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ABSTRACT

Given any structure, we seek to find the solution of mechanical
problem as precisely and efficiently as possible. Within this condition,
the BEM is robust and promising development, standing out in the
analysis of cases with occurrence of large stress gradients, as in
problems of fracture mechanics. Moreover, in BEM the modeling of
infinite means 1is performed naturally, without the wuse of
approximations. For methods involving domain integration, such as
FEM, this is not possible, as models with high number of elements are
usually adopted and their ends are considered flexible supports. This
paper deals with the development of numerical models based on the
BEM for mechanical analysis of stiffened domains. In the modeling of
hardeners, immersed in a medium defined by the BEM, we tried to use
both the FEM, already present in the literature, and the BEM 1D, being
a new formulation. The objective was to perform the coupling of BEM
with FEM and BEM 1D for elements of any degree of approximation,
evaluating both isotropic and anisotropic medium. In addition, a
complementary objective was to verify the effects of the adoption of
different discretization and approximation degrees on the stiffeners.
However, the coupling with the BEM 1D leaded to more stable results
and better approximations. It was observed that the FEM results were
instable for many results, mainly in the quadratic approximations.
When the approximation degree rises, the methods tend to converge to
equivalent results, becoming very close in fourth degree
approximation. Lastly, it was observed stress concentration in the
stiffeners ends. In these regions, the discretization and the
approximation degree have large influence to the numerical response.
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1 INTRODUCTION

HE importance of a good representation of fiber reinforced media for engineering analysis can be identified
when observing the great amount of effort in studying the phenomenological behavior of this kind of material
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and various alternatives present in commercial software or scientific papers in order to solve this kind of problem
(Barzegar; Maddipudi, [1]; Gomes; Awruch, [2]). Highlighting the importance of mechanical analysis of stiffened
domains, several works in the literature seek alternatives to find their solution and better representation. The
governing equations of the problem to be solved are presented as differential equations, solved analytically or
numerically. However, the analysis of the joint behavior of materials of different mechanical properties can present
great complexity. In the case of stiffened domains, for example, structural elements are used that are shaped
differently, such as lattice boards or beamed shells. Analytical solutions are limited to restricted cases, requiring
several simplifications, and for this reason are of restricted use. By involving approximations only in the boundary
of the problems, BEM offers adequate solutions for fracture mechanics. In Le Van; Royer, [3], the case of
anisotropic three-dimensional fracture for the finite and infinite case is studied. Already in Leonel, [4], BEM is used
in the analysis of multi-fractured bodies, later (Leonel, [5]) presents models representing the process of growth of
cracks in flat domains consisting of fragile, quasi-fragile and ductile materials. In fracture models, the dual BEM
formulation is used. The work also presents the expressions of tangent operators, used in nonlinear formulations in
linear and cohesive elastic fracture problems, contact problems and stiffened domain problems. In Oliveira; Leonel,
[6-7], the propagation of fracture in quasi-fragile materials is studied through an alternative formulation of BEM,
where an initial stress field is used to represent the cohesive zone. In order to accelerate the convergence of the
solution, the tangent operator is used. Results are compared with experimental data and dual BEM. It is also
important mentioning some works dealing with failure and cracked anisotropic bodies in the context of BEM
(Nourine et al., [8]; Sahli et al., [9]; Sahli et al., [10], Debbaghi et al., [11]; Kebdani et al., [12]; Sahli et al., [13];
Kadri et al., [14]; Sahli and Sara, [15]).Typically, BEM / FEM coupling is performed for adjacent sub regions,
where their interface is coupled. In the case of reinforced domains, the stiffener, despite being differently modeled,
lies within the sub region modeled by BEM. This section will present texts that refer to the coupling between
adjacent sub regions. The BEM / FEM coupling in structural engineering was initially proposed by (Zienkiewicz;
Kelly; Bettess, [16]) and (Falby; Shawt, [17]). In the work of Brebbia; Georgiou, [18], two-dimensional problems
were evaluated through this coupling. The usefulness of the coupling is evidenced in the work of (Wearing;
Burstow, [19]) being used for the analysis of elastoplastic and mechanical problems of conventional elastoplastic
fracture. In (Coda; Venturini; Aliabadi, [20]) and (Coda; Venturini, [21]), the coupling for the static and dynamic
three-dimensional elastic case is studied. In (Elleithy; Tanaka; Guzik, [22]), is made the BEM / FEM coupling,
considering elastoplastic analysis. In Ganguly; Layton; Balakrishna, [23], the BEM / FEM coupling is performed
symmetrically, making the resolution of linear systems faster. In Bia et al., [24], the coupling is carried out between
(BEM / FEM, BEM / BEM) and (BEM and FEM) / analytical solutions. In the case of stiffened domains, as stated
above, the stiffener lies within the sub-region modeled by BEM, with efforts to be determined. The use of reinforced
materials has numerous applications in industry, in the case of the aecronautical industry for example, the numerical
analysis of their use is performed using both the formulation of BEM and FEM. On the other hand, only the
formulation of BEM is used. In Coda, [25], the BEM / FEM coupling for reinforced media is developed aiming at
both static and dynamic analysis. The formulation of FEM is performed in such a way that their nonlinear influences
are considered as residual forces in the BEM matrix. (Leite; Coda; Venturini, [26]) and (Fernandes; venturini, [27])
applied the BEM-FEM coupling for plate problems, analyzing cases of reinforced concrete slabs.

