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 ABSTRACT 

 This paper investigates the coupled axial-radial (CAR) vibration of 

single-walled carbon nanotubes (SWCNTs) based on doublet 

mechanics (DM) with a scale parameter. Two coupled forth order 

partial differential equations that govern the CAR vibration of 

SWCNTs are derived. It is the first time that DM is used to model the 

CAR vibration of SWCNTs. To obtain the natural frequency and 

dynamic response of the CAR vibration, the equations of motion are 

solved and the relation between natural frequencies and scale 

parameter is derived. It is found that there are two frequencies in the 

frequency spectrum and these CAR vibrational frequencies are 

complicated due to coupling between two vibration modes. The 

advantage of these analytical formulas is that they are explicitly 

dependent to scale parameter and chirality effect. The influence of 

changing some geometrical and mechanical parameters of SWCNT on 

its CAR frequencies has been investigated, too. It is shown that the 

chirality and scale parameter play significant role in the CAR vibration 

response of SWCNTs. The scale parameter decreases the higher band 

CAR frequency compared to the predictions of the classical continuum 

models. However, with increase in tube radius and length, the effect of 

the scale parameter on the natural frequencies decreases. The lower 

band CAR frequency is nearly independent to scale effect and tube 

diameter. The CAR frequencies of SWCNTs decrease as the length of 

the tube increases. This decreasing is higher for higher band CAR 

frequency. To show the accuracy and ability of this method, the results 

obtained herein are compared with the existing theoretical and 

experimental results and good agreement is observed. 

             © 2019 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

T nanoscale levels, the mechanical characteristics of nanostructures are often significantly different from their 

behavior at macroscopic scale due to the inherent size effects. Such characteristics greatly affect the 

______ 
*
Corresponding author. Tel.: +98 2165649901. 

E-mail address: alirezafatahi@shriau.ac.ir (A. Fatahi-Vajari). 

A 

mailto:alirezafatahi@shriau.ac.ir


                                                                                                                 Z. Azimzadeh and A. Fatahi-Vajari                        324 

 

© 2019 IAU, Arak Branch 

performance of nanoscale materials or structures and nanoinstruments. Theory of classical continuum mechanics 

(CCM) is used to develop the equations of motion whereas the small scale effects due to atomic scale of the lattice 

structures of carbon nanotubes (CNTs) are not taken into account. Moreover, the length scales associated with 

nanotubes are often sufficiently small to call the applicability of classical continuum models into question [1]. Banks 

et al. provided a review of equations of motion in a continuum and completed the set of equations with presenting 

and discussing a number of specific forms for the constitutive relationships between stress and strain proposed in the 

literature for both elastic and viscoelastic materials [2]. Classical continuum mechanics modelling assumptions are 

conducive to erroneous results, when applied to material domains where the typical microstructural dimension is 

comparable with the structural ones [3].  

Currently, various elegant modifications to continuum mechanics have been proposed to incorporate scale and 

microstructural features into the theory. Problems studied by means of a variety of approaches are just different 

aspects of the same general problem. The most used methods for today’s research in applied mechanics for new 

materials like nano can be categorized in generalized continuum mechanics theories [4-8] and atomistic-discrete 

models [9-12]. The nonlocal and higher gradients continuum mechanics was conceived already in Piola's works and 

Many nonlocal continuum theories were formulated since the first formulation by Piola [7]. In nonlocal theories, as 

opposed to local theories, it is assumed that particles further apart will influence each other. Several nonlocal 

theories exist which consider the long-range interactions between materials particles. These theories can be broadly 

divided into two major groups [13]: 

1. Weakly nonlocal theories such as strain gradient theories and modified couple stress theories, where stress at 

each point depends not only on the strain but also on the derivatives of the strain. These are non CCM theories in the 

sense that they account couple stress effect and the material length scale comes in through a constitutive equation 

relating the couple stress tensor and curvature tensor. Strain-gradient theory introduced by Mindlin [6] may be used 

to accurately model the response of solids and structures in small scales. There are three separate forms in the theory 

called generally Form I, Form II and Form III. The convergence of the strain-gradient and CCM methods deemed 

for a moderately large deformation and it showed that the theories have the same results by growing the size of the 

body when dimensions are relatively bigger than the length scale. Unlike CCM, the strain energy density function 

for strain gradient theory includes additional terms due to the couple stress. The strain energy potential in CCM 

theories only depends on the strains, whereas in the strain gradient theory it depends not only on the strain but also 

on the gradients of the strain. This introduces a material length scale (a size-dependent property) into the 

formulation. Polizzotto compared the stress gradient model with strain gradient model featured by a constitutive 

equation and concluded that the main differences are pointed out in relation to their mechanical behaviors and in 

particular to the relevant surface effects, as well as to the computational aspects [8]. Khodabakhshi and Reddy 

showed that both the strain gradient theory and the von Karman nonlinearity have a stiffening effect, and therefore, 

reduce the displacements. The influence is more prominent in thick beams. In order to take account of the geometric 

nonlinearity, Beheshti studied finite deformation in the strain gradient continuum based on the infinitesimal strain 

tensor given the Green–Lagrange strain tensor [14]. 

2. Strongly nonlocal theories such as Eringen integral theory and peridynamic theory, where stress at each point 

depends on the strain at all points within a domain through an integral. Several papers have been published in the 

last decade in these two areas deal with beams, plates, and shells. A good list of references on these two classes of 

models can be found in [15-19]. Kiani [15] developed the lateral buckling of two- and three dimensional (2D and 

3D) ensembles of vertically aligned SWCNTs based on the nonlocal stress theory. Based on both discrete and 

continuous models, the critical axial buckling loads for both 2D and 3D ensembles of SWCNTs are obtained. Fatahi-

Vajari and Azimzadeh studied nonlinear axial vibration of SWNTs using Homotopy perturbation method [16]. 

