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 ABSTRACT 

 Analysis of a laminated composite beam under impact by a rigid particle 

is investigated. The importance of this project is to simulate the impact of 

objects on small scale aerial structures. The stresses are considered uni- 

axial bending with no torsion loading. The first order shear deformation 

theory is used to simulate the beam. After obtaining kinematic and 

potential energy for a laminated composite beam, the motion equations, 

boundary conditions and initial conditions are obtained by using 

Hamilton’s principle. The deformation of beam is considered large so 

these equations are nonlinear. Then by using the numerical methods such 

as generalize differential quadrature (GDQ) and Newmark methods, the 

equations will be converted in to a set of nonlinear algebraic equations. 

These nonlinear equations are solved by numerical methods such as 

Newton- Raphson. By solving the equations, the displacement of beam 

and rotation of cross section in terms of time for different number of 

points of beam for variety of orientation angle of layers are obtained. 

Then the displacements of impacted point of beam, stresses and contact 

forces in different times for variety of orientation of layers for different 

situations of impact are compared. 

                                          © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

OMPOSITE  materials are widely used in various industries such as aerospace, auto motives, ship buildings 

and other industries. So far, many studies have been carried out to analyze composite beams and sheets under 

various loading conditions, including impact loads. One of the most important models used to study the behavior of 

structures under impact is Hertz contact law which is based on the mass and spring model with two degrees of 

freedom. This law was first introduced by Hertz [1]. In this model, Hertz has studied the mechanical impact of 

spherical bodies (with radius d). These objects interact with each other in a circle area with radius dk (dk> d) and 

each other imposes a limited pressure. Another model that used to study the behavior of structures under impact is 

the Zener model [2]. This model is used to study impact of a particle on a thin sheet, assuming that input kinetic 

energy is divided into two stresses, one remains in the impact zone and the other spreads along the sheet. Contrary to 
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the Hertz contact Law, which has no energy dissipation, in this model, some of the kinetic energy that is transmitted 

along the thin sheet is wasted. Müller et al. [3] studied the impact of steel spherical balls on thin sheets. The model 

used in this work was the Zener model. They also measured the collision time by an experimental test. According to 

this test, the contact time has an inverse relationship with thickness of the plate and has a direct relation with the size 

of spherical balls. Many studies can be referred in the field of calculation of energy dissipation during the impact. 

Boettcher et al. [4] studied the energy of a thick plate at high impact speeds by using the modified Zener’s model. In 

this work, the longitudinal and transverse wave stresses published on the sheet have a significant effect on the 

energy dissipation. Hunter developed an analytical relationship to calculate the energy consumed during an impact 

with the approximations used in the Hertz model [5]. Although the relation obtained from his work was very 

different from the results obtained from the Hertz relationship. Reed [6] also presented a modified model for 

calculating waste energy. The model presented by him predicts energy waste about 4.5 times more than Hunter's 

relationship, and is more accurate than the experimental results. Weir and Tallon [7] examined behavior of elastic-

plastic impact. They considered the coefficient of restitution as a function of relative velocity ratio and velocity of 

stress waves. They also concluded that the coefficient of restitution of two spherical bodies was 19% less than the 

collision of a spherical object with a smooth surface. 

In the field of impact on beams, the work of Kelly can be referred [8]. He examined the impact of a mass on an 

infinite beam to improve the design of the carriageways at highways in an analytical work. He used Euler-Bernoulli 

and Timoshenko models for beam modeling in this project. Sun and Huang [9] studied the elastic and plastic impact 

of a particle on a beam. They considered the transverse deformation of beam as a 5 order polynomial and solved the 

problem by finite element methods. Yufeng et al. [10] studied the elastic collision of a mass on a beam with 

different boundary conditions. They examined the propagation of longitudinal and transverse tensile waves in the 

beam and the effect of boundary conditions on the reflected waves. The model that they used for the beam is 

Timoshenko's beam model. Kiani et al. [11] also provided a model for impact on FGM beams. The contact stiffness 

of this model is a function of the ceramic and metal phases in the beam. In the field of impact on column, the work 

of Rezvanian et al can be referred [12]. They used GDQ method and Newmark method in order to solve the problem 

numerically. Also the work of Samani et al can be mentioned [13]. They analyze impact on composite columns, 

having initial geometric imperfection by rigid particle. In the field of impact on composite materials the work of 

Singh and Mahajan can be referred [14]. They studied the impact on composite sheets using a mass and spring 

model. Also the work of Shivakumar et al. can be pointed [15]. In this article, they studied impact on graphite- 

epoxy circular sheets. In this field, we can mention the work of Lam and Sathiyamoorthy [16] who studied the 

impact of several particles on a composite beam. The contact force in this work is based on the Hertz Contact law. 