In this paper, the author wishes pointing out some relevant works. Coupling techniques, in which BEM equations
are combined with algebraic relations coming from other numerical methods, are possible choices that engineers can
follow to solve practical problems.

2 COUPLING BEM - STIFFENING

Consider a two-dimensional domain €, wherein I' represents the regular boundary (Fig. 1). The displacement
boundary integral equation relating the boundary displacements u; with the boundary tractions p; in the presence of
body forces b, can be written as:

cu, +J‘p;ude:J.pku;dr+_[bku;de M
r r Q

where i, k denote Cartesian components, and p; and u, represent the traction and displacement fundamental

solutions at a boundary point due to a unit load. The term c is generally a function of the geometry variation at the
boundary point, it can be shown that ¢;, = % & (Brebbia and Dominguez, [28]).
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Differentiation will be performed between the BEM / FEM coupling for adjacent subregions and the BEM
coupling with stiffeners. In case of BEM / FEM coupling to adjacent subregions, only the interface between the
methods will be coupled. Displacements compatibility is imposed, i.e. for the boundary of the two subregions the
displacement will be the same. Moreover, equilibrium is imposed, which in this case means that the surface forces
for the two subregions are of the same absolute value and opposite, that is, they cancel each other out. Otherwise, in
the BEM coupling with hardeners, they are present in any direction within the BEM domain, which will be called
the Domain. In the formulation of BEM, the medium is considered homogeneous. In order to take into account, the
existence of stiffeners, effects overlapping is then used, and the coupling is performed by applying the conditions of
compatibility and equilibrium on the fiber nodes.

Stiffeners, also called fibers, have been adopted that are linear with rigidity only in the axial direction, i.e. truss
elements. As performed by (Leonel, [5]) for the BEM / FEM coupling, the two methods are used separately for
overlapping effects.

o )

/

Fi.nite‘Element
Bars

Loal grogr—py g—g—g-—g—0'
lineg 1 ? ] =1 n

Fig.1
BEM / FEM coupling. (Leonel, [5])

The adhesion between stiffeners and the Domain causes the emergence of distributed forces, these are called
load lines or adhesion forces. By equilibrium, the applied force on the fiber must be opposite to the applied load on
the Domain, that is:

S

where fP and fF are forces on the Domain and on the fiber respectively.
Disregarding the slip of the fibers, the displacement in their points should be the same for both methods, i.e.:

u =u

Using the BEM formulation for the boundary from the Somiglian Identity, Eq. (1), the following equation is
obtained:

Heeue =Gee pe +GCFfD 2

where the first index indicates the location of the source point and the second the location of the elements integrated
by it, i.e.:

Hcc is the matrix H obtained by BEM for the boundary points integrated in the boundary.

Gcc is the matrix G obtained by BEM for the boundary points integrated in the boundary.

