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 ABSTRACT 

 The purpose of this paper is to investigate friction forces in the 

design of a single-core flexible cable in the deformation zone and 

the practical applicability of the results obtained for these purposes. 

The power interaction of the design of a single-core flexible cable 

during its deformation is considered. For the first time, formulas 

were obtained for determining the interaction forces between the 

constituent parts of a single-core cable as a composite multilayer 

beam. A calculation technique has been developed and shear force 

values have been determined for some types of single-core flexible 

cables. The nature of the change in these forces along the length of 

the cable is investigated. At the beginning of the cable deformation 

zone, the force value can fluctuate within its constant value. In the 

remaining part, the shear forces along the section are constant and 

only at the end of the deformation zone is zero. Practically, the 

formulas work for the tasks. The resulting expressions for shearing 

forces allow one to evaluate the tribological interaction of the 

constituent parts of each cable element and take into account their 

influence when creating multicore cables. The results of the 

research can be used to improve the reliability of the design of 

flexible cables at the design stage.          

 © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Tribological interaction; Flexible cable; Displacements; 

Wear; Shifting efforts; Current-carrying conductor. 

1    INTRODUCTION 

 LEXIBLE cables, in contrast to fixed installation cables, have a short service life due to severe operating 

conditions [1]. Under external mechanical loads during the operation, destruction occurs both on the outer sheath 

of the cable and on its individual elements due to the tribological interaction between them [2]. It is known that 

copper and polymeric materials are the main materials for the production of flexible cables. Studies [3, 4] on 

polymer tribology are promising due to an increase in their use in the cable industry. This raises the need to study 

the tribological interaction between the structure elements of both single core and multicore cables. The interaction 
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forces between the contacting surfaces of the elements cause the wear of copper wires and polymer insulation. In 

some cases, especially in multicore cables, wear debris accelerates the wear of current-carrying conductor insulation. 

The work [5] features the characteristics of a tribological interaction of cable elements in contact. Element shift 

causes a tearing-up of surfaces at different levels. It is the tangential stresses on the contact surface that determine 

the strength of the constituent elements of the cable. For example, pairs “insulation of conductors – copper wires”, 

or “sheath insulation – insulation of elements”, etc. [6]. The interaction of the pair “copper wire – insulation of 

current-carrying conductor (CCC)” may lead to the insulation wear out and also to short-circuit of copper wires of 

the adjacent conductor strands or external metal wires. All this may result in a cessation of the energy transfer to 

consumers of electric energy from mobile mechanisms and machines. It is unacceptable to operate mine cables 

under conditions of gas accumulation in mines as any spark may cause a gas explosion during the operation. Broken 

cables can lead to catastrophic consequences both for people’s lives and for operational objects. On the other hand, 

failures related to wear were a serious problem for any production, and their prevention is seen as a basis of saving 

in operation. The possibility to control friction allows to control the process of tribological interaction of contacting 

surfaces and becomes an important direction in the creation of reliable products [7–10]. To increase the safety of 

flexible cable operation without sacrificing its tribological properties is a relevant problem. 

The study [6] demonstrates experimental research results on determination of the force between the elements of a 

multicore cable under deformation. However, there has been no theoretical approach to determine the force for a 

single core flexible cable in real working conditions. The purpose of the present research is to determine the friction 

forces for a deformable single core flexible cable section from the point of view of practical applicability. In the 

present work, the forces between internal surfaces of the insulation and the copper wire are determined. 

2    DETERMINATION OF THE INTERACTION FORCES BETWEEN THE CABLE ELEMENTS 

The following technical conditions are normally set to operate a cable: a nominal voltage, the minimum cable-

bending radius R, expressed in terms of cable diameters; a temperature range and the cable durability. However, the 

warranty period of the cable operation is much lower than its life [1]. Therefore, cable product manufacturers cannot 

guarantee the reliability of cables under unforeseen situations during the cable operation since it depends on many 

factors: the nature of the load interaction, the physical and mechanical characteristics of the materials used some 

technological factors in the production of cables. 

Most researchers do not consider the electrical strength of cables and the effects of temperature in their papers. 

