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 ABSTRACT 

 Structural and crack parameters in a continuous mass model are 

identified using Observer Kalman filter Identification (OKID) and 

Eigen Realization Algorithm (ERA). Markov parameters are extracted 

from the input and out responses from which the state space model of 

the structural system is determined using Hankel matrix and singular 

value decomposition by Eigen Realization algorithm. The structural 

parameters are identified from the state space model. This method is 

applied to a lumped mass system and a cantilever which are excited 

with a harmonic excitation at its free end and the acceleration 

responses at all nodes are measured. The stiffness and damping 

parameters are identified from the extracted matrices using Newton-

Raphson method on the structure. Later, cracks are introduced in the 

cantilever and all structural parameters are assumed as known priori, 

the unknown crack parameters such as normalized crack depth and its 

location are identified using OKID/ERA. The parameters extracted by 

using this algorithm are compared with other structural identification 

methods available in the literature. The main advantage of this 

algorithm is good accuracy of identified structural parameters. 

                                       © 2021 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 RACKS in a structural member lead to a change in the stiffness and consequently its dynamic characteristics. 

Hence, it is mandatory that such structures must undergo a Structural Health Monitoring (SHM) process 

periodically in which the magnitude and location of the crack can be identified and the remaining life of the 

structure can also be predicted. Gounaris and Dimarogonas [3] developed elemental stiffness and mass matrices for 

a cracked beam element with open crack and the dynamic behavior of the cracked cantilever was studied. Doebling 

et al. [2] summarized the vibration-based damage identification methods to detect, locate and characterize crack 

damage in structural and mechanical systems by examining changes in measured structural vibration response. In 

the real engineering structures such as bridge structure, wings of an aircraft, the inertial and stiffness properties are 
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distributed continuously throughout the structures. These structures can be modelled as continuous mass model. 

Cracks developed in such structures provide more flexibility and may cause even complete failure due to crack 

propagation. Hence, health of these structures must be verified periodically by accurate crack identification method. 

Some of the structures are assumed to be a lumped mass model with reduced degrees of freedom (DOF) where the 

mass is concentrated at certain points only [7]. In parameter identification of such structures, the accuracy of the 

results is moderate. In order to improve the accuracy, it is better to consider the system as a continuous mass model 

with all possible DOFs. In case of the crack damage identification problem, the accurate crack location and 

magnitude of crack depth may be identified if the structure is modelled as continuous mass model. Several 

researches have been done on detection of cracks in beam like structures [8, 18, 19, 9, 5], but still there is a lag in the 

development of a rigorous cracked beam vibration theory as well as a method to detect the multiple cracks with 

good accuracy and reduced computational effort. Qian and Jiang [13] derived the element stiffness matrix for a 

beam with a crack by integrating stress intensity factors. Krawczuk et al. [8] developed a finite element model for 

the cantilever beam with a crack at its mid-point using the theory of elasto plastic fracture mechanics. Viola et al. 

[19] developed the finite element model for a cracked Timoshenko beam with open crack and derived the stiffness 

and consistent mass matrices. The crack effect on the stiffness matrix, as well as on mass matrix, is investigated. Lee 

and Chung [10] used Eigen frequency data for identifying crack parameters in a cantilever with a single open crack. 

Parhi and Das [12] have performed the analytical studies on fuzzy inference system for detection of crack depth and 

location of a cracked cantilever beam structure using six input parameters to the fuzzy member ship functions. The 

six input parameters are percentage deviation of first three natural frequencies and first three mode shapes of the 

cantilever beam. The two output parameters of the fuzzy inference system are relative crack depth and relative crack 

location Experimental setup has been developed for verifying the robustness of the developed fuzzy inference 

system. The developed fuzzy inference system can predict the location and depth of the crack in a close proximity to 

the real results. Baghmisheh et al. [16] have proposed a method in which damage in a cracked structure was 

identified using Genetic Algorithm (GA). In a cracked cantilever beam, the natural frequencies were obtained for the 

first four modes. The identification of the crack location and depth in the cantilever beam was formulated as an 

optimization problem. GA is used to minimize the error in the measured and calculated natural frequencies of the 