Using nonlocal higher order beam theory, traveling transverse waves in vertically aligned jungles of SWCNTs in the 

presence of a longitudinal magnetic field are studied by Kiani [17] using both nonlocal discrete and continuous 

models. Aydogdu investigated axial vibration analysis of nanorods embedded in an elastic medium using nonlocal 

elasticity [18]. Kiani developed new nonlocal discrete and continuous models to obtain fundamental frequencies in 

free bending vibration of 2D ensembles of SWCNTs leads to the definition of in-plane and out-of-plane flexural 

behaviors for such nanostructures [19].  

The common feature of all nonlocal theories is the introduction of material length scales which represent certain 

microstructural features (e.g., lattice structure). Most nonlocal theories exhibit a stiffening effect. This effect is more 

significant when certain dimension of a structure like thickness in the case of beams, plates, and shells, becomes 

comparable to the scale parameter. The Eringen method consists in both the differential constitutive equations and 

integral type. This means that the nonlocality effects of the original integral-type problem enter into the differential-

type problem as gradient effects originating from a source identified with the Cauchy stress  . In other words, the 

original nonlocal integral-type model is replaced with a stress gradient model. Indeed, the latter model finds itself in 
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strong contrast with the well-known strain gradient model widely employed to describe size effects and other 

phenomena of small scale solids [13].  

Various methods for simulating materials at an atomic level are existent, including lattice dynamics (LD), 

molecular dynamics (MD) and quantum mechanical (QM) methods [10]. LD studies vibrations of the atomic nuclei 

of solid crystals, the nuclei being considered as material points (particles) mutually bonded by elastic interatomic 

forces [20]. LD is based on the following far-reaching assumptions. Firstly, any crystal is an infinite lattice structure. 

Secondly, the crystal obeys some devised periodic boundary conditions (PBC). Therefore, in general, LD is 

incompatible with arbitrary boundary conditions [20]. The other atomistic method is MD. Applying MD, every 

single atom or molecule in CNTs is seen as a discrete mass point and the bonding forces between each pair of 

neighboring atoms obey Newton’s laws of motion [5]. MD model usually employs simplifications, such as 

regularity of particle distribution, symmetry and periodicity. In practical engineering applications, for problems of 

micron size and up, this model is not of practical use because it requires enormous computational effort which 

cannot be handled with today’s computer technology [21]. MD simulations are restricted to small scale systems and 

to short time intervals [18]. Another atomistic method is QM which avoids a direct analysis of the nanostructure 

considered made by a set of atoms. Indeed, the structure of the nanostructure can be reduced to the analysis of an 

atomic lattice of N particles. This system, using CCM, would be associated with the matrix form of the equation of 

motion [11]. A solution of the QM equation including all relevant interactions in solids is computationally highly 

overbearing and is available with only high-speed computers. Even with increasing computational resources, a series 

of approximations must be employed in order to render a comprehensive solution for any non-trivial system feasible 

and it is nowadays not only possible to simulate certain experimental conditions and set-ups at an unprecedented 

level of accuracy without any experimental input, but also to design new materials with tailored properties before 

actually casting them [12]. Full QM treatments remain all but intractable at present for more than a few hundred 

atoms [9]. Another challenge in developing QM methods is that it uses translational symmetry and dealing with 

equations for which there is no solution [10].  

One particular theory that has recently been applied to materials with microstructure is doublet mechanics (DM). 

This theory originally developed by Granik [22], has been applied to granular materials by Granik and Ferrari [4] 

and Ferrari et al. [20]. In DM micromechanical models, solids are represented as arrays of points, particles or nodes 

at finite distances. This theory has shown good promise in predicting observed behaviors that are not predictable 

using continuum mechanics. Such behaviors include the so-called Flamant paradox (Ferrari et al., [20]), where in a 

half-space under compressive boundary loading, continuum theory predicts a completely compressive stress field 

while observations indicate regions of tensile stress. Other anomalous types of behavior include dispersive wave 

propagation. Ferrari et al. reformulated DM using a finite element approach with the aim of further expanding the 

potential applications of this theory [23]. Some applications of DM in biomechanics and nanomechanics are given in 

[24- 25]. Fang et al. [26] studied plane wave propagation in a cubic tetrahedral assembly using DM. Additional 

applications of doublet mechanics are given in [27- 32]. 

It should be noted that The nonlocal theory is deductive, in the sense that it employs field variables of intrinsic 

macroscopic nature (i.e, the strain and stress tensors), without explicit connections with the underlying discrete 

material microstructure [3]. Also, the total number of elastic macroconstants in the nonlocal theory is relatively large 

[6]. It should be pointed out that the nonlocal theory is phenomenological in nature. That is, unlike DM the nonlocal 

theory is developed following a simplified pattern without considering a particular microstructure [20]. Under such 

an approach the parameters of the microstructure are not included in the mathematical model directly as in DM. The 

microstructural parameters enter the nonlocal theory indirectly because it is implicitly contained in the macrotensors 

of elasticity. In other words, unlike the elastic macrotensors in DM, the elastic macrotensors in the nonlocal theory 

are unknown functions of the underlying microstructural parameters [20]. Consequently, the total number of elastic 

macroconstants in the nonlocal theory is considerably larger than that in DM. So even in the simplest nonlocal 

theory (grade two) there are many elastic macroconstants to be obtained experimentally. Clearly, this is practically 

very difficult to accomplish, not to mention the additional macroconstants required in more complex theories of 

materials of grade three and higher [20]. Nonlocal theory is deductive, in the sense that it employs field variables of 

intrinsic macroscopic nature (i.e, the strain and stress tensors), without explicit connections with the underlying 

discrete material microstructure [3]. With this introduction in mind, DM hasn’t limitations mentioned in other 

theories such as CCM, atomistic methods and nonlocal theories.  

