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ABSTRACT

Torsional vibrations of composite poroelastic dissipative spherical
shell are investigated in the framework of Biot’s extension theory.
Here composite poroelastic spherical shell consists of two spherical
shells, one is placed on other, and both are made of different
poroelastic materials. Consideration of the stress-free boundaries of
outer surface and the perfect bonding between two shells leads to
complex valued frequency equation. Limiting case when the ratio
of thickness to inner radius is very small is investigated
numerically. In this case, thick walled composite spherical shell
reduces to thin composite spherical shell. For illustration purpose,
four composite materials, namely, Berea sandstone saturated with
water and kerosene, Shale rock saturated with water and kerosene
are employed. The particular cases of a poroelastic solid spherical
shell and poroelastic thick walled hollow spherical shell are
discussed. If the shear viscosity of fluid is neglected, then the
problem reduces to that of classical Biot’s theory. Phase velocity
and attenuation are computed and the results are presented
graphically. Comparison is made between the results of Biot’s
extension theory and that of classical Biot’s theory. It is conclude
that shear viscosity of fluid is causing the discrepancy of the
numerical results.
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1 INTRODUCTION

HE analysis of torsional vibrations in poroelastic solids is important in several fields. In the Electrical

Engineering, power needs to be transmitted using a rotating shaft or a coupling, which causes torsional
vibrations. In the case of Automobile Engineering, the auto motives, truck and bus drivelines, recreation vehicles,
and marine drivelines experience torsional vibrations. These vibrations are influenced by material properties and
operating conditions. Thus, torsional vibrations find its vast applications in different branches of Engineering. On
one hand, composite structures are combination of both load bearing as well as framed structures, and most useful
materials. Because of their adaptability to different situations and the relative ease of combination with other
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materials, they serve specific purposes, and exhibit desirable properties. Hence, further investigation of composite
materials is warranted. On other hand, spherical shell structures play vital role in various domains, particularly, in
modern Structural Engineering. In this direction, the following papers are available in the literature. Frequency
equations and mode shapes are presented in analytic form for solid prolate spheroids and thick prolate spheroidal
shells [1]. Heyliger and Pan [2] presented a discrete-layer model and applied to the free vibration of layered
anisotropic spheres with coupling among the elastic, electric, and magnetic fields. Employing Biot’s theory [3],
Shah and Tajuddin [4] discussed torsional vibrations of poroelastic spheroidal shells. In the paper [4], they derived
frequency equations for poroelastic thin spherical shell, thick spherical shell, poroelastic solid sphere, and concluded
that the wave frequency is same in all the three cases. For radial and rotatory vibrations, frequency equations of a
poroelastic composite hollow sphere and a poroelastic composite hollow sphere with rigid core are obtained [5].
Vibrations in poroelastic elliptic cone against the angle made by the major axis of the cone in the spheroconal
coordinate system are studied by Rajitha and Reddy [6, 7]. A comparative study is made between the modes of
composite spherical shell and its ring modes [8]. In the paper [9], authors concluded that the torsional waves are non
dispersive in thin coated hollow poroelastic sphere. In all the above studies, solid saturated with the non-viscous
fluid is considered which may not be realistic in all the solids. In view of this limitation, Sahay [10] has developed
constitutive relations for the case of viscous fluid. In the paper [10], the volume-average equations of motion for the
angular displacement fields are derived. This approach introduces the missing fluid-strain rate term in the Biot’s
extended constitutive relations. Employing Biot’s extension theory of poroelasticity, Solorza and Sahay [11]
investigated the extensional wave in a poroelastic cylinder, wherein the axial motion is compressional in nature, that
is, the direction of propagation is along the axial direction, and the radial motion is shear in nature, as it is being
executed perpendicular to the direction of propagation. Reddy and Rajitha [12, 13] discussed the torsional and radial
vibrations of thick walled hollow poroelastic cylinder in the framework of Biot’s extension theory. To the best of
authors’ knowledge, torsional vibrations in composite poroelastic spherical shell in the framework of Biot’s
extension theory are not yet investigated. Hence in the present work, the same is taken up. Limiting case, when the
ratio between thickness and inner radius is very small is investigated numerically.

In this case, the asymptotic expansions of Bessel functions are employed so that complex valued frequency
equation can be separated into two real parts, which in turn give phase velocity and attenuation. In the particular
case of thick walled hollow spherical shell, phase velocity and attenuation computed as a function of ratio of
thickness to inner radius. In the case of classical Biot’s theory, phase velocity is computed as a function of
frequency. The rest of the paper is organized as follows. In section 2, formulation and solution of the problem are
given. In section 3, the boundary conditions and frequency equation are discussed. Particular cases are discussed in
section 4. Numerical results are presented graphically in section 5. Finally, the conclusion is given in section 6.

2 FORMULATION AND SOLUTION OF THE PROBLEM

Consider a composite poroelastic spherical shell with outer and inner radii r, and r, respectively, in the spherical
coordinate system (r,8,¢) . The shell is made up of two different materials where in inner one is spherical shell of
radius (r,)and the outer one is spherical shell having uniform thickness # = (#, —#, > 0). For torsional vibrations, the

volume-averaged equation of motion in terms of angular displacement field # expressed as follows [11, 12]:

2 — 2 —
(C+N£J 82+zi u=Q, 106—u+16z. (1)
ot )| or r or ot ot

L m, a, —(m-ma,) 1 1 40 _
In Eq. (1), C = / N = " s P—.d, = ,and d, =27, is
q ( ) (d/ df mfjﬂc [_dsa# ds (770 _m_/ aﬂ) ﬂc Q[g A S _mf s i ¢0

unperturbed volume fraction of solid, S is tortuosity factor, B’ = # 5 Gassmann S -wave velocity, 4, is dry solid

m

frame shear modulus, «, is Biot shear coefficient, € is saturated frame shear relaxation frequency, Q, =d, Q, is
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Biot relaxation frequency, Q, :ﬂLKf—ls the Biot critical frequency, 7, is porosity, K is permeability, and