structure. Varghese and Shankar [17] identified crack parameters in a sub-structure of a beam using combined power 

flow and acceleration response matching using Particle Swarm Optimization (PSO) algorithm. Suh et al. [14] have 

presented a method to identify the location and depth of a crack on a structure by using hybrid Neuro-Genetic 

technique. Feed-forward multi-layer neural networks trained by back-propagation are used to learn the input (the 

location and depth of a crack)–output (the structural Eigen frequencies) relation of the structural system. With this 

trained neural network, genetic algorithm is used to identify the crack location and depth minimizing the difference 

from the measured frequencies. Chou and Ghaboussi [1] defined the structural damage detection problem as an 

optimization problem, which was solved using Genetic Algorithm (GA). Static measurements of displacements at 

few degrees of freedom (DOFs) are used to identify the changes of the characteristic properties of structural 

members such as the Young’s modulus and cross-sectional area, which are indicated by the difference of measured 

and computed responses. In order to avoid structural analyses in fitness evaluation, the displacements at unmeasured 

DOFs are also determined by GA. The proposed method is able to detect the approximate location of the damage. 

Juang and Pappa [6] presented a deterministic SI algorithm based on the state space model of second order systems 

using OKID/ERA by which all the structural properties such as mass, damping coefficient, stiffness can be 

identified. Based on this theory, Jacob and Nandakumar [4] successfully identified the crack parameters in a 

cantilever with single crack using OKID/ER Algorithm. 

Crack or local defect in a structural member introduces local flexibility that affects the dynamic response of the 

structure. To the best of Authors’ knowledge, it is a novel attempt to identify structural crack parameters of a 

cantilever using OKID/ERA. A finite element model was developed for cantilever beam with a crack at any location 

based on elasto plastic fracture mechanics. In general, damage detection methods have a limitation in that there is 

only one mid-crack in an element. In this paper, a finite element model for cracked beam element with crack at any 

location has been developed. 

2    METHODOLOGY 

The parameter identification methodology consists of two phases. First, the system parameter matrices such as mass, 

damping, stiffness matrices are identified using OKID/ERA and later the structural/ crack parameters are identified 

using Newton-Raphson method. 



70                                     Structural and Crack Parameter Identification on Structures…. 

 

 

© 2021 IAU, Arak Branch 

2.1 OKID/ER algorithm  

The equations of motion of a structural system is given in the form of second order differential equation [6] 
 

          ( ) ( ) ( ) ( )M q t L q t K q t B u t    (1) 

 

where [M], [L] and [K] are the mass, damping and stiffness matrices of the structure respectively. [B] is the input 

matrix   N r  containing r external excitations acting on the structure, u(t) is input excitation vector  1r  , q(t) 

is the displacement vector  1N  . Eq.(1) is written in state space model [6], taking the state vector as: 
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where A, B, C and D are continuous time system matrices, y(t) is output vector. The OKID algorithm is used to 

obtain the Markov parameters from the input and output responses, state space model and structural parameters are 

identified from the Markov parameters using ERA. The detailed OKID/ERA algorithm is explained by Juang and 

Pappa [6]. 

2.2 Newton-Raphson method 

The Newton-Raphson method is used to identify the structural parameters of continuous mass model from the 

elements of the identified structural parameter matrices. In case of a cracked beam element, normalized crack depth 
(ξ) and crack location (λ) of cracked element are the unknowns and all other parameters such as the Young’s 

modulus (E), area moment of inertia (I) are assumed to be known. Using the theory of fracture mechanics, the 

matrices are derived using Finite Element procedure and the elements of those matrices are equated with the 

corresponding elements of identified matrices using OKID/ERA. As many numbers of unknowns are to be 

identified, the same number of equations are formed and they are written as follows. 
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where 1 2 3, , ,... nx x x x  are the unknown parameters. An initial guess for each unknown is given, let 0{ }X be the 

vector contains all initial values of the unknowns, then 0 0 0 0

0 1 2 3{ } [ , , ... ]TnX x x x x . The next better-unknown value is 

calculated by the Newton-Raphson formula. The unknown parameters are obtained by successive iterations by using 

the relation, 

 
1
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where J is Jacobian matrix, which is given by 
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3    THE CRACKED BEAM ELEMENT MODEL 