In this paper, a numerical approach to the impact of a rigid particle on a cantilevered beam is discussed. This 

impact is considered elastic. Examples of these impacts can be seen in the collision of small stones or objects on the 

wing of the plane, helicopter blade and other structures of the air. In these structures, the choice of materials for the 

improvement of design and the quality of structures is very important; therefore, in this project, a numerical study of 

the behavior of graphite / epoxy composite beams in the face of impact is considered. Due to its high strength and 

low weight, these materials are great use in the construction of air structures. Also, the effective of parameters are 

examined. In the following, a comparison is made between the behavior of aluminum beams (including materials 

used in building aircraft bodies) and graphite-epoxy beams due to the impact of a rigid particle. Because the size of 

particle is very small, unlike previous works, the contact force between the particle and the beam is considered as a 

point at the point of impact, and the pressure which is considered in Hertz contact law around area of impact which 

should be obtained by experimental tests is neglected. One of the innovations of this work is to simulate the oblique 

impact on the free- head of beam without considering hertz pressure. Due to the fact that the deformations of the 

beam can be large, the equations are obtained nonlinearly. Initially, the relation between kinetic energy and potential 

energy for a composite beam is obtained, assuming that the stresses are one dimensional. Then, using the Hamilton 

principle, the relations of motion and boundary conditions are also derived. In the following, numerical methods are 

used to solve equations for a graphite/ epoxy composite beam. 

2    THEORETICAL FORMULATION  

Motion equations are obtained by Hamilton’s principle. The cantilever beam is straight and the particle hits on free 

head of beam. This particle is considered rigid, so the kinetic and gravity potential energy is considered and strain 

energy is neglected. Fig. 1 shows the geometry of the beam and the particle. The x- axis is considered as base axis of 

orientation of composite layers. 
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Fig.1 

Schematic of  impact on beam by a rigid particle. 

 

The displacement of beam is written based on Timoshenko’s beam model. Therefore, the displacement relations 

of the beam are considered as follows. 

 

     , , , ,xu x z t u x t z x t   (1a) 

 

 , , 0yu x z t   (1b) 

 

   , , ,zu x z t w x t  (1c) 

 

where in Eq. (1) xu , yu , zu  are the components of beam displacement in direction of x,y and z respectively. Also u 

and w are the displacement of middle surface of beam in direction of x, z and   is rotation of middle surface about y 

axis. The strain-displacement relations are considered as follows with regard to Van Karman's theory. The 

deformation of beam is considered large so in this paper based on Von- Karman’s theory, the strains are considered 

nonlinear [17]. 
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For an orthotropic beam the stress- strain relations are written as follows according to [18]. 

 

11xx xxC   , 55xz xzC   (3) 

 

In these relations 11C  and 55C  are obtained from following equations. 
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In Eq. (4) ijC  is transformed elastic coefficient for orthotropic materials. These coefficients are a function of the 

angle between the principle orientation of layers and the x-axis. Their values are obtained from [19]. The Hamilton’s 

principle relation is written as follows: 
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where in Eq. (5), T is the kinetic energy of the beam and particle, and U is the potential energy of the beam and 

particle, which is defined as follows. 

 

pU W   (6) 
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In all previous projects, when the impact on a structure is investigated, the contact force between the object and 

the beam is applied into a circular area with a specified radius. This contact force is function of radius of object, the 

properties of beam and object which are usually obtained experimentally. But in this paper, the dimension of particle 

impacted on beam is neglected, so that the contact force between beam and particle is applied on a point. This 

particle is attached to the beam during impact with the beam and is not detached until the contact force between the 

particle and the beam is zero. For this reason, we can consider the beam and particle collection as a single system. 

So in Hamilton’s principle, the kinetic energy and potential energy of beam and particle are written together. 