Gcr is the matrix G obtained by BEM for the boundary points integrated in the fiber.

Using the BEM formulation for the hardener gives the following equation:

up+Hpue =Gpe pe+Gpf ° 3

Hpc is the matrix H obtained by BEM for the fiber points integrated in the boundary.
Grc is the matrix G obtained by BEM for the fiber points integrated in the boundary.
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Grr is the matrix G obtained by BEM for fiber points integrated into the fiber.
To conclude the coupling is missing the algebraic equation of the stiffener itself, it can be written as follows:

Kug :GFfF (€]

where K is the stiffness matrix.

The difference between the methods used to model the hardener only occurs in obtaining this last equation,
regardless of whether the medium is isotropic or anisotropic. For the case of the BEM / FEM coupling,
approximation is required for both displacements and distributed force. Using the BEM / BEM 1D coupling,
requires approximation of the distributed force only. Joining Egs. (2), (3) and (4) gives:

He 0 Gy ||uc Gee
H e 1 G |y o= GFC Pc (5)
0 K, G. ||f b 0

This way one can finally get the problem solved by performing the column exchange process. It is observed that
the load lines are unknowns of the problem, to obtain them, it is necessary to use approximate functions. The Finite
Element technique is adopted to perform its approximation, so that its nodal values are obtained. In the case of
coupling with the MEF, the same degree of approximation is adopted, so for all nodes of the problem displacement
and the force of adhesion results are obtained. In addition, the MEF formulation was adopted where elements of any
degree of approximation can be used, and then the matrices were constructed by numerical integration.

3 ONE-DIMENSIONAL BOUNDARY ELEMENT METHOD (BEM 1D)

(Cruz, [29]) presents the fundamental solution for the BEM 1D. Through this solution, it is possible to develop the
formulation for the case of truss bars with distributed forces, necessary for the representation of the stiffener in a
boundary element mesh.

The equilibrium of a truss bar is given by the following equation:

dN (x) _

o P (6)

where N (x ) is the normal force on the element, p(x)is the distributed force on the element and .ris the longitudinal

axis.
Applying the constitutive relationship and the compatibility relationship, we obtain the relationship:

N(x)=EA du(x) (7
dx

where E is the longitudinal modulus of elasticity, or Young's modulus, A is the cross-sectional area.
Substituting Eq. (6) into Eq. (7) gives the governing equation of the lattice bar problem in terms of displacement:

du(x)

EA 2
dx

=—p(x) ®)

Let 2 be the weight function, the direct variational form is given by:

J.L(EA dzugx)+p(x)]u*dx =0 9)
0 dx
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The weight function #* is chosen so that relations (7) and (8) are valid. Substituting these relationships in Eq

480
Integrating by parts:
du(x) L| du du’

E4A——= —FA —-— dx =

{ dx } IO {dx dx Pl )}u N
Integrating the second term by parts again:

[ du(x) } j { )}dxz()

(11) gives:

[N @' ] ~[ueN"T = [uGe)p'dx — [ ploy’dx

(12)

The BEM 1D differential is the choice of the weight function p*. As for the BEM, we chose to avoid domain

integration, using for this the Dirac Delta, as follows:
Ppx,x)=A(x,x)

A(x ,x) is the Dirac Delta;
x is the point to be evaluated, called Field Point;

x is the application point of the Dirac Delta, called the Source Point.
The solution of the previous equation is called the BEM 1D Fundamental Solution.

This way, the integration of displacement in the domain is no longer necessary:

j.u(x Yy (x,x)dx =u(x)

Eq. (12) then takes the following form:

@) +[u@ON" (.0 ] =[N @' @.0)] + [ peow’ (x5

(13)

(14)

(15)

Through this equation and using the fundamental solution we find the answer to the lattice element boundary, i.e

its ends. The Fundamental Solution is found in (Cruz, [29]) :

( ,\) |X —X
u (x,x)=-—
2EA
N%x,f)zEAWz—lsgn(x —%)
X

The following nomenclature will be adopted:

N, (x,x) i —>SourcePoint j — Evaluated Point

For a bar with n nodes, the extreme nodes are evaluated:
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R e A I R (18)
u” L _an Nnn u'l L _unl urm NY! q"
The first line refers to source point 1 and the second to source point n. In addition, the following distributed
force integrals vector was defined:

q, :Ip(x)u*(x,fi Ydx (19)

But the normal forces in the equation are not in the local axes, the positive value is indicating tensile force and
negative compression. To leave them on the local axis we have:

N, _[-N,
Rt (20)

That is:

e e i )
Otherwise, naming matrices:

[AJ{u}, =[B]{N}, +{4} (22)
The above equation can also be written as:

[B]'[4){u}, ={N}, +[B] {q} (23)

The aim is to calculate the distributed force integrals qi. Making change of space gives:
+1
g, = [ P&’ (&€t 24)
-1

where J is the Jacobian of the function.

It is observed that so far, no approximations have been introduced. However, in the BEM / BEM 1D coupling, it
is necessary to approximate the distributed forces on the stiffener, which are the forces transmitted to it by the
medium in which, Domain is inserted. To perform the approximation, one must use the finite element technique
through the form functions, with b; being the nodal values of the distributed force:

(&) =48, (25)

Since distributed forces are defined by nodal values, the concept of linear, quadratic elements, etc., is
maintained. However, this will only mean that distributed forces are approximated by this degree of approximation
within the element.

Introducing Eq. (25) into Eq. (24) gives:

g, = [, &’ (& )dED, (26)

One can then write:
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la}=[C]ip}, @7)

where [C] is given by:

C, = [u" (&80, ©MdE (28)

-1

Replacing Eq. (27) in (23):

(8] [a]{u}, =iV}, +[B]"[C]ip},

This equation format is similar to that used in the FEM; however, it is only valid for the boundary of the
elements. For the format to become the same, it is necessary to include in the previous equation the internal points of
the elements.

4 BEM 1D - VALIDATION AND APPLICATION

In order to validate the implemented formulation, structures whose mechanical responses are known will be
analyzed. First, the BEM 1D formulation with elements in the same direction will be tested and then tested with
rotating element.

4.1 MEC 1D - Example 1: Quadratic distributed force element
We will now evaluate the case of a quadratic-governed distributed force element of the following equation:
p(x)=ax’

Then we have:

2

=

Integrating and applying the essential boundary condition gives the analytical solution:

ax* +a.L3_)c
12EA  3EA

u(x)=-

The support reaction R is then given by:

3
R:—N(O):—“LT

Results of the MEC 1D formulation with 5 nodes were again compared, using 4 linear elements, 2 quadratic
elements or 1 element of the fourth degree. It was adopted:

a=1; L =6.

The error of the results was calculated, using the following formula:
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X gemip ~X Froor
Emor =|———

X rroor

where x is the variable being evaluated, F tool is a computer program.
The result can be seen in the following figure:
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In the case of quadratic and fourth degree elements, the maximum error was 2.39E-15, which can be considered
to coincide with the analytical response. However, in the case of using linear elements, a relevant error was
obtained, 3,13E-02. The error is justified by the fact that the distributed force is described by the Finite Element
Technique, according to Eq. (25). That is, as it is defined through nodal values, with the use of linear elements, it is
also being considered linear within the elements. As quadratic distributed force was adopted, when considering it
linear within the elements, an error occurs. Increasing bar discretization is an option to reduce this error.

The last configuration was re-analyzed using 41-node elements. Using MEC 1D, the number of nodes has less
influence on the result, since in practice the solution is through the contour nodes. The response to internal nodes is
obtained by post processing.
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MEC 1D Response, 41 Nodes - Quadratic distributed force.

Good results were obtained using the method in several cases with different loading conditions. It was clear that
for the influence of the approximation degree adopted for distributed force; the use of approximation degree lower
than the applied force leads to an increase in the error. In this case, increasing the discretization of the element
would reduce this error.

4.2 Coupling - Example 2
First, it was simulated in the ANSYS and through the BEM in coupling with the FEM and BEM 1D, an EPT panel

with 3 stiffeners is used. As a support condition, the left side was set, distributed forces were applied in both the
upper boundary and the right boundary, generating bending and pulling forces, respectively.
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Fig.4
Panel model with stiffeners.
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Fig.5
ANSYS model - Example 2.
(Measured in cm, loads in AN / m) - Example 2.