An Euler-Bernoulli beam element of length (le) with an open crack of depth (a) at a distance (lc) from the left node 

is considered. A cracked beam finite element model developed by Viola et.al [18] is considered in the present study 

to model the crack damage. Three different segments can be distinguished in the element as shown in Fig.1. The left 

and right segments are intact beam, the crack is modelled by a massless torsional spring. The torsional rigidity of the 

spring is 
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can be expressed as Viola 

et.al [18], 
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The derivation of element stiffness matrix for a cracked beam element is explained in Appendix in detail. The 

mass matrix for the cracked element is considered as same as that of non-cracked beam element because the mass 

matrix derived from the cracked beam element do not affect the natural frequencies and mode shapes much [8]. The 

element mass matrix [M
e
] of the beam element is as follows: 
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where  is the mass density of the material and A is the cross section area of the beam element. The corresponding 

element stiffness matrix [K
e
] and mass matrix [M

e
] of each structural member respectively, are assembled in the 

global stiffness matrix [K] and mass matrix [M]. The damping property of the beam structure is modelled with 

Rayleigh’s proportional damping. Damping is expressed as the linear combination of the mass and stiffness 

matrices, 
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     C M K    (9) 

 

where  and   are constants. 
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where 
1 and 

2  be the first and second natural frequency and 
1  and 

2 the corresponding damping ratio. 

 

 

 

 

 

Fig.1 

Cracked beam element model. 

4    PARAMETER IDENTIFICATION AND CRACK DETECTION 

The structure is discretized into many finite elements and is excited by a known harmonic force at a node. The 

acceleration responses are measured at each node on the structure. The system matrices such as mass, damping and 

stiffness of the structure are identified from the measured acceleration response by using OKID/ER algorithm as 

explained in Section 2.1. In the parameter identification problem, the stiffness parameters of each element are the 

unknown parameter and mass and damping parameters are known. In the crack damage detection problem, EI of 

each element is known priori; the unknown parameters are the normalized crack depth ( ) and its location ( ) in the 

beam. Each element is assumed as cracked one and the parameters are extracted from the identified stiffness matrix 

by using the Newton Raphson method. The corresponding elements of extracted global stiffness matrix and the 

assembled global stiffness matrix are equated. Number of equations required is same as the number of unknown 

parameters in the structure. Since the crack parameters are ranging from zero to one, initial value is given within the 

range. Zero value of the identified normalized crack depth shows the undamaged state of an element. The unknown 

parameters are extracted by solving the equations formed by using Newton Raphson method as explained in Section. 

2.2. 

4.1 Numerical example 1: 12 DOF lumped mass model 

A 12 DOF lumped mass system which was used by Tee et.al [15] is considered to identify structural parameters as 

shown in Fig.2 . The stiffness of the springs are 1 6 1000 /k k MN m   and 7 12 800 /k k MN m  . The masses are 

1 600m kg , 2 5 400m m kg   and 6 12 300m m kg  . The first natural frequency of the structure is 34.89 Hz. The 

structure is excited with a harmonic excitation of 7 10sin(2 38 )F t N   at the seventh DOF. Rayleigh’s damping 

model is adopted with a modal damping ratio of 1% for the first two modes. Acceleration responses are measured at 

all DOF of the model and are used for parameter identification. They are simulated by Newmark constant 

acceleration method for a time period of 1s with a time step of 0.0005s. The Markov parameters are identified from 

the measured acceleration responses and input force response. From the identified Markov parameters Hankel 

matrix is formed, from which the discrete state space model of the structural system is determined using singular 

value decomposition of Hankel matrix. The discrete state space model is converted into continuous state space 

model. From the determined state space model, the mass, stiffness and damping matrices are extracted by using 

Eigen Realization algorithm. From these matrices, the mass, stiffness for each element and damping ratio are 

directly obtained. The identified stiffness parameters of each level and the percentage of error in each identified 

stiffness is tabulated in Table1. 
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The stiffness parameters are identified with a mean absolute error of 0.019% which is very accurate than the 

stiffness identified by any other method. This problem was solved by Complete Structural Identification (CSI) 

method proposed by Koh et. al [7], the stiffness parameters were identified with a mean absolute error of 10.75%. 

