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 ABSTRACT 

 We study the thermoelastic deformation of an elastic layer. The 

upper surface of the medium is subjected to a uniform thermal field 

along a circular area while the layer is resting on a rigid smooth 

circular base. The doubly mixed boundary value problem is 

reduced to a pair of systems of dual integral equations. The both 

system of the heat conduction and the mechanical problems are 

calculated by solving a dual integral equation systems which are 

reduced to an infinite algebraic one using a Gegenbauer’s formulas.  

The stresses and displacements are then obtained as Bessel function 

series. To get the unknown coefficients, the infinite systems are 

solved by the truncation method. A closed form solution is given 

for the displacements, stresses and the stress singularity factors. 

The effects of the radius of the punch with the rigid base and the 

layer thickness on the stress field are discussed. A numerical 

application is also considered with some concluding results. 

                                 © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE thermal properties of solid materials allow us to interpret their responses to temperature changes. When a   

material absorbs thermal energy, its temperature and dimensions increase. If there are temperature gradients, the 

thermal energy migrates to cooler areas, otherwise the material melts. The contact is a multidisciplinary domain. 

Indeed, it interacts with mechanics, friction, materials behavior and thermic. It is also a multi-scale problem ranging 

from microscopic effects to macroscopic phenomena of heat dissipation or structural deformations, etc. The 

phenomena related to the mechanical contact problem are present in many domestic and industrial applications. The 

highly complex nature of phenomena related to the purely mechanical or multi-physical interaction between solids 

still requires special attention in the fields of physics, mathematics and computer science. The mechanical contact is 

very important for the good resolution of many problems such as shaping (forging, stamping, punching, ...) as well 

as for the simulation of wear (gears, tire-road, ...) and also for any system comprising several parts in a mechanical 

or multi-physical context. These problems are important for many industrial sectors, such as production, the 
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automobile industry, aeronautics, the nuclear industry and the military. All these areas testify to the growing need 

for powerful and robust tools to mathematically model and numerically simulate the phenomenon of mechanical 

contact. Many theoretical and numerical studies have been conducted on the subjects but the experimental works are 

rare. Therefore the researcher’s interest has been devoted to several studies in this field. The papers dealing with 

heat conduction problems have been considered by many authors. The first works devoted to mixed boundary value 

problems for infinite slabs were studied by Dhaliwal. The case where a temperature is given on a circular area and a 

temperature gradient is prescribed on the rest of the surface, where the circular opposite side is considered as a 

thermal insulator while the other face is insulated, was treated in [1]. In the second work [2], the mixed boundary 

conditions were prescribed on upper sides of the slab. These problems give rise to a pair of dual integral equations 

which are reduced to Fredholm integral equations of the second kind. The successive approximation method for 

large values of the slab thickness was applied for solving the obtained equations. An exact steady state solution for a 

plate heated bay disk source is developed by Mehta and Bose [3] where one surface is considered isothermal and on 

the opposite side a heat flux is imposed. The solution is given in terms of converging power series very fast. The 

effect of the plate thickness on the temperature distribution was also studied. Lebedev and Ufliand [4] studied the 

problem of pressing a stamp of circular cross-section into an elastic layer. They expressed the required 

displacements and stresses in terms of one auxiliary function, which represents the solution of a Fredholm integral 

equation with a continuous symmetrical kernel.  Zakorko [5] solved the axisymmetric deformation of an elastic 

layer with a circular line of separation of the boundary conditions on both faces. The corresponding systems of dual 

integral equations were reduced to a Fredholm integral equation of the second kind. The numerical solution was not 

given for studied problem. An axisymmetric contact problem for an elastic layer on a rigid foundation with a 

cylindrical hole has been considered by Dhaliwal and Singh [6]. The problem is reduced to the solution of two 

simultaneous Fredholm integral equations. A circular load on elastic layer is conducted by Wood [7]. An exact 

solution was obtained by the Hankel transform method, where the stresses and displacements were given in closed 

form. Toshiaki et al. [8] presented the solution of an elastic layer resting on a rigid base with a cylindrical hole 

whose radius is different from that of the rigid punch applied on the upper surface of the medium. The problem is 

reduced to the solution of an infinite system of simultaneous equations by assuming that both the contact stress 

under the punch and the normal displacement in the region of the hole may be expressed as appropriate Bessel 

series. 