In the Eq. (6),   is the strain energy and pW is the work of external forces which is the gravity of rigid particle 

in this article. The kinetic energy relation of the beam and the particle is as follows. 
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where in Eq. (7)  , b , L , h and M  are density of beam, width of beam ,length of beam, thickness of beam and 

mass of particle respectively. The kinetic relation based on components of displacement is written as follows: 

 

                
2

2 2 2 2 22

0

2

1 1
, , , , , , , ,

2 2 4

h

L

h

b
T u x t z x t w x t dzdx M u L t w L t hu L t L t h L t


  



                (8) 

 

The potential energy for the set of the beam and particle is written as follows: 
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The coefficient of k is shear correction coefficient and its value is 5/6. In order to remove the stress and strain 

terms in Eq. (8), we use Eq. (2), (3) and (4). Thus, Eq. (8) is written in terms of the displacement components of the 

middle surface of the beam as follows. 
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By placing the Eq. (8) and (10) in Eq. (5), the motion equations are obtained as follows (the description of 

equations is written in appendix): 
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The coefficients of 11 A , 55  ,A  11B  and 11D  are obtained from following relations: 
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In Eq. (12), m is the number of layers of the laminated composite beam. For a cantilevered beam the boundary 

conditions are written as follows: 
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The vertical contact force on the free head of beam ( x L ) is as follows: 
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This force is equal to zero at the instant that the particle is separated from the beam. We consider the beam at t=0 

is in static equilibrium. Therefore, the initial conditions are as follows. V0  is initial velocity. 
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 ,0 0w x  ,  0,x L  (16b) 

 

  0,0w x V , x L  (16c) 
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3    NUMERICAL METHODS USED IN SOLVING EQUATIONS  

Numerical methods are used to solve Eq. (11). To remove time derivatives and convert them into an algebraic 

relationship, Newmark method is used [20]. Their relations are written as follows: 
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In the Eq. (17), t  is the time step, and   and   are the irregular parameters on which the stability and 

damping of the system are controlled. When the time integral methods are used, there are some perturbations at the 

initial time of the analysis. These perturbations are generally such that the results are oscillating at the beginning of 

the analysis. These perturbations are caused by high frequency modes [21]. So the results obtained from time 

integration methods at initial times do not have enough accuracy.  Of course in order to decrease these perturbations 
we can use methods that dissipate high frequency. In Newmark method, high frequency is controlled by γ and β 

coefficients. 

 In order to eliminate the derivatives relative to the place and convert it to an algebraic expression, the 

generalized differential quadrature method is used. According to this method, the derivation of any quantity relative 

to the place is written as follows [21]. 
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The coefficients 
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ijc  are also obtained from the following equation. 
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The function  iM x  is also obtained from the following equation. 

 

   
1,

N

i i j

j j k

M x x x

 

    (20) 

 

We use the following equation to determine the discrete points. 
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By placing the Eq. (17) to (21), in Eq. (11) to (13), the motion equations become a nonlinear algebraic equation 

system. The equations after applying GDQ and Newmark method are written in appendix. These nonlinear equations 

are numerically solvable. One of these numerical methods is the Newton-Raphson method. To use this we need to 

have an initial guess. In this article, the initial conditions are used as initial guesses for the Newton- Raphson method 

for the first time step. After that, the solutions obtained at each time step are used as the initial guess for the next 

step. When numerical methods such as GDQ and Newmark are used, in each time step, the value of Eq. (15) is 

checked. While the sign of this relation changes, this shows that the contact force between this time step and 

previous step is equal to zero. This method also is used in other papers such as [12] and [13]. 

4    RESULTS AND DISCUSSIONS   

The Graffiti- Epoxy AS/3501-6 cantilevered beam is considered. This beam consists of four layers with angles 

[0/90/90/0], [45/-45/-45/45] and [50/30/30/50] relative to the longitudinal axis of the beam. Also, in a separate 

analysis, the single-layer beam 0° is considered. The dimensional and physical properties of the beam are given in 

Table 1. In Table 2., mechanical properties of graphite / epoxy AS/3501-6 materials are given. The time step ( t ) 

and the number of discrete points are chosen 1×10
-4

 sec and 51 respectively. The parameters γ and β are selected 1.5 

and 1 respectively [22]. These equations are solved by MATLAB software. 
 

Table 1  

Dimensional and physical properties of beam. 
Value Unit Properties 
0.15 m (L) Length  

0.015 m thickness (h) 
0.025 m Width (b) 

1389.23 kg/m3 Density (ρ) 
0.5 kg Mass of particle (M) 
5 m/s Initial velocity (V0) 
90 ° Angle impact (θ) 

 

Table 2  
Mechanical properties of graphite/ epoxy AS/3501-6. 