The same problem was also solved by Successive identification method using transfer matrix [11] with a mean 

absolute error of 0.91%. The damping ratio is identified as 1.14% and the absolute error in identification of damping 

ratio is 14.71%. Hence, it is clearly proved that the OKID/ERA method is very accurate in parameter identification. 
 

Table 1 

Exact and Identified Structural parameters. 

Element  Exact stiffness (MN/m) Identified Stiffness (MN/m) Error (%) 

1 1000 1000.017 0.0017 

2 1000 1000.17 0.017 

3 1000 1000.21 0.021 

4 1000 1000.21 0.021 

5 1000 1000.21 0.021 

6 1000 1000.23 0.023 

7 800 800.19 0.026 

8 800 800.18 0.022 

9 800 800.18 0.022 

10 800 800.18 0.022 

11 800 800.18 0.022 

12 800 800.13 0.017 

  % of MAE 0.019 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Twelve DOF shear model. 

 

4.2 Numerical example2: parameter identification of cantilever 

The OKID/ER algorithm is now applied to an intact cantilever, which has fixed boundary at its left end, to identify 

the stiffness parameter EI of each element. The uniform slender cantilever of cross section 20   8 mm and length of 

680 mm is considered. The material of the cantilever beam is steel with the Young’s modulus (E) of 206 GPa and its 

mass density ( )  of 7850 kg/m
3
. The entire beam is divided into five elements each of length 136 mm. The 

Rayleigh’s damping is assumed with modal damping ratio of 1%. The first and second natural frequencies of the 

cantilever are 14.46 Hz and 90.69 Hz. The free end of the cantilever is excited with a harmonic excitation of 

( ) 10sin(2 10 ) .F t t N  All the measured responses are numerically simulated by the Newmark’s constant 

acceleration method using MATLAB, for a time period of 1s with time step of 0.0005s. The mass, stiffness and 

damping parameters are identified from the acceleration responses using OKID/ER Algorithm and Newton Raphson 

method as explained above. The identified and exact value of stiffness parameter EI for the intact beam is given in 

Table 2.  

The EI parameters are identified with a maximum percentage error of 1.7% and the mean absolute error 0.83%. 

The same problem was also solved using the CSI method proposed by Koh et.al [7], EI parameters are identified 

with complete measurement of acceleration at all DOF with a mean absolute error of 1.57%. It shows that 

OKID/ERA is better than the other parameter identification methods available in the literature. 
 



74                                     Structural and Crack Parameter Identification on Structures…. 

 

 

© 2021 IAU, Arak Branch 

Table 2 

Exact and Identified EI. 

Element  Exact EI (Nm2) Identified EI (Nm2) Error (%) 

1 175.8 174.51 -0.7 

2 175.8 176.88  0.6 

3 175.8 177.63  1.05 

4 175.8 178.78  1.7 

5 175.8 175.99  0.1 

  % of MAE  0.83 

4.3 Numerical example 3: crack damage detection in a cantilever 

4.3.1 Single crack 

The OKID/ER algorithm is now applied on a cantilever with single crack to identify the crack parameters such as 

crack depth and its location. A cantilever of length 0.68 m with rectangular cross section of 8 mm thickness (H) and 

20 mm width is considered. The left end of the cantilever has fixed boundary. The Young’s modulus of the beam 

material (E) is 210 GPa and its density is 7850 kg/m
3
. A crack with various depth (a) of 0.5 mm, 2.6 mm and 3.5 

mm, each located at 359.3 mm and 390.8 mm from the fixed end of the cantilever is assumed as shown in Fig. 3. The 

normalized crack depth for the cracks are 0.0625
a

H
   , 0.3251 and 0.4375 and crack locations in global 

structure are 1

1 0.5283
l

L
    and 2 0.5747  . The cantilever is divided into five elements of equal length. The 

crack lies in the element 3 in the finite element model. The element wise normalized crack location for the location 

mentioned above is 
1 0.642e   and 

2 0.874e  . The first natural frequency of the cracked beam for different crack 

parameters is tabulated in Table.3. The cantilever is excited with a harmonic excitation of 
6 10sin(2 10 )F t N at its 

free end node. The acceleration and angular accelerations are assumed to be measured at each node by fixing two 

accelerometers very closed to each other at each node. The acceleration response is the mean of the response 

measured by two accelerometers fixed at a node. Angular acceleration at each node is obtained by dividing the 

difference in the acceleration by the distance between the centers of the accelerometers fixed at that node. All the 

acceleration responses are numerically simulated by Newmark’s constant acceleration method with a time step of 