8 = A is the shear viscosity, 4 is the fluid shear viscosity. The matrix /,, is 2x2 matrix whose element (2 2) is

Pr
unity and rest of the elements are equal to zero, and 7/ is the second order identity matrix. The vector

T T
_ -1 . . . . .
u= (M;l M;) =m (uj u{ ) - The notation u " is the sum of mass-weighted angular displacement of the solid

and fluid phases. The notation u; is the difference of the angular displacements of two phases. The transformation

1 m,
matrix is defined by m = [1 / j,m ,» m, are the solid and fluid mass fractions, respectively, and p, , p, are the
—m, .

total and reduced densities of the porous medium, respectively, given by

1 1
pm:¢()ps+770pf5_= +
o hp T Pr

fluid densities. p,, is the induced mass coefficient which is linked to the tortuosity, as p,, =— (S —1) 77, p, . In the

s P, = P, — P 1s the modified reduced density, and p,, p, are the solid and

frequency domain, Eq. (1) becomes

{ﬂ (vz —%]+a}21}2=0, @)

g B
ﬂim ﬂﬁ

respectively, whose elements are dimensionally equal to velocity squared. The expressions of these parameters are

where f=Q7'(C —io N )=[ j, is a non-symmetric second order matrix associated with S motion,

Q.
given in [11, 12]. The notation 7 +i [—’j I,=Q is a 2x2 diagonal matrix associated with the Biot relaxation
1)

frequency ;. For torsional vibrations, the displacement components which are functions of » and ¢ are introduced
as follows:

JU=Rg F(r), y=12. 3)

here R, =[ry,,r,,] and L, =[I, ,I,,] are the right- and left- hand Eigen vector matrices of the A matrix,

BI>
respectively, their explicit expressions are given in [11,12]. These Eigen vectors are orthonormal to each other,
therefore L;R p=1. Here F(r)=[F(r) F(r)] ", and k is the wave number. The subscript y =1 refers to the

inner shell, whereas y =2 refers to the outer shell. Substituting Eq. (3) in Eq. (2), and then multiplying L; on both

sides, the equations for S motion are obtained as:
2 2 2
|:A[,[V —?j+a)l:|yF(r):O, y =12, 4

here A, =1 BR, = [ 0'312 22 J y =12 In the region below Biot relaxation frequency (w0 <<€,) , B, , B,
vy M

are the fast and slow S wave velocities given by [11]

. [(#%}
yﬂlzzyli’flil—l [ (@) Jl‘d/' Vm/‘:|’ ¥ =1’2’
v =i

)
LB z—a)[ Z J{l+i ( g j(1+yd,. ymf.):|yd/ L9, v =12
v i v i
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The solutions are

() :(CIJO( ,or) +CY o zpl’)), 1Fl(r) :Cz‘]o(]pr)’

6
F(r) :(C4J0( 2qr) +CY o ( qu)), 1F2(r) =C6J0(1qr). ©)

In the above, C,,C,,C,,C,,C and C, are constants, J and Y, are the Bessel functions of the first and second
kind of order zero, respectively, and

1 1
2 2 2 2
@ 2 [ 2
P = -k, ,q9= —k*| ,y =12
’ (yﬂf J ' {,ﬁ; j

The modified constitutive relations are expressed as [11]

0 Uy,
[} i6]22(yluh+y‘9bat)(yuig]’ y =12, (7

y7re

1 0 0 0
here Ho =, My, u, = 8,y =12 Eq.(7) can also be expressed as:
(o 0] vy [y(aﬂ—no) },nojy o
yo—rﬁ:zypygyﬁ yﬁr@’ Y =12, (8)
_ 1(fo 1 _
here i, =5(a—r—;j LU, y =12

3 BOUNDARY CONDITIONS AND FREQUENCY EQUATION

Consider the case when outer surface » = 7, is stress free and perfect bonding prevails at the interface » = 7, . The

boundary conditions in this case are mathematically expressed as follows:

m i _ _
50y = ,0.,=0at r=r,,
m m i i _
ZO-rH_lo-rH _O’ ZO-rG 1O-r9 =0 at r=n, (9)

Mg = U9, 2U,p = U,y at 1 =1
These boundary conditions lead to the following system of homogeneous equations:

[4,,][C,]=0. 1,m =1,2,3,4,5,6. (10)

Im

Eq. (10) is complex valued and is transcendental in nature. Hence, the limiting case — << 1 is considered. In this

i

case, composite thick walled hollow spherical shell reduces to composite thin spherical shell so that the following
asymptotic approximations for Bessel’s function [13, 14] can be used:

J,(x) z\/z {cos [x —(%+ijﬂj—;—5sin [x —[%Jr%}rﬂ
X X
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Y, (x) zF |:Si}’l (x —(%Jrijiz}r;—scas [x —(%+%j7zﬂ
X X

In this case, the frequency equation is resolved as:

+i |d

ol =0 (1m 122856 o

I'm

In Eq. (11), the elementsc,,, andd,,, are real valued and are given in the Appendix A.

4 PARTICULAR CASES

The composite poroelastic spherical shell will be reduced to the poroelastic solid spherical shell and the poroelastic
thick walled hollow spherical shell as follows.

4.1 Poroelastic solid spherical shell

When the poroelastic parameters of both outer and inner shells are of same material, then the composite poroelastic
spherical shell results in a solid spherical shell of one material. Then the frequency Eq. (11) reduces to

+ilf,|=0 (1,m=12). (12)

|el m

4.2 Poroelastic thick walled hollow spherical shell

Consider the case where the inner shell material parameters are vanishes, the composite poroelastic spherical shell
results in a thick walled hollow poroelastic spherical shell with thickness /# (=r, —#,) . Then the frequency Eq. (11)

reduces to

81|+ | =0 (Lm=1,2,34). (13)

The expressions for Eq. (12) and (13) are similar expressions as Appendix A without left subscript.

