utilizing solution (38–

39), the stress and temperature gradient are given as: 

 

 

 
j

k k
j j j j

j k s a
RR

k k k
j j j j

j

E k s h D s c R D s

R i R i

E k s d D s c D s R

   



   

 



 
   

 
     

    
 
 







*

2
* 2 * 2 2 1

11 21
1 2

0 4
0 * 2 1 * 2

12 22
3

(2 ) ( ) ( )

( , ) exp( )

(2 ) ( ) ( )

           

 

 

(40) 

 

jk a sk k
j j j j j j

k j j

d R
E k s b D s E k s a RD s R i

d R




  

  

 
         

 
 

  
2 4 2 ** 2 1 * 2

21 22
0 1 3

( , )
(2 ) ( ) (2 ) ( ) exp( )            

 

(41) 

 

where c h a d b
 

  
  

   
            

   

* * 2 * * 2 *0 0
0

0 0 0

, 2(1 2 ) , 2(1 2 ) . 

The displacement, temperature, radial stress, and temperature gradient in Eqs. (38) to (41) form the main solution 

of the considered problem, which is influenced to the boundaries conditions in Eqs. (9)–(10) for the evaluation of 

the solution. 

3.6 Non-dimensional boundary conditions and frequency equations 

In this section, we consider generalized visco thermoelastic  nonlocal sphere/disk subjected to non–dimensional 

traction free, thermal boundary conditions from Eqs. (9) and (10), hence we have following equations 

 

ata V w R
i R h R

R R R

 
 



    
        

   

* *
0 0

0

( , )
0 , 0, 1,            

 

(42) 

 

ata V w
i R h R R

R R


  



   
         

  

* *
0 0

0

0, ( , ) 0, 1,            
 

(43) 
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On applying the solutions (38)–(41) to the boundary conditions (42)–(43), the homogeneous algebraic linear 

equations have been obtained in four unknown parameters i.e. E E E E1 2 3 4, , , . For this, a non-trivial solution 

is required if the determinant of coefficients E E E E1 2 3 4, , ,  vanishes, thus we have the following frequency 

equations given below separately in two sets: 

Set I: For k  0 : The frequency equation is derived as: 

 

ije i j  det( ) 0 ; , 1,2,3,4.            (44) 

 

Case I: The elements of ije i j ;( , 1,2,3,4) in thermally insulated boundaries are 

 

j j j j j je s h c D s j e s b h D s c j          * * 1 * * 1 *
1 21 1 12(( ) ( )); 1, 2, ; (( ) ( ) ) ; 3,4,   

js a
j j je s h c D s j

 
    

*1* * 2 1
2 21(( ) ( )) ( ) ; 1 ,2  

  js b
j j j j j je s d D s c j e s b D s j

 
         

*1* 1 * * 1
2 12 3 21) ( ) ( ) ; 3 , 4, ( ) ( ) ; 1 , 2  

js a
j je e a e e j e e a               

*
* * (1 )

33 34 4 3 43 440 , 2 , ( ) ; 1 , 2; 0, (2 )( )           

 

 

Case II: The elements of ije i j ;( , 1,2,3,4) in isothermal boundaries are 

 

j j j j je s h j e s b h D s j        * * * 1
1 1 12( ) ; 1 , 2 ; ( ) ( ) ; 3 , 4  

j js a s b

j j j j je s h j e s d D s j
   

       
* *1 1* * 1

2 2 12( )( ) ; 1 ,2 , ( ) ( ) ( ) ; 3 , 4,  

j js b s a

j j j j j je D s j e e e e j e e j
 

              
* *

1
3 21 33 34 4 3 4 3( ); 1 , 2; 1; ( ) ; 1 , 2 ; ( ) ; 3 , 4           

 

 

Set II: For k  0 : The frequency equation is obtained as: 

 

ije i j det( ) 0 ; , 1,2,3,4.            (45) 

 

Case I: The elements of ije i j ;( , 1,2,3,4) in thermally insulated boundaries are 