0.001s for a period of 2s. From the measured acceleration responses, by using OKID/ER Algorithm mass, stiffness 

and damping matrices are identified for the cracked cantilever. From the identified stiffness matrix, the crack 

parameters for each element is extracted using Newton-Raphson method. For example, to identify the crack 

parameters in ith element, the elements correspond to the ith element (sub matrix) from the identified global 

stiffness matrix is considered as follows. 
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In the above sub-matrix, the principal diagonal elements have connection with preceding and succeeding 

elements, they are the function of crack parameters of i
th 

and its preceding or succeeding elements which is given 

below. 
 

   

   

 

 

1*
11 1 1 1133

1*
22 1 1 2244

* 1
33 1 ! 33 11

* 1
44 1 ! 44 22

, , ,

, , ,

, , ,

, , ,

i i
i i i i

i i
i i i i

i i
i i i i

i i
i i i i

k f K K k k

k f K K k k

k f K K k k

k f K K k k

 

 

 

 



 



 


 


 

  

  

  

  

 

 

 

 

(11) 



P. Nandakumar and J. Jacob                      75 
 

© 2021 IAU, Arak Branch 

where  
, , , 1,2,3,4i jk i j   are defined by Eq.(12). Further, the elements *

12k   and *

24k  are also has the connectivity 

with other elements. Hence the elements * * *

13 14 23, ,k k k  and *

24k  do not have any coupling with other neighbor 

elements, any two of them are selected to identify the two crack parameters (
ik  and 

i ) of the i
th
 element. 
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An initial value for both unknown parameters is set as zero and above equations are solved using Newton-

Raphson method as explained in Section 2.2. From identified K the normalized crack depth   is obtained by solving 

Eq. (6). The identified results for a typical crack depth of   = 0.0625 and its location of 
e = 0.642 is shown in 

Fig.4. The identified crack parameters in the element three for different crack parameters are tabulated in Table 3. 

The crack with least depth of  = 0.0625 and 
e =0.5283 is identified with an error of 15.84% in depth and 1.16% in 

its global location. Also the crack with large depth of  = 0.4375 and  =0.5283 is identified with an error of 2.3% 

in depth and -0.18%in its global location. From the result, it is understood that the crack with small depth is 

identified with less accuracy and the accuracy improves when the crack depth increases. 
 
Table 3 

Identified crack parameters with single crack cantilever. 

Actual Parameters Natural frequency                          Identified Parameters 

Location (λ) Depth (ξ) fn(Hz) Location (λ) Error (%) Depth (ξ) Error (%) 

 0.4375 14.45 0.5274 -0.18 0.4477 2.3 

0.5283 0.3251 14.44 0.5298 0.29 0.3429 5.2 

 0.0625 14.42 0.5344 1.16 0.0724 15.84 

 0.4375 14.45 0.5759 0.21 0.4301 -1.7 

0.5747 0.3251 14.44 0.5773 0.44 0.3315  1.9 

 0.0625 14.43 0.5825 1.35 0.0735 17.6 

 

 

 

 

 

 

 

Fig.3 

Finite Element model of cantilever with single crack. 

  

 

 
 
 
 
 
 
 
 
 
Fig.4 

Identified crack parameters in each element of cantilever for  
 = 0.0625 and  e = 0.642. 
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4.3.2 Two crack 

Two cracks of various depth at two locations at 
1l =375 mm and 

2l =516.8 mm from the fixed end of the cantilever 

are considered as shown in Fig. 5. The different crack depth (a) 0.5 mm, 2.5 mm and 4 mm are considered at each 

crack location. The dimensionless normalized crack depths (  ) corresponds to these crack depths are 0.0625, 

0.3125 and 0.5. The dimensionless normalized crack location from the fixed end of the cantilever is 