To simplify the problem, the cable is regarded as a composite beam, and its copper wire as a homogeneous solid rod. 

Winding the cable onto the drum, forming a loop of a certain radius, etc. are the most common cases in research. 

The system can be represented as a multilayer plate under the conditions of planar deformation. To transit to an 

axisymmetric problem, the authors have applied transformations used in problems for cables as regarded in [11]. 

When the cable is deformed as a monolithic beam, the bending moment can be determined by the known formulae: 

through the bend radius and the flexural stiffness of the cable [12]. The single core cable represents a symmetrical 

three-layer composite beam relative to its axis. We assume that the transverse connections of an equivalent beam are 

rigid. Fig. 1 shows the cable deformation scheme and its geometric dimensions. Let us introduce the following 

notations: r1 is the radius of insulation, r2 is the radius of the conductor (copper wires), and E1 and E2 are the 

elasticity moduli of the materials of each element. 

In the calculations, we assume that the bending stiffness of rod 1 is equal to the rigidity of the semi-cylinder of 

the insulation; the bending stiffness of rod 2 is the rigidity of the current-conducting copper core. The longitudinal 

connection of the conductor and insulation joint is indicated by reference numeral 3. 

 

 
(a)  

(b) 

Fig.1 

Cable deformation scheme and its geometric dimensions: (a) cable as a three-layer composite beam; (b) design scheme. 



746                                 Determination of Interaction Force Between Single …. 

 
 

© 2020 IAU, Arak Branch 

Let us write the equilibrium equations for a three-layer beam according to the equilibrium conditions for 

structural mechanics [13] 

 

T
T T

T
T T


     




     



1

11 1 12 2 10

1

2

21 1 22 2 20

2

;

,

 (1) 

 

where Δij are the coefficients; ξi is the stiffness coefficient of the seam, which is determined experimentally for the 

problem being solved; Ti is the total shearing force in the i-th seam, accumulated along the length of the rod from its 

origin to the section under consideration, 
x

i i
T dx 

0

.  

Here, τi is the shearing force, per unit length of the i-th seam; x is the coordinate of the section under 

consideration. 

The system (1) can be reduced to two independent equations: 

 

T T R

T T R

  

   

2

1 1 1 1

2

2 2 2 2

;  

,
 (2) 

 

where                    
22 2

1,2 1 11 2 22 1 11 2 22 1 2 12

1 1
;

2 4
 

R R
1 2
,  – generalized loads; 

 

 

 

R cos sin ;

R sin cos ;

  

  

  
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1 1 10 20

2 2 10 20

  

 

T T
1 2
,  – generalized unknowns; 

 

T cos T sin T ;

T sin T cos T .

 
 

 
 

 

  

1 1 2

1 2

2 1 2

1 2

1 1
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The angle φ is determined by its tan: 

 

tg .
  


  
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The independent Eqs. (2) have the following solutions: 

 

   

   

x

x

T A sh x B ch x R t sh x t dt

T A sh x B ch x R t sh x t dt

        

        





1 1 1 1 1 1 1

01

2 2 2 2 2 2 2

02

1
,

1
.

 (3) 

 

The coefficients Ai, Bi are determined from borderline conditions. The reversed inversion to shearing forces T1, 

T2 can be realized as follows: 
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T cos T sin T ;

T sin T cos T .

   

   

 

 

1 1 1 1 2

1 2 1 2 2

 (4) 

 

Determine the parameters, included in formula (1) for this three-layer composite beam. Considering the fact, that 

equivalent three-layer beam is placed symmetrically to the relative centerline [14], then 

 

и c
c c c E E E E E F F J J           

1 2 1 2 1 3 2 1 3 1 3
;   ;   ;   ;   ;   .   

 

The formulae to determine the cross-section area and moments of inertia ratio of the composite beam 

components are given in Table 1. 

 
Table 1 

Formulae to determine the coefficients Δij and the geometrical characteristics of the beam section. 