Value Unit Properties 
144.8 GPa E1 
9.65 GPa E2 
3.34 GPa G23 
4.14 GPa G13 
4.14 GPa G12 
0.3 … 12ν 

4.1 Validation of results 

ABAQUS software is used to verify the results. As no literature could be found on the impact on free head of a 

laminated cantilever beam, verification of obtained results is done by ABAQUS software. However some previous 

papers which are investigated the impact on various structures; verify the results by finite element softwares (such as 

[11], [12] and [13]). In order to simulate the problem in ABAQUS, a beam with 0.15m length, 0.015m thickness and 

0.025m width is plotted in this software. This beam is a rectangle cube. For modeling the particle, a rigid sphere is 

used and the radius of the sphere is chosen 1mm. The density of the sphere is chosen in such a way that the mass is 

0.5 kg. The initial velocity of sphere is selected 5 m/s. The properties of the beam are applied in properties module. 

The ordering of the layers of the composite beam for [0/90/90/0] is done in property module too. The type of step in 

step module is selected as Dynamic, Explicit and the time period is the time which is gained from numerical solution 

of motion equations. The type of interaction of the sphere and the beam is selected as surface to surface contact; and 
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the property of the interaction in normal direction is selected hard contact. The rigid body constraint is applied on 

sphere. In load module, the head of the beam which sphere is not on it; is fixed. The size of mesh in mesh module is 

selected 1mm and the hex element is applied on the beam. The geometry of simulation is shown in Fig. 2. 

 
  

 

 

 

 

 

 

Fig.2 

The geometry of simulation in ABAQUS. 

 

In Table 3., the collision time for the composite beam is shown with the different orientation angles of layers. 

This time is obtained due to the removing of the vertical contact force found in Eq. (15).  

 
Table 3  

Contact time for laminated beam with different orientation angles of layers. 

Impact time (s) Orientation of layers 

0.002552653 0° 

0.002697777 [0/90/90/0] 

0.008761795 [45-/45/45-/45] 

0.009139955 [50/30/30/50] 

 

In Fig. 3 and Fig. 4, the transverse displacement and contact force of 0° orthotropic beam in terms of time is 

shown. As shown in Fig. 3 and Fig. 4, the results obtained from the equations are approximately the same from the 

results obtained from the ABAQUS software. In Fig.5 and Fig. 6 the transverse displacement and contact force of 
[0/90/90/0] composite beam is shown. As shown in Fig. 5, the transverse displacement of four-layer beam with a 

direction [0/90/90/0] increases and the time of the collision is greater than the beam with a zero degree angle. 

Also in Fig. 7, transverse displacement of 0°, [0/90/90/0], [45/-45/-45/45], [50/30/30/50] composite beam is 

shown. As shown in Fig. 7, the transverse displacement for the laminate beam with direction [50/30/30/50] is more 

than the laminate beam with directions [45/-45 /- 45/45], [0/90/90/0] and one-layer beam with angle 0°. 

 

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

W
( 

L
,t

) 
(m

m
)

t (s)

Present

Abaqus

 

 

 

 

 

 

 

 

 

 

Fig.3 

Transverse displacement of 0° composite beam. 
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Fig.4 
Contact force of 0° composite beam. 
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Fig.5 

Transverse displacement of [0/90/90/0] composite beam. 
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Fig.6 

Contact force of [0/90/90/0] composite beam. 
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Fig.7 

Transverse displacement of composite beam with under 

rigid particle. 

 

4.2 Investigation of contact forces and stresses in the beam 

In Fig. 8, the transverse contact force is shown in the impact point relative to time for a composite beam with 

different orientations. As shown in Fig. 8, when the principle axis is smaller relative the longitudinal axis of the 

beam, a greater contact force is generated in the beam and the beam has a greater flexural rigidity. 

The fix head of the beam has the highest stress than the total beam. To illustrate the distribution of stress versus 

time, the normal stresses diagram at the fix head of beam is shown in Fig. 9. 