In the work [9], indentation of a penny-shaped crack by a disc-shaped rigid inclusion in an elastic layer has been 

considered by Sakamoto et al .This three part mixed boundary value problem is  reduced to a solution of infinite 

systems of simultaneous equation. An axisymmetric contact problem of an elastic layer subjected to a tensile stress 

applied to a circular region is studied by Sakamoto and Koboyashi [10]. Their second paper [11] deals with the 

contact problem of rigid punch on an infinite elastic layer resting on a rigid base with a circular hole. These mixed 

boundary problems are effectively reduced to an exact solution of infinite systems of simultaneous equation.  An 

analytical solution of an axisymmetric contact problem of an elastic layer on a rigid circular base has been 

developed by Kebli et al. [12]. They determine the solution of the elastic problem by the help Hankel integral 

transform method using the auxiliary Boussinesq stress functions. The doubly mixed boundary value problem is 

reduced to a system of dual integral equations. The obtained solution is calculated from the coefficients of the 

infinite system of simultaneous algebraic equations by means of the Gegenbauer expansion formula of the Bessel 

function. Dhaliwal [13] studied the steady state thermal stresses in an elastic layer where a heat flux was imposed 

over a circular area. The problem is reduced to the solution of two simultaneous Fredholm integral equations of the 

second kind. A similar problem was analyzed by Wadhawan [14]. The expressions for the temperature, 

displacements and the stresses in the elastic layer were obtained by the application of some differential operators and 

Mittage-Leffler theorem. The boundary conditions effect for the constriction resistance problem of circular contacts 

on coated surfaces was studied by Negus et al. [15]. Both heat flux and temperature boundary conditions were 

specified on the contact surface where the layer and the substrate are in perfect contact. Solutions are obtained with 

the Hankel transform method using a technique of linear superposition for the mixed boundary value problem 

created by an isothermal contact. Lemczyk and Yovanovich [16] and [17] examined the variation of the thermal 

constriction resistance with convective boundary conditions. The problem is reduced to a single integro-differential 

equation, by employing the Hankel integral transform method and an appropriate Abel and Fourier transform 

relations. The obtained infinite linear set of algebraic equations is also analyzed.  A constriction resistance problem 

was considered by Rao [18] and [19] for a solid covered by a layer with different constant thermal conductivities in 

the case of an ideal contact. A heat is supplied to the composite medium through a circular spot while the rest of the 

surface is isolated. The obtained Fredholm integral equation was reduced to a system of algebraic equations by using 

the method of quadrature and the power series expansion method. The constriction resistance was then displayed for 

various conductivity ratios. Abed-Halim and Elfalaky [20] treated the thermoelastic problem of an infinite solid 
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weakened by a penny-shaped crack and subjected to a uniform temperature and a normal stress distribution. A 

bidimensional analogous problem was studied by means of the Fourier transform method [21]. 

In the present work an analytical solution of an axisymmetric frictionless contact problem for the case of 

penetration of rigid punch into an elastic layer on a rigid circular base to has been developed. We determine the 

solution of the temperature distribution problem and the thermoelastic equilibrium system by the Hankel integral 

transform method. The doubly mixed boundary value problem is given as two coupled systems of dual integral 

equations. An analytical procedure of solution is used following the elastostatic analogous treated by Toshiaki [8] 

and Sakamoto [9]-[10]. The obtained solution is calculated from an infinite system of simultaneous algebraic 

equations by means of the Gegenbauer expansion formula of the Bessel function.  In the numerical application we 

give some conclusions on the effects of the radius of the punch with the rigid base and the layer thickness on the 

stresses and thermal field are discussed. Our results are validated on the isothermal case and it shows a good 

agreement with those obtained by Kebli et al. [12] when the temperature is zero.  