Single-walled carbon nanotubes (SWCNTs) are tiny cylinders made from carbon [33]. A SWCNT can be 

described as a single layer of a graphite crystal that is rolled up into a seamless circular cylinder, one atom thickness, 

usually with a small number of carbon atoms along the circumference and a long length along the cylinder axis [34]. 

SWCNTs have many unique, fascinating properties. They are very strong and have extremely light weight. They are 

excellent conductors of heat, and transport electrons easily. The properties of CNTs depend strongly on their 
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microscopic structure [33]. The investigation of SWCNTs on the nanoscale is very important, since they are 

commonly used as resonators and sensors whose dynamic behavior needs to be understood. To demonstrate their 

applicability, some production techniques for making SWCNTs are explained in the [35-37]. Zhang et al. 

determined the vibration frequencies of SWCNTs using extensive MD simulations and Timoshenko beam modeling 

are performed to for SWCNTs with various aspect ratios, boundary conditions, chiral angles and initial strain [38]. 

Kiani studied the transverse vibrations of 3D vertically aligned periodic arrays of SWCNTs in presence of both 

longitudinal magnetic and thermal fields using nonlocal higher-order beam theory [39]. Ghorbanpour Arani et al. 

investigated the axial and torsional wave propagation in a double-walled carbon nanotube (DWCNT) embedded on 

elastic foundations using nonlocal continuum shell theory [40]. Fatahi-vajari and Imam studied axial vibration of 

SWCNTs using DM and obtain the natural frequency which was explicitly dependent to scale parameter [41]. 

Basirjafari et al. obtained an exact formula for the radial breathing mode (RBM) frequencies of triple-walled carbon 

nanotubes (TWCNTs) using symbolic package in MAPLE software [42]. To take into account the van der Waals 

(vdW) forces between adjacent SWCNTs because of their bidirectional transverse displacements, Kiani developed a 

linear model using Hamilton’s principle based on the nonlocal Rayleigh, Timoshenko, and higher-order beam 

theories [43]. Das et al. studied inextensional vibrations of Zigzag SWCNTs using nonlocal elasticity theories and 

molecular mechanics simulations employing MM3 potential [44]. Fatahi-Vajari and imam studied RBM vibration of 

SWCNTs using DM and obtain the natural frequency which was explicitly dependent to scale parameter [45]. Li et 

al. took into account coupling effects of lateral, torsional and axial vibrations and a lumped-parameter nonlinear 

dynamic model of helical gear rotor- bearing system to obtain the transmission system dynamic response to the 

changes of different parameters [46]. Kiani studied longitudinal and transverse waves propagation in SWCNTs 

induced by friction between the nanoparticle and the SWCNTs, mass weight of the nanoparticle, and the 

interactional vdW forces between the constitutive atoms of the nanoparticle and those of the SWCNT using 

nonlinear-nonlocal continuum theory of Eringen [47]. Gupta and Batra studied Axial, torsional and RBM vibrations 

of free–free unstressed SWCNTs of different helicities using the MM [48]. It should be pointed out that RBM 

frequency is usually the strongest feature in Raman spectra which plays a crucial role in the experimental 

determination of the geometrical properties of SWCNTs. RBM frequencies are very useful for identifying a given 

material containing SWCNTs, through the existence of RBM modes, and for characterizing the nanotube diameter 

distribution in the sample through inverse proportionality of the RBM frequency to the tube diameter [49]. 

The SWCNTs may be subjected to some heavy and complex dynamic loadings caused by different sources. By 

producing different states of stress, these loads might result in excess vibrations and may lead to failure. Two 

important forms of vibrations that have been identified for SWCNTs are axial and radial vibrations. It should be 

pointed out that flexural (bending) vibration of SWCNTs also called fundamental vibration is very important 

vibration in nanostructure. To this end, many researchers have been studied about this vibration mode but the other 

vibration mode (spatially the coupled vibration) has not been investigated more. On the other hand, it can be seen 

from the previous works on the vibration of SWCNTs that most of existing SWCNTs systems were usually regarded 

as one vibrational mode systems, and the others vibrational modes were ignored. The coupled vibration of SWCNTs 

is an interesting subject because of the complexity of the equations and the analytical solutions are difficult to 

obtain. The axial-radial coupling vibration of the SWCNTs can lead to severe vibration, and this energy boosts the 

amplitude of the vibration and may leads to the early fatigue of tools and the reduction of bit life. If not taken into 

consideration, the effect of coupled vibration can not only reduce the calculation accuracy, but also lose some 

important characteristics of the CNTs. Therefore, it is important to establish an accurate model for dynamic 

characteristics of the coupled vibrations of CNTs. 

Considering the complexity of the practical dynamics of the SWCNT systems, the main purpose of this study is 

investigating and modeling a mechanism for the CAR vibration of the SWCNTs using a new theory called DM. 

CAR vibration analysis of nanotubes based on DM has not yet been investigated analytically and the present work 

attempts to consider such analysis. The governing differential equations for this case consist of two coupled partial 

differential equations with radial and longitudinal displacements as the variables. These two coupled equations are 

solved to obtain the natural frequencies which incorporate explicitly chirality and scale effects. This will reveal 

which key factors affect the CAR vibration and how they function, which can be a basis for the quantitative analysis 

of the coupling vibration of the SWCNTs. The fundamental frequencies of SWCNT in CAR vibration are validated 

with experimental, atomistic, and continuum modeling results reported in literature.  
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2    BRIEF REVIEW OF DM 

Originally developed by Granik [10], DM is a micromechanical theory wherein solids are represented as arrays of 

points or nodes at finite distances. A pair of such nodes is referred to as a doublet and the nodal spacing distances 

introduce length scales into the microstructural theory. Each node in the array is allowed to have translation and 

rotation where small translational and rotational displacements are expanded in a convergent Taylor series about the 

nodal point. The order at which the series is truncated defines the degree of approximation employed. The lowest 

order case using only a single term in the series does not contain any length scales, while the terms beyond the first 

produce a multi-scale theory. In this way, kinematical microstrains of elongation, shear and torsion (about the 

doublet axis) are developed. Through appropriate constitutive assumptions, such microstrains can be related to the 

corresponding elongational, shear and torsional microstresses. 