 

 k k
j j j je k s h D s c D s j    * 2 * 2 1

1 11 21(2 ) ( ) ( ) ; 1 , 2  

 k k
j j j je k s d D s c D s j     * 2 1 * 2

1 12 22(2 ) ( ) ( ) ; 3 , 4  

  jk s ak k
j j j je k s h D s c D s j

     
*2* 2 * 2 2 1

2 11 21(2 ) ( ) ( ) ( ) ; 1 , 2  

  jk s bk k
j j j je k s d D s c D s j

      
*2* 2 1 * 2

2 12 22(2 ) ( ) ( ) ( ) ; 3 , 4  

k k
j j j j j je k s b D s j e k s a D s j        * 2 1 * 2

3 21 3 22(2 ) ( ) ; 1 , 2 , (2 ) ( ) ; 3 , 4  

jk a sk
j j je k s b D s j

     
2 ** 2 1

4 21(2 ) ( ) ( ) ; 1 , 2  

jk b sk
j j je k s a D s j

 
   

2 ** 2
4 22(2 ) ( ) ( ) ; 3 , 4  

 

 

Case II: The elements of ije i j ;( , 1,2,3,4) in isothermal boundaries are 
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k k
j j j j j je k s h D s j e k s d D s j        * 2 * 2 1

1 11 1 12(2 ) ( ); 1 , 2; (2 ) ( ); 3,4  

j jk s a k s b
j j j je e j e e j

   
   

* *2 2
2 1 2 1( ) ; 1, 2; ( ) ; 3,4  

k k
j j j je D s j e D s j    2 1 2

3 21 3 22( ) ; 1 , 2 , ( ) ; 3 , 4  

j jk b s k a s
j j j je e j e e j

   
   

2 * 2 *
4 3 4 3( ) ; 1 , 2; ( ) ; 3 , 4  

 

 

The frequency Eqs. (44) and (45) govern the vibration analysis of inhomogeneous visco thermoelastic  sphere in 

the context of nonlocal elasticity with the TPL model.  

4    VALIDATION AND DEDUCTION OF RESULTS   

4.1 Nonlocal thermoelastic functionally graded sphere/disk 

If the viscous effects   0 1( 0 )  are ignored, so that i         1
0 1 0 0  and m    2

2 2[ (1 ) 1] . The 

above analysis has been transformed to that of generalized nonlocal thermoelastic sphere. However, in the absence 

of thermal relaxation times T qt t t  ( 0) , qt t K  *
0 0 , 0  and nonlocal parameters  0 0, then the above-

mentioned results further reduced to the vibrations of the coupled generalized thermoelastic sphere. 

4.2 Nonlocal viscoelastic functionally graded sphere/disk  

Here, the thermal equilibrium is set up, then T T qK T t t t      ( 0 , 0) , then this analysis has been 

reduced to nonlocal viscoelastic hollow sphere. Furthermore, for the case when the viscous effects and the nonlocal 

parameter in solid is ignored so that   0 10  and  0 0 , then the analysis has been deduced to elastic 

sphere/disk which agree from Keles and Tutuncu [28] for the transversely isotropic case.  

5    NUMERICAL RESULTS AND DISCUSSIONS   

The analytical results have been validated with the help of numerical simulations and computations for stress free 

thermally insulated and isothermal boundaries of nonlocal TPL visco thermoelastic  sphere by applying the iteration 

method through software like MATLAB. The physical data of material ‘polymethyl methacrylate’ has been assumed 

from Othman et al. [20] in Table 1 as follows: 

 
Table 1 

Physical data of polymethyl methacrylate material. 