The shear stress of the beam at the fix head of the beam relative to time is also shown in Fig. 10. As shown in 

Fig. 9 and 10, as the angles of the principle axis of the layers are longer relative to longitudinal axis of the beam, the 

normal and shear stresses in the beam are less. This feature can be used to design materials against fracture of 

impact. As shown in Fig. 8, Fig. 9 and Fig. 10, some results of the laminate beam fluctuate a lot. Oscillations of 

stresses in figures are due to interference of compressive and tensile stress waves. In this paper, there are 

longitudinal, bending and shear stress waves. So during impact of particle on the beam, these stress waves will 

distribute at beam with a certain velocity. So interference of these waves at a certain point leads to oscillate of stress 

diagrams. For [45/-45/-45/45] composite beam, these oscillating are more from others. 
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Fig.8 

Contact force for laminated beam for different orientation 

angles of layers. 
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Fig.9 
Normal stress at x=0, z=-h/2 for laminated beam for 

different orientation angles of layers. 

  

-9

-7

-5

-3

-1

1

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

τx
z(

0
,h

/2
,t

) 
(M

P
a

)

t (s)

0 

[0/ 90/ 90/ 0]

[45/ -45/ -45/ 45]

[50 30 30 50]

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Shear stress at x=0, z=-h/2 for laminated beam for different 

orientation angles of layers. 

4.3 Investigation of the effect of initial velocity of rigid particle 

In order to examine the motion of the beam by impact of a rigid particle, a composite beam is considered with the 

angle of layer 0°. The initial velocities of the particle are 5, 6, 7 and 8 m/s. In Table 4., the separation time of a rigid 

particle from the beam for different initial velocities is shown. According to Table 4., it is evident that changing the 

initial velocity does not affect significantly on the amount of the collision time.  

 
Table 4  
Contact time for 0° laminated beam under the impact of a rigid particle with different initial velocities. 

Contact time (s) Initial velocity (m/s) 
0.002552653 5 

0.002570664 6 
0.002592 7 

0.0026168 8 
 

In Fig. 11, the transverse displacement diagram of the beam is shown at the impact point of the beam for 

different initial velocity of particle. As shown in Fig. 11, due to the change in the initial velocity of the particle, the 
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transverse displacement of the beam increases, but the separation time of the particle from the beam is almost 

constant. 
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Fig.11 

Transverse displacement of 0° composite beam under the 

impact of a rigid particle with different initial velocities. 

4.4 Investigation of the effect of the mass of particle  

In order to investigate the effect of the mass of the rigid particle on the impact, the beam is considered with the same 

previous properties. The angles of the principle axis of the layers are selected zero, and the mass of the rigid particle 

is 0.5, 1 and 1.5 kg. Fig. 12 shows the transverse displacement of the beam at the point of impact due to collision of 

a rigid particle with different masses. As shown in Fig. 12, as the mass of particle increases, the separated time and 

displacement of beam increases. 
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Fig.12 

Transverse displacement of 0° composite beam under the 

impact of a rigid particle with different particle mass. 

4.5 Comparison of impact on a composite and aluminum beam 

Due to the lightness and high strength of aluminum, it has a great deal to make in the body of aircraft and 

helicopters. These materials have a high corrosion resistance compared to steel. But these materials have low 

resistance at high temperatures; they have little use in the construction of high-speed airborne structures. Airplane 

wings and helicopter blades are among those that are exposed to rigid bodies such as stones. In this section, a 

comparison is made between the behavior of the graphite-epoxy composite beams and the aluminum beams against 

impact for use in air constructions. 

The motion equations for the aluminum beam are given in the appendix. The aluminum beam density is 2769 

kg/m
3
, the young’s modulus is 68.9 GPa, and its Poisson coefficient is 0.25. In Fig. 13, the transverse displacement 

of the composite beams with the angles [0/ 90/0 90] and [45/-45/-45 /45] are compared with the aluminum beam. In 

Fig. 14 and 15, the normal and shear stresses of the beams are compared at fix head of beam. 

As shown in Fig. 14 and 15, the aluminum beam has lower stresses than composite beam [0/90 90/0] and has 

more stresses than [45/-45/-45/45]. Therefore, determining the angle of the principle axis of the layers in composite 

materials can be effective in reducing the forces created in the structures. 
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Fig.13 

Transverse displacement of [0/ 90/ 90/ 0] and [45/ -45/ -45/ 

45] composite beam and aluminum beam under the impact 

of a rigid particle. 
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Fig.14 
Normal stress at x=0, z=-h/2 for [0/ 90/ 90/ 0] and [45/ -45/ 

-45/ 45] composite beam and aluminum beam under the 

impact of a rigid particle. 
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Fig.15 

Shear stress at x=0, z=-h/2 for [0/ 90/ 90/ 0] and [45/ -45/ -

45/45] composite beam and aluminum beam under the 

impact of a rigid particle. 