The concrete was considered as a linear isotropic medium. The following mechanical properties were adopted
for the domain (subscript C) and the stiffeners (subscript S):

Eg =200 GPa; Ec =25 GPa; ve=0.25; As= 10 cn? (per stiffener)

Through ANSYS, the medium was modeled using squares of quadratic approximation, of the type "PLANE 42",
Tighteners were modeled using linear approach truss elements, of the "LINK 1" type. In total, 16000 elements were
adopted in the middle and 190 elements for each rigger, defined based on previous study of mesh convergence,
resulting in a good response behavior. The mesh used for ANSYS analysis is shown in Fig.5. In the case of the
coupling analysis of the BEM with stiffeners, the medium was modeled using the BEM, using 16 boundary elements
of quadratic approximation. For the analysis of displacements and support reactions, the boundary was linearized
counterclockwise from the lower left vertex, the position being identified as .S in the graphs. It is important to note
that the consideration of positive or negative values for traction or compression is not used, results will be positive
when its direction coincides with the direction of the axis. As for stiffeners, modeled by FEM and BEM 1D first, a
comparative analysis will be performed in relation to its discretization, evaluating results for 23, 51 and 111 nodes
with quadratic approximation elements, with 11, 25 and 55 elements respectively, results are presented in item 5.1.1.
Then, the effect of changing the degree of approximation of the elements of the riggers will be evaluated, and the
results will be presented in item 5.1.2. To evaluate results, effects of panel flexion and traction were discussed
separately. Results of displacements, normal forces and grip strength were presented. In order to aid in
interpretation, the graph of the latter was presented to the right side of the normal force graph. In addition, within
each item we tried to use the same axis limits, allowing a more direct comparison between graphs.

Since strength concentration was expected at the tip of the stiffeners, smaller elements were used in these areas.
By varying the discretization and degree of approximation, it was observed that the creation of irregular elements in
these areas led to a greater increase of the error, this situation was avoided.

4.2.1 Changing discretization

First, different fiber discretizations were evaluated, verifying the mechanical effects on the boundary of the problem
and on the stiffeners themselves.

4.2.1.1 Outline results
In the case of the boundary, the discretization variation of stiffeners did not influence the result. It is observed that

the lower side of the panel has negative displacement at x and the upper side positive displacement, larger in
modulus, the results obtained are expected since it is a panel subjected to flexion-traction:

© 2020 IAU, Arak Branch



U, fm} 0

R. Naceur Bouharkat et.al. 485

Fig.6
Displacements in the direction x — Coupling Example. 2,
discretization.
) 2 a H 3 &
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\‘H Fig.7
. . - . . . . Displacements in the direction y - Coupling Example. 2,
a 1 2 a H s s discretization.
S{m}

In both directions the displacements were of small value, thus guaranteeing the validity of the regime of small
displacements and deformations. In the case of displacements in y, the whole boundary had a negative result.
Expected result due to the effects of applied flexion.

As for the supportive reactions, it was observed a greater concentration in the extremities, with increasing values.
The crimping is located on the left side of the panel, initially negative values indicate that the reactions are in the
opposite direction to the x axis, thus being traction. Positive values indicate compression. Traction values exceed the
compression, being compatible with a panel subjected to flexo-traction. It is observed that through ANSYS higher
stress concentrations are obtained near the ends of the boundary where the displacement is zero. This is expected
due to the domain discretization required by the FEM.
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10 Support reactions in the x direction — Coupling Example. 2,
. . . . . : discretization.
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104 Support reactions in the y direction - Coupling Example. 2,
. ' ' ' ' ' discretization.
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The support reactions in the y direction are due to the shear stress generated in the panel, it is observed that there
is tension concentration in the ends of the crimping.

4.2.1.2 Lower fiber

In the case of the inferior fiber, the results in displacements were also close. The discretization of stiffeners had little
or no influence on these results.