Coefficients 

Δ10 = Δ20 
M c

c
REJ
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0 1
 

Δ10 = Δ20 
c r r

R R r r


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c

E r EJ
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2

2

2 2

1
 

Δ11 = Δ22 
c
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 
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Δ11 = Δ22  
c

E r r E r EJ
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The cross-sectional areas and the moment of inertia of the beam elements 

F1  r r


2 2

1 2
2

 

F2 r 2

2
 

J1  
r r

r r r r
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
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Now determine the coefficients λ1,2: 
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Also, determine tgφ: 
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Then 
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sin cos ,   

c
R ;   R .

R
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2
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The solutions of Eqs. (3) are 

 

 

T A sh x B ch x

c
T A sh x B ch x ch x

R
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
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Passing to the required forces T1, T2 by (4), determine the constants A1, A2, B1, B2 from the following borderline 

conditions: 

 

x T T

x l T T

   

  

1 2

1 2

0; 0; 0;

; 0; 0.
  

 

Determine the shearing forces by the formula 

 

ch xc
T T

R ch l

 
   

  

2

1 2 2

2 2

1
1 .  (5) 

 

The obtained formulae (5) allow us to determine the shearing forces in single core flexible cables, taking into 

account the properties of materials, cable geometry and operating conditions. 

3    RANGE OF PRACTICE AND DISCUSSION 

To test the practical application of the formula (5), flexible power cables have been chosen, intended for connecting 

mobile mechanisms to electrical networks with an alternating voltage of 660 V or a constant voltage of 1,000 V. The 

cables have been operated at ambient temperature. The minimum cable bend radius is not less than R = 8d1.The 

warranty period for the operation of the cables is set at 6 months from the date of commissioning. The service life of 

the cables is 4 years. Current-carrying conductors are made of twisted copper wires (strands), and the cable sheath is 

made of rubber of the RS type. Table 2 shows the geometric dimensions of flexible cables KG [1]. The elastic 

moduli of insulation and conductors have been used for calculation: for rubber E1 = 8 MPа and copper E2 = 

1.08×10
5
 MPа [6]. 

 
Table 2 

Geometric dimensions of KG cables. 

Number of conductors 

and nominal cross-

section, mm2 

Diameter  

of conductors d2, mm 

Thickness  

of insulation, mm 
Shell thickness t, mm 

Outer cable diameter 

d1, mm 

   1×2.5   2.1 – 2.3   6.7 

1×4   2.6 – 2.5   7.6 

1×6   3.3 – 2.6   8.5 

  1×10   4.0 – 3.0 10.0 

 1×16   5.2 – 3.1 11.4 

 1×25   6.8 – 3.4 13.6 

 1×35   7.8 – 3.6 15.0 

 1×50   9.8 – 4.0 17.8 

 1×70 11.5 – 4.2 19.9 

 1×95 13.8 – 4.6 23.0 
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In [15], the tribological characteristics of a friction pair of insulation “current-carrying conductor – current-carrying 

conductor” have been determined experimentally. For such pairs with shear Δ = 6×10
–4

 m tangential stresses are τ = 

1×10
5
 N/m

2
. Then the stiffness coefficient for the pair “CCC – CCC” is determined by the known formula [6] 

 

F
 N/m.

l

N/m .
.










  


   
 

3

3 2

1 3

10
100

100 10

100
167 10

0 6 10

  

 

However, for the pair “copper wire – CCC insulation” these parameters are unknown. Therefore, the stiffness 

coefficient of the seam has been determined from the ratio of the friction coefficients for this pair 

 

f
,

f




2 2

1 1

  

 

where f1 is the coefficient of friction of the insulation materials of the “rubber – rubber” CCC shells; f2 is the 

coefficient of friction “current-carrying copper conductor – shell insulation”. 

From the directories [16, 17] we have found the corresponding friction coefficients f1 = 0.5 и f2 = 0.4 and 

determined the stiffness coefficient of the copper-rubber seam as: 

 

f .
 N/m .

f .
        22

2 1

1

0 4
167 134

0 5
  

 

The geometrical characteristics of the cable and the coefficients of these formulae have been calculated for the 

single core cables. Table 3 summarizes all the parameters of the coefficients of Eq. (5) for the selected single core 

cables. 

 
Table 3 
Equation coefficients for single core cables. 