Applications of DM to geo-mechanical problems have been given by Granik and Ferrari [4] and Ferrari et al.  

[20]. For such applications, a granular interpretation of DM has been employed, in which the material is viewed as 

an assembly of circular or spherical particles.  

A doublet being a basic constitutive unit in DM is shown in Fig. 1.  Corresponding to the doublet  , A B , there 

exists a doublet or branch vector aζ  connecting the adjacent particle centers and defining the doublet axis. The 

magnitude of this vector a a  ζ called length scales simply the particle diameter for particles in contact. However, 

in general, the particles need not be in contact, and for this case the length scale a  could be used to represent a 

more general microstructural feature.  

 

 

 

 

 

 

 

Fig.1 

Doublet. 

 

 

As mentioned above, the kinematics allow relative elongational, shearing and torsional motions between the 

particles, and this is used to develop an elongational microstress ap , shear microstress at , and torsional microstress 

am  as shown in Fig. 1. It should be pointed out that these microstresses are not second order tensors in the usual 

continuum mechanics sense. Rather, they are vector quantities that represent the elastic microforces and 

microcouples of interaction between doublet particles, examples of which include the interatomic forces between 

carbon molecules of a nanotube. The directions of microstresses depend on the doublet axes which are determined 

by the material microstructure. The microstresses are not continuously distributed but rather exist only at particular 

points in the medium being modeled by DM. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Translations of the doublet nodes a  and ab . 

 

In Fig. 2, doublet ( ,a b ) is shown to transform to doublet ( '',a b ) as a result of kinematic translation. The 

superscript 0 for vectors indicates the initial configuration. 
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If  ,tu x  is the displacement field representing the translation of node a, the incremental displacement may be 

written as: 

 

   0 , ,u t t    u x ζ u x  (1) 

 

where x  is the position vector of the particle. 

Here,   1,...,n   while n is referred to the numbers of doublets. For the problem under study, it is assumed that 

the shear and torsional microdeformations and microstresses are negligible therefore only extensional microstrains 

and microstresses are assumed to exist. 

It is further assumed that the relative displacement u  is small compared to the doublet separation distance  

    u whereby it may be concluded that the unit vector
 

0
 τ τ  [16]. 

The extensional microstrain scalar measure  , representing the axial deformation of the doublet vector, is 

defined as [20]: 
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τ u
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The incremental function in Eq. (2) is assumed to have a convergent Taylor series expansion written as [3]: 

 

 
 

1

0 0

1

. .
!

M 


  











  τ τ u  (3) 

 

where   is the gradient operator and   are the internal characteristic length scales. As mentioned above, the 

number of terms used in the series expansion of the local deformation field determines the order of the 

approximation in DM.  

In DM, the relation between microstrain and microstress, neglecting torsional and shearing microstrain and 

temperature effects, is written as [21]: 

 

1

n

p A  

 

  (4) 

 

where p  is the axial microstress along the doublet axes. An example of the axial microstress is the interatomic 

force between atoms or molecules located at the nodes of a general array such as a crystalline lattice. Eq. (4) can be 

interpreted as the constitutive equation in the linear theory of DM and A is the matrix of the micromoduli of the 

doublet. The material is homogeneous if the matrix A  is constant throughout the body. 

The unit vector 0
τ , known as the director vector, may be written as 

0 0 ,  1,2,3j j j  τ e where 
0 ,  1,2,3j j   

are the cosines of the angles between the direction of the microstress vector and the coordinates and ,  1,2,3i i e  are 

the unit vectors of the coordinate system. 

In an isotropic medium capable of undergoing only local interactions, Eq. (4) is simplified as [1]: 

 

0p A   (5) 

 

The relation between macrostresses and microstresses is written as [28]: 
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The superscript (M) in Eq. (6) refers to the generalized macrostresses which incorporate scale effects. This 

macrostress in Eq. (6) is the same as stresses in virial theorem [50] with this difference that in virial stresses, there is 

no gradient of microstresses and it doesn’t explicitly contain scale parameter. It should be added that if the scale 

parameter in Eqs. (3) and (6) is set to zero, the CCM theory is obtained, as we expected. 

The three-dimensional equations of motion in DM in the Cartesian coordinate system are given by [32] 

 

  2

* *

2

M

ij j

i
i

u
f

x t




 
 

 
 (7) 

 

where  ,  1,2,3ix i   are the spatial Cartesian coordinates,  ,  1,2,3ju j  are the displacement components, t is the 

time, and *  and *f  are the three dimensional body force and mass density, respectively. 

Now, the form of matrix  A  in Eq. (4) containing elastic macroconstants for a two-dimensional plane problem 

is obtained. For this purpose, Fig. 3 is considered wherein the 1 2x x  plane, three doublets are shown with equal 

angles between them. 

The solution for the scale-less approximation in DM can be calculated directly from the associated continuum 

mechanical problem for an isotropic material. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Three doublets with equal angle 1200 between them. 

 

For a two-dimensional problem in DM, the matrix  A  is a symmetric matrix of order three with the most 

general form [44] 
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a b b

b a b
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A  (8) 

 

It can be shown in [28] that the coefficients of tensor  A are independent of direction thereby rendering the 

material isotropic. Furthermore, the coefficients a and b in matrix  A  under plane stress conditions are determined 

to be [1] 

 

4 7 10 4 2
 , 

9 2 9 2
a b

   
 

   

 
 

 
 (9) 

 

One could use 0b   as a quantitative guide to the applicability of a simpler constitutive relations such as Eq. 