5 NUMERICAL RESULTS

The real part of Eq. (11) or Eq. (13) gives the phase velocity as in the case of non dissipative solid for composite and
thick walled hollow spherical shell. The attenuation (Q~') is computed by using the following equation [11].

_ 2(wof Imaginary part in Eq.(11) or Eq.(13))

-1
Q wof real part in Eq.(11) or Eq.(13)

For the illustration purpose, four types of poroelastic solids namely, composite spherical shell-I, composite
spherical shell-II, composite spherical shell-IIT and composite spherical shell-IV are employed. In composite
spherical shell-1, outer shell is made up of Berea sandstone saturated with water [13] and inner shell is made up of
Berea sandstone saturated with kerosene [13]. In composite spherical shell- II, the roles of materials are reversed. In
composite spherical shell-III, outer shell is made up of Shale rock saturated with water [15] and inner shell is made
up of Shale rock saturated with kerosene [15]. In composite spherical shell-IV, the roles of materials are reversed.
The physical parameter values are given in Table 1 and Table 2.
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Table 1
Parameter values of solids
Parameters Berea Sandstone Shale Rock
Solid density ¢ . ) 2.65x10° (Kg/ m’) 1398.72 (Kg / m*)
Solid frame shear modulus ¢ 4, ) 6.70x10° (Kg / msec’) 7.59x10°(Kg / msec®)
Solid mineral shear modulus () 2.30x10"° Pa 1.97 x10® Pa
Solid frame bulk modulus () 5.20x10° Pa 37.91x10° Pa
Solid mineral bulk modulus () 35%x10° Pa 44.6x10° Pa
Porosity () 0.25 0.15
Tortuosity ('s) 1.33 3.22

Permeability (x )

1.00x10™"(m?)

1.973x107% (m?)

Table 2
Parameter values of fluids.
Parameters Water Kerosene
Density (p,,kg/m*) 1.00x10* 820.1
Shear viscosity (u,,Kg/ m) 1.00x1073 1.64%x107
Bulk viscosity (&,Kg/m*) 2.8x107° 2.71x107
Bulk modulus (x,,Pa) 2.2x10° 1.3x10°

Employing these values in Eq. (11), phase velocity and attenuation are computed as a function of frequency, and
the results are depicted in Figs. 1 and 2. Fig. 1 depicts variation of phase velocity with frequency for composite
spherical shell-I, shell-II, shell-IIT and shell-IV respectively. From the Fig.1, it is clear that as frequency increases,
phase velocity, in general increases for composite spherical shell-I and shell-IV. For composite spherical shell-II and
shell-III, phase velocity, in general decreases. Fig. 2 depicts variation of attenuation with frequency for composite
spherical shell-1, shell-II, shell-III, and shell-IV. From the Fig. 2, it is seen that as frequency increases, attenuation,
in general increases for composite spherical shell-1, shell-II and shell-IV. In the case of composite spherical shell-III,
as frequency increases, attenuation, in general decreases. Also, attenuation of composite spherical shell-I are less
than that of shell-II and attenuation of composite spherical shell-III is less than that of shell-IV. If the shear viscosity
of fluid is ignored, the problem reduces to that of classical Biot’s theory. In this case phase velocity is computed as a
function of frequency and the results are depicted in Fig. 3. From this figure, it is observed that, as frequency
increases, phase velocity, in general increases for composite spherical shell-II and shell-III. For composite spherical
shell-I and shell-IV, phase velocity, in general decreases. Moreover, phase velocity of composite spherical shell-I
are greater than that of shell-1I, and phase velocity of composite spherical shell-I1I are greater than that of shell-IV
for both extension theory and classical theory. In the particular case of thick walled poroelastic spherical shell, phase
velocity and attenuation are computed as a function of wavenumber, ratio of thickness to inner radius and the results
are depicted in Figs. 4 and 5. From the Fig. 4, it is observed that, as wavenumber increases, phase velocity, in
general increases for spherical shell-I and shell-IIl. From the Fig. 5, it is observed that, as ratio increases,
attenuation, in general decreases for spherical shell-I and increases for shell-III. From these Figs. 4 and 5, it is clear
that phase velocity and attenuation of spherical shell-I are less than that of shell-III.

4. —o—Shell-I
—8— Shell-1I
3. —&— Shell-11T

—— S ell-IvV

f—

Fig.1
Variation of phase velocity with frequency in the case of Biot’s
extension theory.

Phase velocity
o o
S A = A D L D L s L L

Frequency
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Variation of phase velocity with wavenumber in the case of
thick walled poroelastic spherical shell.
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0.5 Variation of attenuation with ratio in the case of thick walled
0 T T T T . s poroelastic spherical shell.

T T
YYONN3 VY VXA YY YYD VR OYFA Y

Ratio

6 CONCLUSION

Employing the Biot’s extension theory, torsional vibrations of composite poroelastic spherical shell are investigated.
The frequency equation is investigated when the solids are saturated with viscous fluids. If the shear viscosity of
fluid is ignored, the problem reduces to that of classical Biot’s theory. Comparative study is made between the
extension theory and classical theory. From the numerical results, it is concluded that phase velocity of shell-I, shell-
IIT are higher than that of shell-1I, shell-IV respectively for extension theory and classical theory. From this, it is
clear that shear viscosity of fluid is causing the discrepancy. Particular cases, namely, solid spherical shell and thick
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walled hollow spherical shell are studied. Similar analysis can be made for any composite spherical shell which is
made of two different poroelastic solids if the pertinent values are available.
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APPENDIX A