2    FORMULATION OF THE PROBLEM AND ITS SOLUTION 

A cylindrical coordinate system (r, 0, z) is used in this study. Displacement components along r and z are denoted by 

u and w, respectively. The Poisson ratio, the Shear modulus and the coefficient of the linear thermal expansion of 

the elastic medium are noted by ν, G and  , respectively. Components of the stress tensor are expressed by z  and 

rz . We consider an isotropic elastic layer with thickness h. A heated rigid, flat-ended circular punch is pressed into 

the upper boundary z=h to a depth   by the application of an axial force P as shown in Fig 1. The magnitude of the 

penetration   is sufficiently small. The medium is subjected to a uniform thermal field of intensity 0T  imposed 

along the circular area of radius b by the punch with a plane base meanwhile the rest of the surface is maintained at a 

free temperature. The layer is resting on a rigid smooth circular base of radius a. The doubly mixed boundary value 

of the elastic layer can be described by the following equations on the rigid base 
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Fig.1 

Geometry of the problem. 

                             

The thermoelastic equilibrium equations for an axisymmetric case may be written as [22] 

 

     
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where, 3 4    

The temperature field T, in the steady state and in the absence of thermal sources verifies the Laplace equation 
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By the Hooke law, the components of the stress tensor z  and rz  associated with the displacement field are 

given 
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and     
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The Hankel integral transform of n order [23] is defined as: 

 

      
0

n nH f rf r J r dr 


     (14) 

 

where nJ is the Bessel function of first kind of order n. The original function can be calculated by the following 

inverse transforms 

 

      
0
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
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As is standard, when dealing with the type of problem under consideration we use the Hankel transform 

according to r of order zero. Then, the transformed equilibrium system and the temperature equation are obtained as: 
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     2 1 1 2 4 1 HU U W T                  (16) 

 

     22 1 1 4 1 HU W W T                 (17) 

 
2 0H HT T      (18) 

2.1 The heat conduction problem  

The solution to the Eq. (18) is 
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where A(λ) and B(λ) are functions of the parameter λ to be determined from the boundary conditions of the 

temperature field. From the boundary conditions, we get 
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H denotes Heaviside unit step function, we find that  
1,

0,

r x
H x r
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Taking into account the relation (20), we get from (19) 
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Substituting B in the Eq. (19), we find that 
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which gives  
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Verifying the doubly mixed boundary value conditions for the temperature field we get the following dual 

integral equations 
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and   
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A large contribution is made for solving the similar integral equation problems [24]. For the present study we 

follow the method developed by Sakamoto [10]-[11]. Using the integral formula for the Bessel functions: 6. 522 

[25] 
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where
2 1nT 

is the Tchebycheff function of the first kind, and 
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We seek the solution of the dual integral equations as follows: 
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The unknown coefficients n  are to be determined. Then the second Eq. (25) is automatically satisfied. Next, 

we use the following Gegenbauer’s formula 
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where 0m denotes the Kronecker delta  
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Substituting Eq. (30) into Eq. (24) and using the formula (31), we obtain 
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
       (35) 

 

Matching the coefficients of cos( )m on both sides of Eq. (34), we obtain the following infinite system of 

simultaneous equations for obtaining the unknown coefficients na  



An Axisymmetric Contact Problem of a Thermoelastic….                                   868 

 

© 2019 IAU, Arak Branch 
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The matrix from of the infinite system of simultaneous equations is 
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We write the system (36) in dimensionless form by using 
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For the temperature relation (23) we use the variables  and  defined by 

 

r
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Then, it can be calculated as follows: 
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(48) 

 

We can write the expression of the flux by follows as: 
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2.2 Numerical results and discussions 

We solve the infinite set of simultaneous Eq.(42) to determine the unknown coefficients
na . For this purpose 

remarking that for sufficient large value of t, the infinite integrals in Eq. (42) can be rewritten in the following from 

 

     
0

0

t

mn m n mnA q t Y t M t dt A      (50) 

 

where mnA   is represented by 

 

     
0

1mn m n

t

A q t Y t M t dt 



    (51) 

              

The first term on the right hand side of Eq. (50) is integrated numerically by means of Simpson’s rule. Here, we 

choose 1000 subintervals and  t0 =1500 and the second term is integrated by using the approximate form of Bessel 

functions. Then, the function  q t in the Eq. (51) can be replaced by (-1) and    m nY t M t can be asymptotically 

derived as follows: 

 

 
2

2

2 4 1 1
cos sin 0

2 4 8 2 4
t

J t t t
t t t



    
 




      
            

      

 (52) 

 

 2

1 1 2

2 2

cos1
4

2 2 2n n

tt t
J J n

t   
     

   