(5). If 2   (or
1

 
3

  ) under plane stress conditions, from Eq. (9), it is concluded that 0b   and 
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3    DM MODEL OF CAR VIBRATION  

Specific applications of DM have been developed for two-dimensional problems with regular particle packing 

microstructures. In particular, the two-dimensional hexagonal packing microstructure without internal atoms 

establishes three doublet axes at 120
0
 angles as shown in Fig. 3.  

In the remainder of this section, the governing equations for RBM vibration of SWCNTs are derived. Now, 

consider a SWCNT of length L, mean radius R, Young’s modulus E, Poisson’s ratio v and mass density   as shown 

in Fig. 4. 

 

 

 

 

 

 

 

Fig.4 

A nanotube in cylindrical coordinate. 

 

In the cylindrical coordinates, the equations of motion are given by the following equations [1, 32] 

 
2

2

1 zzz z
z

NN u
f

z r t

  


 
  

  
 (11) 

 
2

2

1z rN N N u
f

z r r t

   
 



  
   

  
 (12) 

 
2

2

1 rzr r
r

N NN u
f

z r r t

   


 
   

  
 (13) 

 

1 zzz
z zr

MM
l N

z r

 



  

 
 (14) 

                                                                                                                            

1 1z
r r

M M
M l N

z r r

 
  



 
   

 
 (15) 

 

1
  rzr

r rr

M MM
l N

z r r

  


   
 

 (16) 

 

which are the equations of motion of a thin shell in the cylindrical coordinates. 

Also, assuming that the shell-like body is thin, Eqs. (17) and (18) may be used to write the physical components 

ijN  and ijM  as: 
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M

ij ij

h

N dz i j



   (17) 

 

 
2

2

 ,  , 1,2,3

h

M

ij ij

h

M z dz i j



   (18) 
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From Eq. (3), the microstrains with only three terms in the expansion can be written in cylindrical coordinates as: 

 

        0 0 0 0 0 2 0 0 0 01 1
. . . . . . . . .

2 6
                 

   
τ τ u τ τ τ u τ τ τ τ u       (19) 

 

where the gradient operator   in cylindrical coordinates is given by 

 

1
r z

r r z




  
  
  

e e e  (20) 

 

Similarly, from Eq. (6), the macro- to microstress relations, to within three terms in the expansion, in the 

cylindrical coordinates may be written as: 

 

      0 0 0 2 0 0

1

1 1
. . .

2 6

n
M

p p p         



 



          
σ τ τ τ τ τ    (21) 

 

In this study, the following assumptions, known as Love’s first approximation, for cylindrical shells are made 

[44]: 

1. All points that lie on a normal to the middle surface before deformation do the same after the deformation. 

Then the transverse shear stresses
 M
rz and 

 M

z are assumed to be negligible. 

2.  Displacements are small compared to the shell thickness. 

3. The normal stresses in the thickness direction (
 M
rr ) are negligible (planar state of stress). 

As mentioned before, in the radial vibration, all carbon atoms move coherently in the radial direction creating a 

breathing-like vibration of the entire tube and in the axial vibration, the nanotube vibrates in the axial direction. The 

CAR is the mixing of two vibrations. If the nanotube is approximated by a homogeneous cylinder, the frequency of 

the radial vibration is linear with the inverse tube diameter [18]. Thus, with assumptions of axisymmetric and 

homogeneity for the entire tube in the RBM vibration, this implies that 0,  0
θ r

 
 

 
and 0u  . Considering such 

assumptions and neglecting body forces, Eqs. (32)- (37) reduce to 

 
2

2

zz z
z

N u
f

z t
 

 
 

 
 (22) 

 
2

2

zr r
r

NN u
f

z r t

  
 

  
 

 (23) 

 

As a result of the above assumptions, the gradient operator and the displacement vector are given by: 

 

   ,z r r z zu z u z
z


  


  e  u e e  (24) 

 

It is further assumed that all doublets originating from a common node have the same magnitudes, 

i.e., ,  1,2,3a a   . 

As mentioned above, a SWCNT is constructed from three doublets having equal lengths and angles between 

them, an example of which is a Zigzag SWCNT ( 0   in Fig. 3) shown in Fig. 5. 
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Fig.5 

A Zigzag nanotube. 

 

Considering Fig. 5, the director vectors in cylindrical coordinates can be expressed as: 

 
0 0 0
1 2 30 , 0 ,  0r r r      (25) 

 
0 0 0
1 2 30 , 30 ,  30cos cos         (26) 

 
0 0 0
1 2 31 , 60 ,  60z z zcos cos         (27) 

                                                                                                                                        

where z  is in the axial direction and r and   are in the radial and circumferential directions of the nanotube, 

respectively. 

Substituting Eq. (24) into Eq. (19) and performing some algebraic manipulations detailed in Appendix A, it is 

found that 

 

       

       

22 2 2 3
0 0 0 0 0

2

2 34 2 2 4
2 0 0 0 0

3 2 3

1 1 2

2

1 1 3

6

z r z
r z z z

r z
r z z

u u u
u

r z r z z

u u
u

rr z z

      

    

     

    

   
     

    

  
   

   

 (28) 

 

Inserting Eq. (28) into Eq. (4), the following equation for the microstresses is obtained 

 

       

       

22 2 2 3
0 0 0 0 0

0 2 2 2

2 34 2 2 4
2 0 0 0 0

3 2 2 2 3

1 1 1 2 1

21 1

1 1 1 3 1

6 1 1

z r z
r z z z

r z
r z z

u u u
p A u

r z r z z

u u
u

rr z z

      

    

     
 

    
 

   
     

     

  
   

   




 





 





 (29) 

 

Similarly, substituting p  from Eq. (29) into Eq. (6) and taking note of Eq. (24), it is found that 

 

   

       

3
2 2

( ) 0 0 0 0 2
0 2

1

2 34 2 2 4
0 0 0 0

3 2 2 2 3

1 1 1

121

1 1 3 1

1 1

M z
i j r zij

r z
r z z

u
A u

r z

u u
u

rr z z

    



   

     


   
 



 
  



   
   

     







 

(30) 

 

This equation is the relation between the macrostresses and the displacements. Setting i and j equal to   in Eq. 