Number of 

conductors  

and nominal 

cross-section, 

mm2 

с×10–3, m 
Δ10 = Δ20,  

×10–3 

Δ11 = Δ22,  

×10–3, N–1 

Δ12 = Δ21,  

×10–6, N–1 
λ1

2, m–2 λ2
2, m–2 

   1×2.5 1.754   2.751 7.866 –2.673 1054.00 1054.00 

1×4 1.998   3.156 6.243 –1.744   836.44   836.81 

1×6 2.250   3.599 5.189 –1.083   695.14   695.43 

  1×10 2.651   4.256 3.790 –0.737   507.78   507.88 

  1×16 3.047   4.977 3.093 –0.436   414.43   414.55 

  1×25 3.657   6.061 2.295 –0.255   307.48   307.55 

  1×35 4.195   6.952 1.744 –0.194   233.69   233.74 

  1×50 4.820   8.128 1.442 –0.123   193.18   193.21 

  1×70 5.410   9.210 1.207 –0.089   161.71   161.74 

  1×95 6.272 11.000 0.940 –0.062   125.99   126.00 

 

Table 3 shows the coefficients are equal to each other λ = λ1 = λ2. The formula (5) is given in the most 

convenient form. To do this, we denote the factor in front of the brackets 
c

T
R









0 2

 – the constant component of 

the shearing force. Then the formula can be written as: 

 

ch x
T T

ch l

 
   

 
0

1 .  (6) 
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Fig. 2 shows the change in the shearing force for KG cables 1×4, 1×16, 1×50, 1×95 at a length l = 0.3 m. For 

cables with a small diameter, the force in this section is constant. For cables with a larger diameter, the change is 

more intense, the force value decreases on a decline curve. For all cables before the end of the bending deformation 

zone, the shearing force tends to zero according to the initial conditions. Fig. 3 shows the variation in shear force for 

a 1×70 KG cable for different lengths of the deformation zone. At the beginning of the deformation zone, the force 

value oscillates about its constant value. Then the shearing force is constant along the length of the cable, and at the 

end the force it also tends to zero. 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Dependence of the shearing force on the length of the KG 

cable: 2 – 1×4; 5 – 1×16; 8 – 1×50; 10 – 1×95. 

  

 

 

 

 

 

 

 

 

 

Fig.3 

Dependence of shearing force variation for different length of 

KG cable 1×70. 

 

To determine the shearing stress, we differentiate the Eq. (6) with respect to x 

 

dT sh x
T

dx ch l


     


0

.  (7) 

 

Based on the calculated data, make the shifting voltage plot for a 1×16 KG cable at the deformation length of l = 

0.3 m. The diagram represents a hyperbolic sinusoid with its own parameters λ×T0 for each cable (Fig. 4). The value 

of the maximum shear stress will be at the ends of the rod and is determined as: 

 

T th l    
max 0

.  (8) 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Dependence of the shear stress on the deformation zone of 

the KG cable 1×16. 
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The obtained formulae (6), (7) allow us to determine the interaction forces between copper wires and cable 

insulation under bending deformations. However, the values of the obtained forces can be used to calculate a 

multicore cable for the tribological interaction estimation of both individual elements and constituents of each 

element. The relative shifts (movement) are also known to occur not only between the elements of the cable, but also 

with respect to its insulation. Therefore, it is necessary to consider any tribological interaction as an organized 

construction with a hierarchical structure for a full-fledged calculation. It is specifically important in cases when 

CCC is destroyed not least because of copper wire attrition. 

4    CONCLUSION 

Formulae (6) and (7) for an approximate determination of the interaction forces between the constituent parts of a 

single core cable as a composite multilayer beam have been obtained for the first time. The values of the shearing 

force for certain types of single core flexible cables have been determined. The shearing forces along the section are 

constant. At the beginning of the cable deformation zone, the force value can fluctuate within its constant value. At 

the end of the zone, the shearing force is zero. In practice, the formulae work for the tasks set. The resulting 

expressions for shearing forces allow us to evaluate the tribological interaction of the constituent parts of each cable 

element and take into account their influence when creating multicore cables [18, 19].  
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