n :(_2pm)[Bl(krz)(Q1(DloA10 _DzoAzo) _Qz(DloAzo + DA, ) +BI(A10NIO _A20Nzo)
—B,(kry))(O,(D,, A,y +DyA,,) +O,( DA,y —DyA, ) +B,( AN oy +A4,0N )]
Coo =(—,P" ) B, (kry)(O,(N,A, —N A,) +O,(N,A, +A,N,)) +B,(AD, —A,D,)
+B,(kry)(O,(AN,+A,N,) +QO,(NA,—N,A,)) —B,(AD, +A4,D,)],
€3 =Ce =0, €=y =0,
Ciy = (_2pm )[B3Q10(krz)(G10F10 _Gzono) —B3Q20(kr2)(G10F20 +G20Fio) +Bz(G10H10 _Gonzo)
= B0, (k1 )(G o Fyy +G oo Fry) =B Qoo (k1 )(GoFlo =G onlhy) =B (G ioH 5 +G o H )],
Cis =(=2p" ) BQ\(kry)(G,H, =G H,) =B ,Q,,(kr,)(G\H,+G,H,) +B,( E\F\ —E,F},)
-B,0O,,(kr,)(G,H, -G H,)+B,Q,(kr,)(GH,+G,H,)-B,(EF,+E,F)],
oy =(=,p' ) Bs(kr,)O,(A4D,—A,D,) —BQ,(kr,)(DA, +D,A,) +Bs(AN,—A,N,)
—B(kr,)O, (DA, +D,A,) —-BQO,(kr,) (DA, —D,A,) —B (AN, +A,N,)

Q.
*(%)(Bsgl(krz)(DV‘lz +D,A4,) +BQ,(kr,)( DA, —D,A,) +B,(AN,+A4,N,)
+BO,(kr,)(DA, —D,A,) —BO,(kr,)(DA,+D,A, ) +B(AN,—A,N,))],

Ca :(_2pi)[( 22;‘
+B (k) (O, (AN,—A,N,) +O,(N,A +N A,)) +B,(AD, —A,D,) +
B, (kry)(OQ\(N,4, —NA4,) +O,(N,4, +A,N,)) +B;(A4,D,—A4,D,)
4B (kr,)(O,(AN,+A,N,) +O,(N,A, ~N,A,)) —B.(AD, +A4,D,)].

Coy = (=3P ) BQo(kry)(G\F, —G,F,) —B.,0,,( kr,)(G\F, +G,F,) +B,(G,H,~G,H,)
=B, (kr,)(GF, +G,F ) —BQO,,(kr,)(G.F,—G,F,) +By(G H,+G,H,)

)(_BS)(krz)(Ql(N2AI +N1A2) _Qz(NlAl _AzNz)) +Bs(A1D2 +A2D1)

Q.
—( za)l N B\ (kry,)(GF, +G,F ) —BQ(kr, )(G\F, +G,F ) +By(GH, —G,H,)

+B7QI0(kr2)(GIF2 +G2F']) +B7Q2()(kr2)(GlE _GZFZ) +B7(G]H2 +G2H1)]’

Cos =(— P )(— 22[ )B,(kry)(0O,(G,H, -G H,)—-0,,(GH,+G,H,)) +B,(EF,+E,F,)
4B, (kry)(O,(GyH , —GH,) =0, (G H, +G,H,)) +B,( E\F, —E,F,)
+B,(kr,)(0,(G,H,-GH,) -0,,(GH,+G,H,)) +B,(EF,—E,F,)
—B,(kr,)(0,(G,H, -G H,)+0,,(GH,+G,H ) —B,(EF,+E,F)],

Cy =(—=2P" ) B\ (krn)(Q,(DA, —D,A,) —Q,( DA, +D,A,)) +B,( AN, —A,N )

—B,(kn)(O,(DA,+D,A,) +O,( DA, —D,A,)) +B, (AN, +A,N )]

Cy =(=2P" N B\(kr)(Q1o( N Ay =N 144 3) +Q0( N gy + AN o)) +B,(A,,Dyy —AyDs)
FBy(kr)( Qo (AN 5 + AN o) +Oo0 (N gA g =N 5A5)) =B, (A yDoy + 45Dy )],

cy =P " [BY  (kr)(a,d,, —ad,) —BY ,,( kr\)(a,,d,, +a,d,,) +B,(an,, —an,,)

—BY [ (kri)(a,d,, +ayd,,) —B,Y ,,( kri)(a,,d g — Q) —B,(agnyg +asng )],
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C3y =(=2p" ) BQ(kr )(G o Frg =G yoFa) =B Qo (kn)(G ooy +Goky) + By (G H o =Gy H )
_B4Q10(k"1)(G10F20 +G20Flo) —B4Q20(kr1)(G10F10 _Gzono) _B4(G10H20 +G20H10)]’
Cys =(—2P" ) B3O, ( kri)(G,H o —GoH o) — B0, kri )(G o H 5o +GoH ) + B3 (E o Fio —E ,0Fs)
— B0 (kr)(GyH 5 =G\ H o) + B0\ (kn)(GoH oo +G oo H o) =B (E\Fry +E 0 F )],
PUIBY 6 (kr)(&of 1o = 8a0f 20) = B3Y ang (k1 )(&1of 20 + &0/ 10) +B3(&10h1o =& 20h120)
—BY 1 (kr)( g\ 20+ 820/ 10) =B 0o kri)( 1o/ 10 = &0/ 20) —Bal &1oha0 + & 20M0 )],
Coy =(—2P )N Bs(kr,)O,(A;yDyy—AsDsy) —BO, (k1 )( DyyAy +DoyyAyy) +Bs( ANy — AN 50)
=B (kr,)O,(D, A,y + DA, ) —BQO,(kr,)( DA,y —DyAy) +Bs( AN 5 +A,N )