(30), the following equation for the normal stress
( )M
zz and 

( )M
  are found to be 

 

     

         

3
2 2 4

( ) 0 0 0 2
0 2

1

2 32 4 4 2 6
0 0 0 0 0

3 2 2 2 3

1 1 1

121

1 1 3 1

1 1

M z
zz z r z

r z
z r z z

u
A u

r z

u u
u

rr z z

   



    

    


    
 




  



   
   

     


 

(31) 
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       

         

3
4 2 2

0 0 0 2
0 2

1

2 36 2 4 2 4
0 0 0 0 0

3 2 2 2 3

1 1 1

121

1 1 3 1

1 1

M z
r z

r z
r z z

u
A u

r z

u u
u

rr z z

   



    

    


    
 




  



   
   

     


 (32) 

 

If Eq. (31) and Eq. (32) are substituted into Eq. (17) and then integrated along the tube thickness, the following 

equations are obtained 

 

     

         

( )

3
2 2 4

0 0 0 2
0 2

1

2 32 4 4 2 6
0 0 0 0 0

3 2 2 2 3

1 1 1

121

1 1 3 1

1 1

M
zz

z
z r z

r z
z r z z

N

u
A A u

r z

u u
u

rr z z

   



    

   


    
 






 



   
   

     


 

(33) 

 
 

     

         

3
4 2 2

0 0 0 2
0 2

1

2 36 2 4 2 4
0 0 0 0 0

3 2 2 2 3

1 1 1

121

1 1 3 1

1 1

M

z
r z

r z
r z z

N

u
A h u

r z

u u
u

rr z z



   



    

   


    
 






 



   
   

     


 

(34) 

 

Inserting Eq. (32) into Eq. (33) and Eq. (32) into Eq. (34), the two following coupled equations are obtained 

 

     

         

3 22 2 4
0 0 0 2

0 2 2
1

3 4 22 4 4 2 6
0 0 0 0 0

3 2 2 3 4 2

1 1 1

121

1 1 3 1

1 1

r z
z z

r r z z
z z z

u u
A

r z z

u u u u

z rr z z t

   



    

   


     
 



  
 

 

    
    

      


 (35) 

 

     

         

3
4 2 2

0 0 0 2
0 2

1

2 3 26 2 4 2 4
0 0 0 0 0 2

3 2 2 2 3 2

1 1 1

121

1 1 3 1

1 1

z
r z

r z r
r z z

u
A u

r z

u u u
u r

rr z z t

   



    

   


     
 




  



   
    

      


 (36) 

 

To find the frequency of CAR of the nanotube, one solution for the CAR vibration of the nanotube are assumed 

to be of the form 

 

 
 

, i t
z z

n
u z t U cos z e

L


 

  
 

 (37) 

 

 
 

, i t
r r

n
u z t U sin z e

L


 

  
 

 (38) 

 

where W and 
( ) are the amplitude and frequency of the CAR vibration, respectively. Superscript   in 

( )  

indicates the natural frequency with scale effects. Substituting Eqs. (35) and (36) into Eqs. (33) and (34) yields 
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     

         

23
2 2 4

0 0 0 2
0 2

1

3 4
2 4 4 2 6

0 0 0 0 0 2

3 2 2

1 1 1

121

1 1 3 1
 

1 1

z r z z

z r z r z z z

n n
A U U

r L L

n n n
U U U U

L r L Lr

   



    

 
   



  
     

 



    
     

    

      
          

        


 

(39) 

 

     

         

3
4 2 2

0 0 0 2
0 2

1

2 3
6 2 4 2 4

0 0 0 0 0 2

3 2 2

1 1 1

121

1 1 3 1
 

1 1

r z z

r z r z z r

n
A U U

r L

n n
U U U r U

r L Lr

   



    


   



 
      

 



  
    

  

    
        

       


 

(40) 

 

Eqs. (37) and (38) can be written in the following matrix form 

 

           

       

   

3
2 2 2 4 4 2

0 0 2 0 0 2 0 0

2 3

2
4 6 2 4

0 2 0 2 0 0 2

2 3

2
4 6

0 2 0

1 1 1 1 1 3

12 121

1 1 1 1 1 3

12 121

1

12

z z z

z

z z

n n n

r L L r Lr

n r

r r L Er

n n

L

       

     

  

  
       



 
      




  

      
       

        

  
     

    

 
  

 









       

4
2

3
2 2 2 4

0 0 2 0 0

0
1
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r

z

z z

UL E

Un n

L L
    

 


 
    

 
 

 








 

    
    

    

 

(41) 

 

To have a unique nonzero solution for the above equations, the determinant of the coefficients must be zero. 

Then, solving the determinant equations, yields the following two frequencies 

 

    
22

1 22

E
b d

r





    (42) 

 

    
22

2 22

E
b d

r





    (43) 

 

wherein 
 
1


  and 

 
2


  are defined as higher band and lower band frequencies, respectively. b and d are defined by 

the following equations 

 

       

   

2
4 6 2 4
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2 3

2 4
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1
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n
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E L L

     

  

 
     



  
  

  
      

    

    
     

     

 
(44) 
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In Eqs. (40) and (41), 
 
1


 and 

 
2


  are the lower and higher band frequencies, respectively. Finally, upon 

substituting the components of the director vectors from Eqs. (42) and (43) into Eq. (35) and taking note of Eq. (8), 

the natural frequencies for the coupled axial-radial direction for a Zigzag SWCNTs are obtained. The advantage of 

these simple expressions is that they show the dependency of the CAR frequencies on the mechanical and 

geometrical properties of the SWCNT. 