 

4.6 Oblique impact on beam 

In order to investigate the effect of the collision angle of the rigid particle with the beam, a zero-degree graphite 

composite beam with length of 0.3 m and thickness of 
-20.75×10  m are considered. The particle hits on the beam 

with an angle θ relative to the longitudinal axis. In this way, Eq. (16) is as follows: 

 

         ,0 ,0 ,0 ,0 0,    0,u x x w x x x L      (22a) 

 

     ,0 ,0 0,    0,w x u x x L   (22b) 

 

       0 0,0  sin ,    ,0  cosw L V u L V    (22c) 

 

In this case we consider the vertical contact force as separation criterion (Eq. (15)). In Fig. 16, the transverse 

displacement for the collision angles of 90, 60 and 45 degrees is shown. 
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As shown in Fig. 16 increasing the angle of impact relative to the horizontal axis (θ) increases the transverse 

displacement of the beam. This increase in displacement reduces the forces and tensions that arise in the beam. 

Therefore, when the particle is collided transversally, tensions and forces are in a more critical state. Also as shown 

in Fig. 16, the separation time increased by decreasing the angle of impact. One of the reasons is that, in each angle 

of impact, the input energy (the kinetic energy of particle at initial of impact) is equal together. But as the angle of 

impact decreases, the transverse velocity decreases and also the transverse contact force decreases, so because the 

initial energy is constant, as the angle of impact decreases, the separation time increases. 
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Fig.16 

Transverse displacement of 0° composite beam for 

different angle of impact. 

5    CONCLUSIONS 

In this paper, the behavior of a beam in the face of impact of a rigid mass is investigated. The model chosen for the 

beam is Timoshenko’s beam model. The collision is of an elastic type and due to the small size of the rigid mass, the 

pressures and forces created around the area of impact point that are considered in the Hertz Contact Law are 

ignored. The obtained equations are solved using numerical methods for a multi-layer composite beam. The layers 

have different angles from the longitudinal axis of the beam. By performing the project, the following results are 

obtained. 

1. As the angle of principle axis of layers increases, the contact force between particle and beam increases. 

2. As the angle of principle axis increases, the transverse displacement of beam increases. 

3. As the number of layers increases, the transverse displacement and the duration of the collision increases. 

4. For the composite beam of four layers whose angles of the layers are [50/30/ 30/50], the stresses and forces 

formed in the beam are the lowest and after that the [45/-45/-45/45] and [0/90/90/0] beam have lower 

stresses. The zero-degree angle beams have the highest stress. 

5. As the initial speed of the rigid particle increases, the amount of displacement increases. But this increase 

does not have much effect on the contact time of a rigid particle with a composite beam. 

6. Increasing the impact mass causes increased transverse displacement and contact time of the impact. 

7. By comparing the impact on a graphite/ epoxy beam with an aluminum beam, it is determined that the 

stresses and forces in zero-degree graphite / epoxy beam and [090/90/0] beam are greater than the 

aluminum beam. Also, the stresses in the [45/-45/-45/45] composite beam are less than the stresses in 

aluminum beam. Also, the separation time of the particle from the beam for the [45/-45 /-45/45] graphite / 

epoxy beam is much greater than the aluminum beam. 
8. When the particle hits on beam vertically (θ = 90), more transverse and axial displacement are created in 

the beam. 

APPENDIX  

The variation of Eq. (8) is written as follows: 

 

               
2

2

0

2

[ , , , , , , , ,

h

L

h

T b u x t u x t zu x t x t z x t u x t z x t x t       



      (A.1) 
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The integration of Eq. (8) respect to z is written as follows: 
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The Eq. (8) after integrating respect to time and using integrate by parts is simplified as follows with the 

assumption
. .

0 1( , ) ( , ) 0X x t X x t    : 
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The variation of Eq. (10) is obtained as follows: 
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After integrating respect to h, the Eq. (11) is simplified as follows: 
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By using integration by parts, the Eq. (11) is simplified as follows: 
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By placing the Eq. (11) and (12) in Eq. (5), the Hamilton’s principle relation is obtained as follows: 
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Finally the motion equation and boundary conditions are obtained as follows: 
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Boundary conditions: 
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The motion equations after applying numerical methods (“n” is the number of time step and it begins from zero): 
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The boundary conditions: 
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The contact force is as follows: 
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Motion equations for aluminum beam: 
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Boundary conditions: 
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