P Ansys
—=— BEM/FEM - 23 points
—=— BEM/FEM - 51 points
—=— BEM/FEM - 111 points

NN

N It Fig.10

7 e e Displacements in x, in the lower fiber - Coupling Example. 2,
00 os 10 s 20 discretization.
S (m)

~,
Ansys
2 —=— BEM/FEM - 23 points
—=— BEM/FEM - 51 points
\\ —=— BEM/FEM - 111 points
-4 4

U, 10° (m)

\\ Fig.11

-10 - -
Displacements in y, in the inferior fiber - Coupling Example. 2,

12 i izati
0.0 os 10 15 20 discretization.

S (m)

Negative displacements were obtained in x and y and normal negative forces, indicating compression, that is, the

effects of panel flexion exceeded traction in this fiber.
In the case of normal forces and adhesion forces, a significant perturbation in the results of the BEM / FEM

coupling is observed in comparison with the BEM / BEM 1D for less discretized fibers, with 23 nodes. There is also
a clear concentration of stresses at the left end of the fiber.

an - -e‘ﬂ-:"-_ =
= o == __4:.1'{—\.
_. j,,_.r' = =51
f & =] -1 —a— EEMERM 2Epunk
= .oz ¥ a” —— EENUSEA IO 2 Ap s
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w25 ]
ol r T T T
o [ E=) 10 155 0 oo oS 10 15 20
5 [} S [
(a) (b)
Fig.12

Normal forces on the lower fiber - 23 knots — Coupling Example. 2, discretization.

with increasing discretization, the results are approaching but with some disturbance of the BEM / FEM coupling.
The result of grip strength at the fiber tip increases with increasing discretization, as shown in the following figures.
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Normal forces on the lower fiber - 51 knots - Coupling Example. 1, discretization.

The example was first studied with quadratic approximation elements and several stiffening discretizations, 23,
51 and 111 knots. In all cases good results were obtained for the boundary and the displacements of the fibers. With
the increase in discretization, the usual improvement of results was obtained and it was clearly possible to notice that
there is stress concentration at the fiber ends. The BEM / BEM 1D coupling had superior results in all analyzes
performed, especially in the case of 23 knot discretization, with significant disturbance of the result in bond
strengths and normal force in the coupling with the FEM.

Based on the previous result, the example was reassessed by varying the degree of approximation, keeping the
number of fiber nodes at 23. It was found that increasing the degree of approximation has a positive effect,
especially for normal force results. The BEM / BEM 1D coupling again had superior results, however in the case of
approximation of the fourth degree the BEM / FEM results became close.

4.3 Coupling - Example 3

In order to validate the hardening coupling of BEM for the anisotropic case, a model with the same anisotropic
material as in the previous example was proposed, but with isotropic material inclusions and more adverse loading

and binding conditions.

S0 £0 250 i s
L [ A A

4| D =
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.=.| ]

o s ]

a = g”® Fig.14

T | 7 T 1 - Anisotropic model with inclusions (hatched) and adverse
e | 200 T conditions (measured in ¢m, loadings in kN / m) - Example 3.

Stiffeners Properties: Es =210 GPa; As = 10 cm” (per stiffener)

Inclusions Properties: E.=25 GPa; vC=0,25
The medium was modeled using the BEM using 24 quadratic boundary elements. For analysis of displacements

and support reactions the boundary was linearized counterclockwise starting from the lower left point.
The inclusions were modeled using 12 quadratic boundary elements each, totaling 36 boundary elements.
Stiffeners were modeled with 51 knots, with quadratic and fourth degree elements, as follows:
e Degree 2: 25 elements of degree 2
e Degree 4: 12 elements of degree 4, 1 element of degree 2
As for the ANSYS model, a previous mesh convergence study was performed, which was not shown here for
simplicity, reaching the following configuration:
e 100 elements in stiffeners - lattice elements (“Link1”)
e 2225 elements in isotropic inclusions - quadratic plate elements (“Plane183”)
e 4316 anisotropic elements - linear plate elements (“Plane182”)
e Detail of isotropic inclusion.
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Fig.15
ANSYS model — Example. 3.

Fig.16
Detail of isotropic inclusion in ANSYS.