Ci6 =

Q.
_(%)(BSQI(]CFI)(DIOAZO +DyA1) + B3O, (k1 )( DAy —DyAyy) + B (AN g + AN )
+BO,(kn)( DA\, —D,yAs) —BO,(kn)( DAy, + DA yy) +Bo(( AN g —AyN )],
¢,, have similar expressions as those of ¢,, with 0,,0,,D,,,D,, replaced by 0,,,0,,,N,,, N
Cy3 = 1pi [BY \(kr)(ayd\y —ayd ) —BsY o (kr)(ad,y +ayd,,) +Bs(agn, —axhsy,)
—BY  (kr)(ady +ayd, ) =B 5, (kr)(ad g —aydsn) =Bl @i +axn,)
Q.
_(17[)(35}]11(1(’”1)("10‘120 +aydy) +BY 5 (kr)(ad g —axd ) + Bs(anhy, +ayn,,)
+BY | (hkn)(awd g —axdyy) =B 5 (kr)(aydyy +axd,,) + B @, —axh, )],
Cag = (_2pi W BO\(kn)(GF,—G,F,) —B,0,,(krn)(GF,+G,F) +B,(GH,-G,H,)
—BO,(kn)(G\F, +G,F ) —BQ,,(kr )(GF, —G,F,) +B(G H,+G,H,)
Q.
_(ZT)(Bst(le)(Gle +G,F) =BQ,(krn)(G\F,+G,F) +By(G H, -G,H,)
+B.,0,,(krn)(G\F, +G,F,) +B,Q,,(kr )(G,F, -G,F,) +B,(G H, +G,H,))],
C4s = (2P ) B1Oy(kr)(GoH =G\ H ) = BOs (k1 )(G o H oy +GooH o) + B ( E\Fy —EFy)
=B, (kn)(GyH, =G\ H,,) + B\ (kr )(G\H,, +G,0H ) —By( E\ Fyy +EF)
Q.
_(27’)(37Q20(k71)(G20H20 =G H\y) =BQ\(krn)(G, H,, +G,H, ) +B,( E, Fy +E,F)
+BO\(kr )(GyH =G oH\y) —BQ, (ki )( G\ H y, +G o0 H ) +By( E\Fy — E oy Fy )],
Ca = (_2pi W BQW(kr)(GoFig —GoFoy) = B0 (kr )(G o Fyy +GooFry) +B,( G H g —GrH )
= B0, (k)G Fyy + Gy Fry) = BQo (kr )(G o Frg —GooFa) —Bo( G oH o, + G H )
Q.
—( zwl ) B0\ (kr)(G o Foy +GoFrg) +B Q0 (ki )(G o Fry =Gy Fy) + B (G H oy +G o H )

+ B0\ (ki )(G o Fo —Golly) =BQOo(kr (G Fyy + G Fry) +By(G o H (g —G oo H 5 )],
Cs1 = Z 1000( AxgMag —AhMyo) +Z oo (@oNyy + 5105 ),

¢s, have similar expressions as those of c;; with n,, n,, replaced by d,,,d,,,
Cs3 = Ziog( AN 1o = AN 29) = Z oo A1gN 20 42N 1),

Z 0002 000 + Z 20002 Z 0002 3000 — 2 0002
Co =( 2oty —21ohio) [ 3000% 7000 8000 4000 ) S N ) [ 3000% 8000 7000 4000 J,
54 20"20 ~ &10"h0 (23000)2 _(24000)2 107020 T & 200 (23000)2 _(24000)2

¢,s have similar expressions as those of ¢, with £, h,, replaced by f',.f >

Z 0L 100 T Lo L Z 0L g0 = Z 100 L
Cse = (GIOHIO _Gonzo) ( (30 ;02 _(5)0 )4020 j_(GIOHZO +G20H10) [ 2= D jr
300 400

(Z300)2 _(2400)2

¢, have similar expressions as those of ¢, with Z,,,,, 2,0, replaced by H,y,, H ,, ,
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¢, have similar expressions as those of ¢, with n,, n,, replaced by d,,.d

10077202

Coy =H \o(A}gN g —AyN o) —H (A \gN 55 + AN ),
Cos = Zrooo( &10M0 = 820M20) —Z 2000( &10M20 + &20M0)s

¢¢s have similar expressions as those of ¢,, with h,, h,, replaced by f,,./ 5 »

Co6 = Z300(G10H10 _Gonzo) _Z400(G10H20 +G20H10)’

d,,=d,, =d, =d; =0,

dy =(=,p" ) B\(kry,)(Q,( D gAyy + DA \y) +O,( DA g —DyyAyy)) +B (AN oy + AN 1)
+B,(kry)(Q,( DAy —DyAyy) —Qs( DigAyy +DoyA ) +By(AgN g —AxN )],

di, =(=2p" (=B )(kr,)(Q,(N,4,+N\A,) +O,(N A, —A,N,)) +B,(A4,D, +4,D,)
+B,(kr,)(O,(AN,—-A,N,) +O,(N,A,+N A,)) +B,(A,D, —A4,D,)],

dyy=dg=0,dy=dy=0,

diy =(=2p" ) B\ (kry)(GoFyy +GoFyy) +ByQo(kry )(G o Fly =G ooFoy) +B3( G H oy +GoH )
+B.0,(kr,)(GoFg =GyyFh) =B QO (kr)(G o Foy +G by ) +B (G H g =Gy H )],

dis =(—=,p" ) BQn(kr,)(G,H, -G H,) —=BQ,(kr,)(GH,+G,H,) +B;(E\F, +E,F))
+B.0,(kr,)(G,H, =G H,) =B ,0,,(kr,)(G\H, +G,H,) +B,(E\F, —E,F,)],

d,, =(—2p')[(z—j)(Bs(krz)Ql(AlD] -A4,D,) -BQO,(kr,)(D,A,+D,A,) +B;(AN,—A,N,)
=B (kry)O\(D\A, +DyA,) =BQ,(kr,)( DA, =D,4,) =B (AN, +4,N,))
+(BO\(kry)( DA, +D,A,) +BQ,(kr,)(D A, —D,A4,) +Bs(AN, +A4,N,)
+BO,(kr,)(D,A, -D,A,) —BQO,(kr,)(D,A, +D,A,) +B,(AN,—A,N,))],

dyy =(=p' (=B )(kr,)(Q,(N,A,+N 4,) +Q,(N A, —A,N,)) +B,(A,D, +4,D,)
+B2(kr2)(Q1(A1N2 _A2N1) +Q2(N2A1 +N1A2)) +B2(A1Dl _AzDz) -