In Eq. (39), if 0rU  , then following equation for the natural frequency is obtained for Zigzag SWCNT: 
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21
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 (46) 

 

which is in complete agreement with the natural frequency for the Zigzag SWCNTs in axial vibration obtained in 

[21]. 

Similarly, in Eq. (40), if 0zU  , the following equation for the natural frequency is obtained for Zigzag 

SWCNT in RBM vibration: 
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(47) 

 

which is in complete agreement with the RBM frequency for the Zigzag SWCNTs obtained in [44]. 

From Eqs. (42) -(47), it is obvious that major differences exist between DM and CCM models but with increase 

in the length and/or the radius of the tube, the difference between the natural frequency of axial and radial vibration 

with and without the scale parameter decreases and the two frequencies converge to the same value. It is also 

observed that the presence of the scale parameter  decreases the natural frequency in comparison with the CCM 

frequency.  

In DM, basic equations of scaling microdynamics for local interactions with homogeneous medium can be 

written as follow [1] 
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For CAR vibration mode of SWCNTs studied in this paper, Eq. (48) is reduced to Eqs. (39) and Eq. (40), 

respectively. It is noted that the nonscale macromodulus 
ijkl

C , corresponding to 2k  , is indeed independent of  , 

i.e., isotropic in the plane. On the contrary, the macromoduli 
1 2ijk k kC

  for 4,6,...k   are anisotropic. Then, it may 

be concluded that in the first approximation, 2k  , Eq. (48) model the continuum-like behavior of solids, whereas 

in the other approximations,  4,6,...k   Eq. (48) also reflect discrete-like features of the solid, in a manner that 

increases with k [1]. Therefore, it can be concluded that DM is capable of modeling solids in view of their dual and 

to some extent contradictory discrete continuous nature. The power of such dual-representation capability is evident 

in the discussion of isotropy. The basal plane of the doublets arrangement (Fig. 3) is isotropic only in the continuum 

(nonscale) approximation. Thus, isotropy is a scale-related notion. In fact, no material may be argued to be isotropic 

at all dimensional scales, down to its most elementary component level [1]. 
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4    RRSULTS AND DISCUSSION  

In this section, comparison between the results obtained herein using DM and the available theoretical results are 

presented. Experimentally, the CAR natural frequencies are related to angular frequency   via 
 

2

w
f

C
  

where, 102.99 10
cm

C
s

   is the velocity of light in the vacuum. This relation is used in Tables 1 and 2 below to 

report the frequencies in 
1cm 
. In Table 1 and 2, the material properties of SWCNT are taken to be: Young’s 

modulus 1 E TPa , mass density 
3

2300 
kg

m
   and Poisson's ratio 0.2   [44]. In the DM model, the scale 

parameter used is the carbon-carbon bond length 0.1421 nm   [28]. For calculating the lower band CAR natural 

frequency, the material properties of SWCNT are taken to be: Young’s modulus 0.938 0:999  E    TPa  , mass 

density 
3

2491 
kg

m
   and Poisson's ratio 0.147 0.251    [21]. 

Tables 1 and 2 show the CAR frequencies of different Zigzag and Armchair SWCNTs based on the available 

analytical and experimental results presented here. The first column shows the n and m chiral indices of the 

nanotube; the second and third columns show the SWCNT diameter (d, in nm) and length (L, nm), respectively. The 

next two columns are the analytical results. 

From Tables 1 and 2, it can be seen that the doublet mechanical predictions of the CAR frequencies of different 

SWCNTs are in good agreement with the available results. Variation of the lower band and higher band frequency 

are proportional to axial vibration and RBM vibration, respectively. Only a shift is expected depending on the 

interactions between the two modes. The difference between lower band with axial vibration frequency and also 

higher band with RBM frequency may be due to the interactions and coupling effect between axial and radial 

vibration. The coupling effect increases the higher band frequency in comparison with RBM frequency while 

decreases the lower band frequency in comparison with the axial vibration frequency.  

These tables also show that at large diameters, the higher band CAR frequency of the SWCNTs are almost 

equivalent with the RBM frequencies of the corresponding SWCNTs. Unlike the lower band CAR frequency, the 

difference between the lower band CAR frequency and the axial vibration frequency of the tube are nearly constant 

with increasing the tube diameters.  
 

 

Table 1  

Comparison between higher band frequencies of CAR (
1cm 

) with axial frequency (
1cm 

) for different SWCNTs. 

Tube 

(n, m) 

Radius (nm) Length (nm) Lower band 

frequency 

Axial frequency obtained 

in [28] using DM 

Axial frequency obtained 

in [47] using MM 

(5,0) 0.1869 5.5425 20.5738 58.2742 58.006 

(5,5) 0.3222  9.7043 12.1202 34.1490 33.730 

(10,0) 0.3716  11.2969 10.4338 29.5432 29.633 

(8,8) 0.5146  15.5261 7.4983 21.1931 21.161 

(9,9) 0.5787  17.3879 6.6924 18.9240 18.902 

(16,0) 0.5939  18.1303 6.2999 17.8380 18.329 

(10,10) 0.6429  19.2503 6.1224 17.0932 17.077 

(11,11) 0.7071  21.1130 5.5113 15.5933 15.574 

(20,0) 0.7422  22.2966 5.2188 14.7792 14.691 

(13,13) 0.8355  25.0718 4.6400 13.1312 13.120 

(23,0) 0.8534  25.5246 4.5567 12.9049 12.837 

(15,15) 0.9640  29.2642 3.9770 11.2558 11.244 

(26,0) 0.9646  29.5587 3.9357 11.1437 11.092 
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Table 2  

Comparison between higher band frequencies of CAR (
1cm 

) with RBM (
1cm 

) for different SWCNTs. 