Again, close results were obtained for contour displacements, regardless of the method used to discretize it:
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Fig.17

Displacements in x direction - Coupling Example.3.
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Fig.18

Displacements in y direction - Coupling Example.3.

As for support reactions, there are 2 sections in which the model is set, presenting stress concentration near the

extremities.
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Support reactions in x direction - Coupling Example.3.

4.3.2 Lower fiber

The results in lower fiber displacements were close, regardless of the method adopted:
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Fig.20
Displacement x on the lower fiber - Coupling Example.3.
00 — 0.0 -
—2,0=10 — -2,0=10°
= ] = 1
=T-a0m107 - — & BEMU/FEN Deg. 2 P — Ansys
EEM/FEM Deg, 4 = | —e— BEM/BEM 1D Degz
4 —m— BENL/EER LD Deg
- 0510 —
-6, 06107 —
T T ¥ ¥ !
oo a5 1.0 1.5 z0 =5 T T T T 1
& (o) o0 0.5 1,0 1,5 2.0 2.5
S {m)
a
Fig.21

Displacement y on the lower fiber — Coupling Example.3.

As for the adhesive force of results and normal force, BEM / FEM coupling had more unstable response in
relation to the BEM / BEM 1D. It is found that near the stiffening tips there is a concentration of stress, the FEM
finding it difficult to capture it:
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Fig.22

Normal forces and adhesion forces on the lower fiber - Degree 2 - Coupling Example.3.
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Using the fourth-degree approximation results convergence.
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Normal forces and adhesion forces on the lower fiber - Degree 4 - Coupling Example.3.

4.3.3 Superior fiber

Similar to the lower fiber, the results in upper fiber displacements were close.

O 0x107T —

Ansys
—@— BELM/FELI Dieg. 2
—m— BEN/FERI Deg. 4

Fig.24
Displacements in x on top fiber - Coupling Example.3.
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Displacements in y on top fiber - Coupling Example.3.
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In the case of normal force and adhesion force, the result of the BEM / FEM was also unstable near the tips.
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Normal forces on top fiber - Grade 2 - Coupling Example.3.
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Again, as the use of fourth degree approximation results convergence occurs.
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Normal forces on top fiber - Grade 4 - Coupling Example.3.

Even in the case of a problem with adverse contour and loading conditions, with the application of isotropic
inclusion, the logic of the previous examples was maintained. Thus, BEM / FEM 1D presented greater stability for
adhesion force and normal force results adopted regardless of the degree of approximation. In the case of BEM /
FEM using quadratic approximation elements, perturbations were observed near the tips, requiring greater
discretization of stiffeners to avoid them, or to increase the degree of approximation. However, with the use of
fourth degree approximation the results of both methods were very close.

5 CONCLUSION

Having defined the mathematical bases in order to validate the formulation adopted for BEM 1D, two examples of
truss bars with different loads were evaluated. Then the union and rotation of elements was evaluated, comparing
with the academic computer program FTOOL. Good results were obtained in all, demonstrating the consistency of
the formulation adopted.

An example of stiffened media with different discretization and degree of fiber approximation were evaluated.
Maintaining the number of nodes, the use of quadratic, cubic and fourth degree approximations was evaluated.
Clearly, it could be seen that stress concentration occurs at the fiber ends. For this reason, the change in
discretization and the degree of approximation in these areas has the greatest effects, and increased discretization has
the usual positive effect.

With the different examples performed, it can be concluded that the formulation adopted for coupling with BEM
proved to be consistent, presenting convergence of results even with ANSYS. Good results were obtained even for
the case of greater stiffness difference between stiffeners and medium. Modeling of stiffeners mainly affected in
their own result in grip strength and normal strength, coupling with BEM 1D proving stable in all adopted situations.
With the use of the fourth-degree approximation, BEM / FEM convergence with BEM / BEM 1D occurs, and in the
second example there is a significant improvement of both methods. For this reason, it is therefore recommended to
prioritize the use of fourth degree approaches and, in the case of lower degree approaches, to avoid coupling with
the FEM.

Due to its complexity, example four of the coupling with the BEM had, among the analyzed, the highest
computational cost. However even in this time the time was not high, being of the order of 40 seconds. There was no
relevant difference between the methods.
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