1 1 / 0.55l L    and is 
2 2 / 0.76l L   . The two cracks lie on third and fourth elements respectively. The 

element wise crack locations for each crack are is (
1e = 0.7574) and (

2e  = 0.8) 

The cantilever is excited with a harmonic excitation of 
6 ( ) 10sin(2 50 )F t t N at its free end node. Acceleration 

response at all nodes are simulated numerically by Newmark’s constant acceleration method. The crack parameters 

are identified for each element using the OKID/ER algorithm and Newton-Raphson method as explained in single 

crack case. The first natural frequency of the cantilever is shown in Table.4. The identified results of a typical crack 

in each location is shown in Fig.6. 

The crack with the smallest depth   = 0.0625 and    = 0.55 is identified with an error of 14.24% in depth and 

1.93%. The crack with the largest depth   = 0.5 and   = 0.76 is identified with minimum error of -0.82% in depth 

and 0.3% in location. Hence, it is understood that the crack with small depth is identified with less accuracy. It is 

due to the small change in its dynamic characteristics due to the presence of the crack in the structure. The error in 

identified depth decreases gradually when the crack depth increases. 
 

Table 4 

Identified crack parameters with two-crack cantilever. 

Cracked Element Actual Parameters Natural frequency Identified Parameters 

Location (λ) Depth (ξ) fn(Hz) Location (λ) Error (%) Depth (ξ) Error (%) 

3rd  0.5      14.43 0.5534 0.35 0.4937  -1.26 

0.55 0.3125 14.44 0.554   0.46 0.32     2.4 

 0.0625 14.45 0.5621 1.93 0.0714 14.24 

4th  0.5       0.7623 0.3   0.4959  -0.82 

0.76 0.3125  0.7703 1.34 0.3181   1.79 

 0.0625  0.7794 2.55 0.0693 10.88 

 
 

 

 

 

 

 

Fig.5 

Finite Element model of cantilever with two cracks. 

  

 
 

Fig.6 

Identified crack parameters in each element of cantilever. 
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5    CONCLUSIONS 

Structural parameters and crack damage parameters in a beam structure is detected using OKID/ER Algorithm and 

Newton Raphson method. The crack element was modeled using the theory of Linear Elastic Fracture Mechanics 

(LEFM) and finite element method. Acceleration responses at all nodes are numerically simulated. Structural 

parameters such as mass, stiffness and damping are extracted from the measured acceleration and force responses 

using OKID/ERA and Newton Raphson method. The structural parameters were identified for an intact cantilever 

using OKID/ERA. Later this algorithm was applied for the structure with crack. Crack damage parameters are 

identified for a cantilever with single crack. Normalized crack depth and its location are the parameters to be 

identified. Further, this algorithm was applied on a cantilever with two cracks with variable depths. The maximum 

percentage of error in identified smallest crack depth is 17.6% and the minimum percentage of error in identified 

largest crack depth is -0.82%. Viola et.al [18] identified the crack parameters in a cantilever using frequency domain 

damage detection method. It is reported that a crack of depth  = 0.5 and  = 0.76 is identified with an absolute 

percentage error of 2.5% in depth and 0.53% in location. Using ER algorithm, the same crack depth (  = 0.5) is 

identified with a percentage error of 0.82% in depth and 0.3% in location. Hence, it is proved that this ER algorithm 

is better than the other method available in the literature. This algorithm is capable of identifying single crack and 

multiple cracks in the structure at any location with good accuracy. 

APPENDIX A  

 

Stiffness matrix for a cracked beam finite element. The displacement for the left and right segments of the element is 

given by 
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(A.1) 

 

The constants 1 3a a  are evaluated using the following conditions. 
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(A.2) 

 

where W1;W2; 1 and 2  are the displacement and rotation at the nodes 1 and 2 respectively. The shape function 

matrix [N(x)] relates the nodal DOF with the field variables as follows: 
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(A.3) 

 

The stiffness matrix for the cracked beam element is derived as follows. 
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 1 1 2 2
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where
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2 2
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  
 , Eq.(A.4) gives the stiffness matrix for a beam element with crack 

at any location on the element. The elements of the stiffness matrix are as follows. 
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