( iQZ)(B1)(krz)(Q1(N2A1 _NIAZ) +Q2(N2A1 +A2N1)) +B1(A1D1 _AzDz)

(4]
+B,(kry))(Q,(AN,+A4,N,) +Q,(N 4, —N,4,)) -B,(A,D,+A4,D,)],
d,, :(_zpi)[( AL ) Bs(kr,)Q,(A,D,—A4,D,) —BQ,(kr,)(D\A,+D,A,) +B;(AN, —4,N,)

(4]
=By (kr,)O,(D\A,+DyA4,) -BO,(kr,)(D A, —-D,A,) -B,(AN,+4,N,))
+(BQO,(kr,)(D A, +D,A,) +BQ,(kr,)(DA, —D,A4,) +B;(AN,+4,N,)
+BQ,(kr,)(D\A, —D,A,) —BQ,(kr,)(D\A,+D,A,) + B, (AN, —4,N,))],

dys = (_2pi (- £ )B,(kr,)(Q(G,H, -G H,)-0,(GH,+G,H,)) +B,(EF—E,F,)
(4]

_B4(krz)(Q20(G2H2 _G|H1) +Q10(G1H2 +G2H1)) _B4(E1F2 +E2F1) +
(By(kry,)(0,(G,H,-GH,)-0,GH,+G,H,)) +B,(E\F, +E,F))
+B4(kr2)(Q10(G2H2 _GIHI) _on(Gle +G2H1)) +B4(E1F1 _Eze))]:
dy =,p" [B(krn)(Q(DA,+D,A)+0,(DA —-D,A,)) +B,(AN,+A4,N,)
+B,(kn)(Q,(DA, —D,A,) -QO,(DA, +D,A,)) +B,(AN,—A,N,)],
dy, =(=,P" (=B )(kr)(Qo( N A1y + N gAy) +O,0( N 441y —AsN 5)) +B(A\,D,y +A4,,D,)
+Bz(kr1)(Q10(A10Nzo _AzoNlo) +Q20(N20A10 +N10A20)) +Bz(A10D10 _AzoDzo)]’
dyy, = p" [BY \\(kr)(aydyy +ayd,y) +BY 5, (kr)(ayd,g —axd ) +B(an,, +axn,,)
+BY  (kr)(ad g —aydy) —BY p(kr)(ayd o +aydg) +B,(ahg —axny, )],
dyy = (=" ) BQ(kr)(G o Fy +G o F) + B3Oy (ki )(G o Fly =G yl) +B5(G o H oy, +G o H )
+ B0 (kr )(GoFlg —GyFyy) =B O (k1 )(GoFyy +G o Fiy) +B (G \H g =G, H )],
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dys =(=,p" ) BQo(kr )(GyH =G\ H o) =B0\o(kr )(G H ,, +G 3 H o) + By ( E\oFy +EF,)
+B,0(kr )(GyH =G\ H\)) =B O kr )(G\oH y, +G o H ) +B,( E\Fiy —EFy)],
dsg = 1P" [ BY 110(kri)(&16f 20 + &2/ 10) +BY 0o (kri)( &1/ 10 =820/ 20) +B3( &10h0 + & 20l10)
+BY 110(kr)( €16/ 10 =808 20) =B 0o (k) &0/ 20 + 8208 10) +B4( 810M0 — 820120 )),

i Qi
d41 :(_zp )[(%)(BS(k’])QI(AIODIO _AzoDzo) _BSQZ(krl)(DI()AZ[) +D20A10) +BS(A]()NIO _AzoNzo)
=Bo(kn)O\( DAy +DyAy) =B O, (ki )( DAy —Dyydy ) +Bs( ANy + AN )
+(BO,\(kn)(D\yAy +DyyAyy) +BQy(kn )( DAy —DyyAyy) +Bs( AN, + AN )
+B(,Q|(kr1)(DloA|o _DzoAzo) _B{uQZ(krl)(Dl()AZ[) +D20Am) +B(>(A10N10 _AzoNzo))],

d,, have similar expressions as those of d,, with 0,,0,,D,,,D,, replaced by 0,,,0,,,N,,,.N

20

i Qi
dy=p [(?)(Bsyu(k”l)(alodlo —aydyy) —BY p(kn)(a,dy +ayd,,) +Bs(a,n g —ayn,,)
=B \(kn)(aydyy +ayd,) =By, (kn)(ad,y—aydy) —Bg(aghyy +ayn,))
+BY | (krn)(awdyy +ayd,,) +BY ,,(kr)(aud,, —aydy) +Bs(agn,, +a,n,)
+BY | \(kn)(aydyy —axdyy) =By 5 (kr)(ad,y +ayd,,) +Bg( any, —axhsy )],
Q.
dy=(—,p ) za)‘
=B (kn)O,(DA,+D,A,) —BO,(kr)(DA, —D,A,) —B(AN,+A4A,N,))
+(BO,(kn)(DA, +D,A,) +BO,(kn)( DA, —D,A,) +B;(AN,+A4,N,)
+BO,(krn)(DA, —D,A,) —BQ,(kn)(DA,+D,A,) +B,(AN,—A4,N,))],