S. No Name of Coefficient Coefficient Units Value 

1 Mass density   
kg m3  

1900 

2 Reference Temperature T0  K  773 

3 Leme’s constant   Nm2   85.16 10  

4 Leme’s constant   
Nm2   85.01 10  

5 Thermal Conductivity K  W m K 1 1  
19.00 

6 Coefficient of linear thermal expansion T  K 1   677 10  

7 Specific heat at constant strain Ce  
J kg K 1 1  

1400 

8 Thermoelastic characteristic frequency 
*  s1   111.11 10  

9 Viscoelastic relaxation time  0 1ˆ ˆ   0.05 
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For the TPL model, the numerical constants has considered as v t  1.1 , 1.3 ,  q  2.4 and 

K Wm K * 1 129.70 . The non-dimensional value of the nonlocal parameter is taken from Sarkar et al. [19] as 

 0 2.3102 . The computations have been carried out for Eqs. (45) by considering appropriate values of the 

Fröbenius parameter k  20,  to acquire the frequency  . Further,   is expressed in the form m m m

R Ii    , 

the non–dimensional frequency (real part) and dissipation factor (imaginary part) which is further written as 
m

R Rf   and m

I ID   , here m represent the mode number which gives us the roots of Eq. (45). The computed 

and simulated thermoelastic damping, frequencies, and frequency shift have been represented graphically for TPL, 

DPL, GN-III, LS, CTE models of thermoelasticity. The thermoelastic damping and frequency shift have been 

defined (Sharma et al.  [31]) as given below: 

 

CTE
I R R

shift CTE
R R

D f f
Q

f f


 
  

*

1 2 ,            

 

 

Here *  denotes for TPL, DPL, GN–III materials and CTE stand for coupled thermoelasticity. Because of the 

domain of the problem i.e. x 1 , we have fixed the inner radius at 1.0 and thereafter, computations have 

been taken for ratio of outer to inner radii i.e. and 2.0 4.0 . 

Figs.1(a) to 1(b) have been presented for natural frequencies 
n

f( )  (i.e. real part of  ) versus the mode 

number m( ) for ratio of outer to inner radius i.e.  2.0 by considering thermally insulated and isothermal 

boundaries of the generalized nonlocal visco thermoelastic  sphere/disk. These figures depict that as the value of 

mode number m( ) increases, the variation of vibrations also increases. However, a decreasing trend of variation of 

frequencies is observed as the values of grading index parameter varies form   3.5 to   3.5 . 

 

 
(a) 

 
(b) 

Fig.1 

Natural frequencies nf( ) against mode number m( )  for different values of grading index ( ) at  2.0  for (a) thermally 

insulated (b) isothermal boundaries. 

 

Figs. 2(a) to 2(b) and Figs. 3(a)-3(b) have been shown for thermoelastic damping Q 1( ) versus grading 

index ( )  for TPL, DPL, GN–III, LS, and CTE theories of generalized thermoelasticity for the material (nonlocal) 

at outer to inner radial ratios and 2.0 4.0  respectively. It is observed from Fig. 2(a) that in initial stage, 

there is a high variation at   5.0 for TPL, DPL, and GN–III theories of generalized thermoelasticity rather than 

LS and CTE theories of thermoelasticity for the thickness  2.0 . As the value of  increases, the vibrations 

show sinusoidal behavior and go on decreasing having variation of peaks at    3.0, 2.0 , 0.0, 1.0 , 2.0  after 

that the vibrations die out. This is also observed from Fig. 2(b) that initially there is high variation at   5.0 and, 
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as   increases, the variation of vibrations show sinusoidal behavior and the vibrations achieve maximum variation 

at   0.0 , 2.0 , then go on decreasing for the thickness  2.0 . Fig. 3(a) which has been presented for the 

thickness  4.0  depicts that initially there is high variation at   5.0, and as  increases, the variations go on 

decreasing with peaking at     3.0, 2.0 , 1.0, 0.0  achieve maximum variation and die out. It is observed from 

Fig. 3(b) that the peaks are to be noticed at      4.0 , 3.0 , 2.0 , 1.0 , 0.0, and as   increases; the vibrations 

began to decrease and become asymptotic at   3.0  for thickness  4.0 . It is to be noticed from Figs. 2(a)-2(b) 

and Figs. 3(a) to 3(b) that in the case of TPL model the variations are higher as compared to DPL, GN–III, LS and 

CTE.  

 

 
(a) 

 
(b) 

Fig.2 

Comparison of thermoelastic damping Q 1( ) against grading index ( ) between theories of thermoelasticity at  2.0  for (a) 

thermally insulated (b) isothermal boundaries. 