     
      

     

 
(53) 

 

whereas
            

     

                                                                                                          

 

 

   
   

 
 2 2

16 1 1
cos

m

m m

m
X t X t t

t
  

 


 
    (54) 

 

Next, taking into account of the equivalent    m nY t M t  given by   

                                                          

   
 

 

2 2

42

cos1
64 1 1

2

m t
m n

t



 

 
   

 
 (55) 
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and of the relation obtained by integration par parts  

 

 
 

0

2 2

0

02

0

cos cos
2

t

t t
dt si t

tt

 




   (56) 

 

Then by substituting Eq. (56) into the last integral of Eq. (55), we obtain 

 

       
     

 
0

2 2
0 0 0

03
0 00

1 cos 2 sin 2 n 21
64 1 1 2 2

2 3 26

m

m n

t

t t co ta
Y t M t dt m n si t

t tt

  
  

      
         

      
  (57) 

 

where 

 

si(x) is the integral sine function  
sin

x

si x d







   (58) 

and  

 

ci(x) is the integral cosine function  
cos

x

ci x d







   (59) 

      

The thermique coefficients 
na  are shown in the following Tables1-2 of the thickness elastic layer and the radius 

of the punch with the rigid base 
 

 

Table 1 

Values of the thermique coefficients for a/b=0.25 and various values of h/b. 

na  

n             h/b=0.5               h/b=3              h/b=5 

0 

1 

2 

3 

    4 

5 

6 

7 

8 

9 

   0.036301204340747 

  -0.020453148297745 

  -0.004281230437599 

  -0.001528896564065 

  -0.000516153699553 

  -0.000021856254145 

   0.000247783831548 

   0.000386976541540 

   0.000421975222645 

   0.000341498340370 

   0.002718452344962 

  -0.001535629203246 

  -0.000318569931178 

  -0.000114116169693 

  -0.000038523271577 

  -0.000001608519258 

   0.000018533417827 

   0.000028931432125 

   0.000031544119954 

   0.000025526870240 

   0.001017687554760 

  -0.000574883746459 

  -0.000119260135626 

  -0.000042720728610 

  -0.000014421639969 

  -0.000000602160626 

   0.000006938216259 

   0.000010830838362 

   0.000011808928988 

   0.000009556297172 

 

 

Table 2 

Values of the thermique coefficients for h/b=5 and various values of a/b. 

na  

n a/b=0.25 a/b=1 a/b=2 

 

0 

1 

2 

3 

    4 

5 

6 

7 

8 

9 

           0.001017687554760 

-0.000574883746459 

-0.000119260135626 

-0.000042720728610 

-0.000014421639969 

-0.000000602160626 

 0.000006938216259 

 0.000010830838362 

 0.000011808928988 

         0.000009556297172 

            0.015833767913739 

-0.008742171864567 

-0.001728828877968 

-0.000568608140977 

-0.000157393856213 

 0.000027964875905 

 0.000117211220151 

 0.000154516394661 

 0.000155831010956 

            0.000121006661581 

             0.056814813499988 

-0.031278566249732 

-0.006184507635662 

-0.002015322813640 

-0.000545035596517 

 0.000113105960128 

 0.000425753811882 

 0.000552276169754 

 0.000551086506536 

 0.000423931636700 
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Figs. 2-3 shown the variation of the distribution of the temperature in the plane z/b=0.25 for various values of h/b 

and a/b, respectively. From the graph lines, it is clear that the temperature distribution gets maximum values at the 

centre of the punch. It increases with decreasing the layer thickness and increasing rigid base radius. In the Fig. 4 the 

variation of the flux in the plane z/b=0 becomes infinite at the edge of the rigid base. It decreases at different 

distances from it 

 

 

 

 

 

 

 

 

 

 

Fig.2 

The temperature distributions for a/b=1.5 and various 

values of h/b. 

 

  

 

 

 

 

 

 

 
Fig.3 

The temperature distributions for h/b=5 and various values 

of a/b. 

  

 

 

 

 

 

 

 

 

Fig.4 

The flux distributions for a/b=0.5 and h/b=1.5. 