) Bs(kr)O,(AD,—A,D,) —BQ,(kr)(D4,+D,A4,) +Bs(AN,—A4,N,)

i Q
dis=(—,0 ) Zw )BOW(kn )Gy H oy =G oH ) =B Oy (kn)(GHy +G o H ) + B (E\Fy —EyFy)

_Bsto(krl)(Gonzo _GIOHIO) +B8Q10(k’”1)(G10H20 +G20H10) _BS(EIOon +E20Fl0)
(B0 (kr )(GyH =G\ H ) = B0\ kn )(GoH y + Gy H o) + B, (E\Fyy + EyFy)
+BsQlo(k”1)(Gon20 _GIOHIO) _BSQZO(krl)(GIOHZO +G20H10) +BS(E10F10 _Ezono))]’

i Q,
dy=.p [(17)(37Y110(k7'1)(g1J10 =820/ 20) =B 0o k1 )( &1 20 + &2/ 10) +B7( &10Mo — &20M20)

=B 1o (kr )(&1of 20 + 820/ 10) =B 220( k1 )( €10/ 10 —&20f 20) — B &1oh20 +&20M0))
F(BY (k) g\of 20 + 8ol 10) +BY (k1 )( €10f 10 = &2/ 12) +B1(&1ohay + &20hio)
+BY 110 (kr)(&iof 10— &S 20) =B 5o k1 )( &1of 20 + &aef 10) + B &10hio — & 2020 )],

ds; =(=Z g0 ) @ghyg + gy ) = Z o0 ( Giolg = a1y ),

d

d,, have similar expressions as those of d; with n,, n,, replaced by d

1027720

d53 = Z]OO(AIONZO +A20NIO) +ZZOO(A10N10 _AZONZO)’

Z 30002 7000 T Z 50002 Z 30002 3000 —Z 70002

d — (_g h -g h ) [ 3000~ 7000 8000 4000 J"_(g h -g h ) ( 3000~ 8000 7000~ 4000 J,
54 10720 207°10 (Z3000)2 _(Z4000) 2 207720 107710 (Z3000)2 _(24000) 2

d; have similar expressions as those of d, with A,,, h,, replaced by f,,,/ 5 »

ZSOOZ700 + ZSOOZ4OO
(ZSOO) ? _(Z400)2

dsg =(G\Hy +GyH,,) (

Z 30 Zsoy = Z 02
J+(G10Hm —G20H20)[ 300% 800 ~ £ 700 400}

(Z300)2 _(Z400)2

d,, have similar expressions as those of d, with Z,,,Z,,, replaced by H,,, H,,
d, have similar expressions as those of d, with n,,,n,, replaced by
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le’dZO’ d 10(A10N20 +A20N10) +H20(A10N10 _AZONZO)’

d, have similar expressions as those of ¢, with Z,,,Z,,, replaced by Z,,,,—Z 40 >
d (s have similar expressions as those of ¢, with Z,,,, Z,, replaced by Z,,,,—Z 000
d, have similar expressions as those of ¢, with Z,,,Z,, replacedby Z,,,—Z,,.
In all the above equations, the notation expressions are as follows:

2 2
2 Boa, 2 B Mm@ 7,
B, =B, B,= Q ’BSZIﬂclm/”B4: /) " 1, |
124p My

N : w w o @ (@ _ N
po= () +lﬁ[IQJ[IQﬂJ Bﬁ—la[lgij[lgﬂ]dﬂaﬂ a2 )
el o (2 el

1 1 1500

2 [ @ 1770 @

B, = Som —_— d, a, — - — 1 d, |,
o) (e e ) )

i

B,,,By, By, By, By, By, By, By, are similar expressions as B,,B,,B,,B,,Bs, B, B,, B, with left subscript

102720~

1 replaced by 2,

2
Bow,d @’
L, = ﬂCZ,L 2—4 L,=|— , L, =—w (1+.,d mg ), d
1= 2 2 Q 3 Q 4 ZQi 72 f2 /
zﬁa) d: r zd’ 219 a)2 L _(_a)) Zdz 2'9f
Lioy=,8., Ly= 2.0 , Ly = O - (1+ 2d/ 2m/‘): 40 ZQ' ’
i 2 i 2 i i

y
w, =(V,2 +V22)‘/2cos ltarfl £ , W, (V +V, )1/2 sin ltan_1 21|,
2 v, 2 v,

W, W,,are similar expressions as W, W, with V', V, replaced by V',V ,,,

2 2
Vim(vi= g v, =22y e @aa :[

2
o
j (1+ 2df me) 2df 29

2m 2% 25
0, = VM 0, = WiLio=WiLy 1o} W11L3o W Ly on W22L30 W11L40
1 L, +13, 77 L, +L3, v L3y +Li ' L§0 +Lio

R,,R,,R,, R, are similar expressionsas L,,L,,L,,L, with left subscript 2 replaced by 1,
R, R, R,y R,, are similar expressions as L,,,L,,, L, L,, withleft subscript2 replaced by 1,

10272207 7130

1 1
¢ = (0,2 +022) 2cos {Etan - (Z—ZH c, = (012 +022)1/2sin {Etan - (Z—ZH ,
1 1

¢,,, ¢,, are similar expressions as ¢,, ¢, with o,, o, replaced by o,,, 0,,,
0,,0,, 0,,, 0,,, are similar expressions as V', V,, V,,,V,,, with left subscript 2 replaced by 1,

Y R, +c,Ry, _ ¢,R\, —c\Ry, _ W 16Rs0 =W 10R 4 Y. = W pnoRso =W 110R 4
11— 2 2 ’ 2 = 2 2 4 110 — 2 2 4 220 — 2 2 ’
Ry + Ry, Ry +Ry, Ry +Ry, Ry + Ry,
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W 10.W 5, are similar expressions as W,,,W,, with left subscript 2 replaced by 1,