Tube 

(n, m) 

Diameter (nm) Length (nm) Higher band 

frequency 

RBM frequency 

obtained in [31] 

using DM 

Axial frequency 

obtained in [34] using 

experimental result 

(3,3) 0.4069 6.0 582.3223 534.2 549.3 

(6,0) 0.4698 7.0 507.9977 469.8 475.7 

(4,4) 0.5425 8.0 440.4292 407.7 412.0 

(7,0) 0.5481 9.0 436.4168 405.3 407.8 

(8,0) 0.6264 10.0 382.7157 356.0 356.8 

(5,5) 0.6781 10.5 353.5446 328.7 329.6 

(9,0) 0.7047 11.0 340.7216 317.4 317.2 

(10,0) 0.7830 12.0 306.9981 286.2 285.4 

(6,6) 0.8138 12.5 295.2212 275.1 274.6 

(11,0) 0.8613 13.0 279.3290 260.5 259.5 

(12,0) 0.9397 14.0 256.1957 239.1 237.8 

(7,7) 0.9494 14.5 253.3823 236.4 235.4 

(8,8) 1.0850 15.0  222.1132 207.2 206.0 

(13,0) 1.0180 15.5 236.5436 220.9 219.5 

(14,0) 1.0963 16.0 219.8109 205.2 203.9 

(15,0) 1.1746 17.0 205.2309 191.7 190.3 

(9,9) 1.2206 17.5 197.4705 184.3 183.1 

(16,0) 1.2529 18.0 192.4621 179.8 178.4 

(17,0) 1.3312 19.0 181.1872 169.3 167.9 

(10,10) 1.3563 19.5 177.7780 166.0 164.8 

(18,0) 1.4095 20.0 171.1587 159.9 158.6 

(19,0) 1.4878 21.0 162.1811 151.5 150.2 

(20,0) 1.5661 22.0 154.0975 144.0 142.7 

 

The calculations for frequencies in CAR vibration are given in graphical form in Figs. 6-8. In Fig. 6, variation of 

the CAR frequencies for SWCNTs (higher band and lower band) with respect to the tube diameter are plotted. 

According to this figure, increase in the diameter of the nanotube results in decrease in the higher band frequencies 

for all tubes. This decreasing is more apparent for lower radii. Since scale effect is more apparent for smaller wave 

lengths, beyond a certain tube radius, frequencies approach to a certain value. Lower band CAR frequency is 

approximately independent to tube diameter as axial frequency are independent to tube diameter. The results agree 

with reported experimental results obtained under different conditions [28, 31]. 

Variations of the CAR frequencies for SWCNTs (higher band and lower band) with respect to the tube length are 

plotted in Fig. 7. According to this figure, increase in the length of the nanotube results in decrease in the two higher 

band and lower band frequencies for all tubes. This decreasing is more apparent for lower lengths. Since scale effect 

is more apparent for smaller wave lengths, beyond a certain tube length, frequencies approach to a certain value. The 

results also agree with reported experimental results obtained under different conditions [28, 31]. 

In Fig. 8, variation of the CAR frequencies with scale parameter for (13, 0) Zigzag and (13, 13) Armchair 

nanotubes is shown for different mode number. It can be seen that higher band CAR frequency will decrease if the 

scale parameter increases. This decreasing is more apparent for higher scale parameter. However, lower band CAR 

frequency does not change appreciably with scale parameter. It can also be concluded that increasing mode vibration 

of the nanotube results in increase in the CAR frequencies for both types of nanotubes.  

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of the CAR frequencies with tube diameter for 

Zigzag and Armchair nanotubes. 



                                                                                                                 Z. Azimzadeh and A. Fatahi-Vajari                        338 

 

© 2019 IAU, Arak Branch 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Variation of CAR frequencies with tube length for Zigzag 

and Armchair SWCNTs. 

  

 

 

 

 

 

 
 

Fig.8 

Variation of CAR frequencies with scale parameter for 

different mode number for (13, 0) Zigzag and (13, 13) 

Armchair SWCNTs. 

5    CONCLUSIONS 

In this paper, a detailed investigation of the CAR frequency of the SWCNT based on DM has been presented. The 

equation of motion for CAR vibration of the SWCNT based on DM is derived. It is the first time that DM has been 

used to analyze the CAR vibration of SWCNTs. To obtain the CAR frequency equation, the equation of motion is 

solved. The following points are particularly noted. Firstly, the CAR vibration frequencies of the SWCNT depend 

on the geometric (radius and scale parameter) and mechanical properties (Young's modulus, density and Poisson's 

ratio) of the nanotube. Secondly, the scale effects decrease higher band CAR frequencies or the nanotube’s stiffness 

is lessened in comparison with the predictions of the CCM theory. However, lower band CAR frequencies will not 

change considerably with scale effect. Also, the effect of the scale parameter is more pronounced for the nanotubes 

with smaller length and radii. Thirdly, higher band CAR frequencies decrease with increasing in tube radius and 

length while lower band CAR frequency are constant with changing tube radius. It is notable that for a nanotube 

with sufficiently large radius and length, the scale effect becomes insignificant and the governing equation can be 

reduced to the classical equation and DM and CCM frequencies converge to a single value. To show the accuracy 

and ability of this method, the CAR frequencies obtained herein compared with the frequencies of RBM and axial 

vibration mode in available literature.  It was shown that the higher band and lower band CAR frequency are in 

agreement with RBM and axial vibration frequencies, respectively. 
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