  

 
(a) 

 
(b) 

Fig.3 

Comparison of thermoelastic damping Q 1( ) against grading index ( ) between theories of thermoelasticity at  4.0 for (a) 

thermally insulated (b) isothermal boundaries. 

 

Fig. 4(a) and Fig. 5(a) have been between thermoelastic damping and mode number for 

1.5 , 0.0 , 1.5   with the comparison of local to nonlocal elastic materials at 2.0 , 4.0 for thermally 

insulated boundaries. Fig. 4(a) and Fig. 5(a) depict that the variation of damping at 1.5 , 0.0   for both the local 

as well as nonlocal cases show higher variations initially, and as m increases, the vibrations achieve maximum 

amplitude at and4.0 2.0m m  and go on decreasing with sinusoidal behavior. The thermoelastic damping for 

the comparison of local and nonlocal cases at 1.5,  the vibrations show larger variations and with a further 

increase in the mode number ( )m , the vibrations go on decreasing with sinusoidal behavior. It has been noticed from 

Fig. 5(a) that for 0.0 , 1.5   the variations achieves maximum variations between 4.0 6.0m  . Fig. 4(b) and 

Fig. 5(b) have been presented for thermoelastic damping 1( )Q  against  m  for different values of grading index with 

a comparison of nonlocal to local elastic materials with thickness 2.0 , 4.0 for isothermal boundary conditions. 



108                    S.R. Sharma et.al. 

 
 

© 2021 IAU, Arak Branch 

Fig. 4(b) and Fig. 5(b) represent the variation of thermoelastic damping at 1.5 , 0.0, 1.5    for nonlocal and 

local cases, the figures show low variations initially, and as the value of mode number increase, the variations 

acquired more or less amplitudes at ,2.0 , 4.0 , 5.0 7.0m  , further go on decreasing.  It has been observed from 

the Figs. 4(a)-4(b) and Figs. 5(a)-5(b) that the variations are slightly larger for the nonlocal case in contrast to local 

case.  

 

 
(a)  

(b) 

Fig.4 

Comparison between nonlocal and local thermoelastic damping Q 1( ) against mode number ( )m for different values of 

grading index ( ) at 2.0  for (a) thermally insulated (b) isothermal boundaries. 

  

 
(a)   

(b) 

Fig.5 

Comparison between nonlocal and local thermoelastic damping Q 1( ) against mode number ( )m for different values of 

grading index ( ) at 4.0  for (a) thermally insulated (b) isothermal boundaries. 

 

Figs. 6(a)-6(b) have been presented for homogenous material 0.0  when 2.0 by considering the thermally 

insulated and isothermal boundaries. It is revealed from Fig. 6(a) that the behavior of frequency shift 

( )shift displays high vibrations for the nonlocal case in comparison to the local elastic case. It is also observed that 

variations are high initially and with an increase in values of m, it decreases up to 3.0,m   increases slightly 

between 4.0 5.0m  , and further go on decreasing. The Fig. 6 (b) depicts that for the TPL case, the variation 

increases, achieve peak value at 7.0m  and then go on decreasing. For the cases of DPL and GN–III, the 

maximum amplitude of variation has been observed at 5.0m  and goes on decreasing as the value of m increases. 

Figs. 7(a) and 7(b) have been represented for inhomogeneous material 2.5   when thickness 2.0 . It is 

revealed from Fig. 7(a), that for all generalized theories TPL, DPL, and GN–III, a variation of frequency shift shows 

the peak value between 5.0 7.0m   for the both nonlocal and local elastic materials. Fig. 7(b) depicts that the 
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variations are low when 1m  , achieve maximum variation when 6.0 8.0m  for TPL case, sinusoidal behavior 

for DPL and GN–III; and the vibrations began to decrease as the value of m increases. In a comparison of the above 

figures, the variations of frequency shift follow the inequality TPL DPL GN III   for Fig. 6 and follow the 

inequality TPL DPL GN III   for Fig. 7. These inequalities clearly depict the impact of in-homogeneity for 

both nonlocal as well as local elastic materials.  