1

o =

n,, =cos(Y  kr,) cosh(Y ,kr,) +sin(Y | kr,) cosh(Y ,kr,),
n,, =cos(Y  kr, ) sinh(Y ,kr,) —sin(Y kv, ) sinh(Y ,kr, ),

a,,a,,n,, n, are similar expressions as a,,, a,,, 1y, H,, With r,replaced by r,,

Ay, Ay > Ny, N,y are similar expressions as a,,,ay,, n,,,1,, With ¥, ,Y ., replaced by O0,,0,,
A,,A,,N,,N, are similar expressions as A4,,,4,,,N,,,N,, with r replaced by r,,

10> 820> Mg, Py, are similar expressions as  a,,, a,,, 1,, 1,, With Y ,Y  replaced by Y .Y ,y,

g,,8,, h,, h, are similar expressions as g, g4, /11y, 1, With r,replaced by r,,

GG, H,,, H,, are similar expressions as g,,, g, f, 1, With Y, ;.Y ., replaced by O,,,0,,.

110~
G,,G,, H,,H, aresimilar expressions as G

d,, =sin(Y ,kr,) cosh(Y ,kr,) —cos(Y | kr, ) cosh(Y ,kr,),
dy, =cos(Y , kr,) sinh(Y ,kr, ) +sin(Y | kr,) sinh(Y ,kr,),

d,,d,, are similar expressions as d,,d,, with r, replaced by r,,
D,,,D

S0 2 are similar expressions as d,,d, with Y ,,,Y ,replaced by Y ;.Y »,,

10~

f1.f, are similar expressions as f,.f,, With r, replaced by r,,
Fy, F,

10~

Xy =—cos(Y,okr,) cosh(Y yokn, ) —sin(Y ,,okr, ) cosh(Y ynokr;),
X,y =—cos(Y ,,,kr,) sinh(Y ,,okn ) +sin(Y | kr,) sinh(Y ,,kr,),

X ,, X, are similar expressions as X ,,, X ,, with 7 replaced by r,,

L (! 1 l
Z 0 (Z +1; )mcosl:ztan l[fﬂ 200:(1 +1; )1/2 {ztan (fﬂ

(L =By)(L ~L;) +(L, =By )(L, ~L,)

cos |:ltan ! [QJ} Ay = ! sin |:ltan
Ji w2z L2 T JOi+y ) ez L2

100 Gaor H o, H o w1th r, replaced by r,,

1

Y

22

Y

11

)

50Dy, D, are similar expressions as d,,,d,,.d,,d, with Y Y, replaced by O,,0,,

% Iy, F, are similar expressions as f,, /., f1.f, With Y,,,,Y,,, replaced by O,,,0,,.

L= =

(L~L)*+(L,~L,)’

1 i 1 Ny
Z 000 (12+1 )1/2 {Etan l(fj:l, 2000 (l2+l )1/2 |:5l‘an l(ij:l,

(R,—B,)(R,—R,)+(R,~B,)(R,~R,)

— (Rz _B8)(R1 _Rs) _(Rl _B7)(Rz _R4)

I, = ,
? (RI_R3)2+(R2 _R4)2 !

1 _ p 1 p
Zs00 =(P12+p22)|/zcos {Em I(P_Tﬂ Z 400 =(P1 +p2)]/2 [2’an [P_?H

_(Blo_Ls)(Ll_L3)+(Bzo_L4)(L2_L4) _
P = , P, =

(Bzo _L4)(L1 —L3) +(BIO

(R] _R3)2 +(R2 _R4)2

—Ly)(L,—L

(Lz _Bso)(L1 _Ls) _(L1 _B70)(Lz _L4)
(L, —L)"+(L,~L,)’ '

>

»)

(Ll _L3) : +(Lz _L4) :

1100 llOO

)

(Ll _L3)2 +(L2 _L4)2

1 / 1 /
Z o0 = (11200 +12200)1/2005 l:Emn B [&J:|r Z jo00 = (11200 +12200) " 2sin |:Etan B [&

661
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_ Mgo( Ry =R, ) +m, (R, —R,) _m( Ry —R,) +my(R;—R,)
2 2 > fa00 = > > ,
(Rl _R3) +(R2 _R4) (R] _R3) +(R2 _R4)
2 3 2
w d, v, @ Lo
_ 19V 2 _ 1P o,
My = [ O +.5; J’ Moo = _[EJU"— ldf my, ) ld/' Wt
1= 1= 1=<p
_B3m100+B4m200 7 _B4m100 —Bmy, 7o - Byymy, + B ymy, 7 _B4om10 —Byymy,
7000 — 2 N 2 s <8000 T 2 4 2 ’ 700 2 T 2 4 800 2 T 2 ’
Moo + Mg M0 T Mg My + My, Mg + My,

m,,, m,, are similar expressions as m,,, m,,, with left subscript 1 replaced by 2,

as, are similar expressions as a

H

H

100 — (ZSOOOZ[OOO + 2500022000 j _ [ZGOOOZIOOO — ZSOOOZ 2000 j _ [Zsouzmo +Z 500Z 200 j
2 2 ’ 200 2 2 ’ 0 — ’
(Z1000) " +(Z 3000 (Z1000) " +(Z 2000 (Z10)? +(Z200)°

_ Z 5002 100 = Z s00Z 200 z _ ase0B 4 7 _ As00B 5
20 (ZIOO)Z+(ZZOO)2 5000 B> +_B42 > £ 6000 B +B’

2 @ 2| _@ asyB 4 as, B
Asog = lﬁc — &%, — lﬂc [_j ld/’ My, Z 500 :[— » Z = 507307 ,
1Q/3 19, B320+B420 o0 B, + B

with left subscript 1 replaced by 2.

500
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