 

 
(a) 

 
(b) 

Fig.6 

Comparison between nonlocal and local frequency shift ( )shift against mode number ( )m for TPL, DPL and GN–III at 

2.0, 0.0   for (a) thermally insulated (b) isothermal boundaries. 

  

 
(a)  

 
(b) 

Fig.7 

Comparison between nonlocal and local frequency shift ( )shift against mode number ( )m for TPL, DPL and GN–III at 

2.0, 2.5   for (a) thermally insulated (b) isothermal boundaries. 

 

Because of the change in thermal boundary conditions, the frequency shift is derived as 

 ( ) ( ) ( )( ) ( ) ( )m m m
shift R ins R iso R isoB      , here ( )( )m

R ins represents the frequencies for thermally insulated 

conditions and ( )( )m
R iso  stands for the natural frequencies for isothermal boundary conditions. Frequency shift 

have been presented in Figs. 8(a)–8(b) for thermally insulated to isothermal boundaries as a function of m (mode 

number) for theories of generalized thermoelasticity i.e. TPL, DPL, GN–III. This is to be observed from Fig. 8(a) 

(illustrated for homogenous case i.e. 2.0 , 0.0  ) that the vibrations are high initially for all the generalized 

theories, achieve maximum variation when and3.0 5.0m m  , further the vibrations began to decrease. It is 

observed from Fig. 8(b) (illustrated for inhomogeneous case, i.e. 2.0 , 2.5  ) that the vibrations are low 

initially when 1m  for all the theories, achieve low peaks at 3.0m  and high peak at 6.0m   for all models i.e. 

TPL, DPL, GN–III; therefore, as the values of m increases, the variation of vibrations began to decrease. It has been 

observed from Figs. 8(a) and 8(b) that the variations in Fig. 8(a) obeys the inequality TPL DPL GN III   and also 
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the variations of peaks at 6.0m  in Fig. 8(b) obeys the trends of inequality   GN III DPL TPL because of the 

inhomogeneity. 

 

 
(a) 

 
(b) 

Fig.8 

Comparison between nonlocal and local thermally insulated to isothermal frequency shift ( )shiftB against mode number 

( )m for TPL, DPL, GN–III at (a) homogenous material i.e. 2.0, 0.0  . (b) in–homogenous material i.e. 2.0, 2.5  . 

6    CONCLUSIONS 

The inhomogeneous visco thermoelastic  nonlocal elastic hollow spheres in radial direction have been studied in the 

reference of TPL model of generalized thermoelasticity. Based on the non-locality effect, the Fröbenius method has 

been considered to solve the differential equations. Frequency equations have been solved for stress-free boundary 

conditions to check the behavior of frequencies for the local and nonlocal elastic materials. Some general concluding 

remarks and remedies have been listed as below: 

1. The Fröbenius method for the models of generalized thermoelasticity i.e. TPL, DPL, GN–III, LS and CTE 

in nonlocal elasticity has been effectively applied to investigate axisymmetric vibrations of generalized 

three-phase-lag model of visco thermoelastic  spheres.  

2. The TPL model has been inferred for thermoelastic, nonlocal elastic and viscoelastic spheres. 

3. Frequency shift and the thermoelastic damping linked to quality factor can be monitored with the grading 

index to improve the signals of quality of the modes of vibrations. 

4. With the facilitation of inhomogeneity parameter i.e. grading index, the loss of energy may be optimized.  

5. The thermal relaxation times for generalized theories of thermoelasticity and thermoelastic coupling 

parameters have important effects on the characteristics and vibrations, like frequency shift and damping. 

6. This is to be noticed from the behavior of every graphical figure that the variations are maximum for the 

extreme negative value of grading index and minimum for the extreme positive value of grading index. 

Hence obey the trends of inequality for ( 3.5 1.5 0.0 1.5 3.5)      which pointed out inhomogeneity 

effect for local and nonlocal elastic materials.  
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