2.3 The thermoelastic problem 

The solution of the thermoelastic set of Eqs. (16) and (17) can be obtained in the form 

 

h pU U U   , h pW W W    

 

where Uh, Wh are the general solution of the homogeneous of Eqs. (16) and (17) whereas Up, Wp are the corresponding 

particular solutions of the non-homogeneous case. Using the relation (19) we get 

         0 1 2 3, z z
hU z C C z e C C z e  
    

 

      
           

      

 (60) 

 

           0 1 2 3, z z
hW z C C z e C C z e           

   
 

(61) 
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and     

 , 0pU z   (62) 

 

            2 0 1
, 2 1

h z h zz
p

T bJ b
W z B e e e

  
  

 

  
    

  

 (63) 

 

The final general solution of the thermoelastic equilibrium Eqs. (16) and (17) are 

 

0 1 2 3( , ) ( ) ( ) ( ) ( )z zU Z C C z e C C z e  
    

 

      
           

      

 (64) 

 

 0 10 0
0 1 2 3( , ) ( ) ( ) ( ) ( ) ( ) ( )h h z zT bJ b

W Z C C z B e e e C C z B e    
      

  


    

                

 (65) 

 

where,  0 2 1    . The unknown functions  0C  ,  1C  ,  2C   and  3C  are to be determined  from the 

boundary conditions Eq. (8). We find that 

 

             2
0 2 32

2 1 2 1 2 1
h

h he
C C e C h h e

h


        



        


 

                   02 2 1 1 1h hh A h e e             
  

 
(66) 

 

          1 2 1 1 2 1
h

h he
C C e e h

h


     



         
 

 

                    0
3 2 1 1 2

2

h h hC e h A e e  
               

   
 

(67) 

 

Substituting these functions into Eqs. (62) and (63), the solution become 

 

               2
2 3

1
, 2 1 2 2 2 1

2
U z C C h z h z

h
     


        


 

                       2 3 0

1
2 1 1 2 2 2 2 1 1 2C h C A z          



                 
 

(68) 

and 

 

           2 32

1
, 1 2 ( 2 1

2
W z C C h z

h
       


     


 

                        0 2 3 01 2z zA z e h C C z A e                       

                             2
2 3 02 1 2 2 1

h z
z C C h A e


        

        
 

 

(69) 

 

Next, we apply the Hankel transform of orders zero and one to the relations (12), (13), respectively given by 

 

     0

0

, ,H zz r r z J r dr   



                      (70) 

     1

0

, ,H rzz r r z J r dr   



         

                

(71) 

The transformed normal and shearing stresses were given in terms of U, W  and TH by the expressions 



873                               F. Guerrache and B. Kebli 

 

© 2019 IAU, Arak Branch 

     
2

, 1 1
1 2

H H

G
z W U T     


      

               (72) 

 

   ,H z G U W                   (73) 

 

Then from the Eqs. (67), (68) and (22), we find that 

 

         
2

2

2 1
, 1 1 1

1 2 2

h

H

G e
z C h h z

h



      


   
                 

    3 2 1 1 2C         

    2 2 21
1 4 1h hh e he v h z  



 
       

 
   0 0

12
0

1

2 1

h
n nh

n

T b
M a J b e

e






  









 
       

   

             2 21 2 1
2 1 2 1 2 1 1 2 1

2

h hh h e h h z e 
    

 


             


   

          1

1 1 2
1 2 1 2h zb h

J e h h h z e
h h

  
     



   
             

  

 

             0 0
1 2 32

1 1 4 1 1z hT
hbJ e C h h C h z e 

       


 
             

 

          

(74) 

        

and                                                  

                 

           2 3 0, 2 2 1 z
H

G
z C C A h z e

h

               
 

2h  

        0
2 3 2 1

2

zC C z A e 
     
 

    
 

          2
2 3 02 2 2 1

h z
z C C h A e


      

         
 

              
(75) 

  

The inverse Hankel integral transforms are 

 

     0

0

, ,z Hr z z J r d    



 
          

(76) 

 

     0

0

, ,w r z W z J r d   



 
          

(77) 

 

The components of normal displacement and stress on two layer boundaries are given by the following system of 

duel integral equations  
 

             2 11 3 12 13 00

0

0 0z z
C g C g g J r d        




      

,   r a        
(78) 

 

             2 21 3 22 23 00

0

0 0z z
w C g C g g J r d      




      

,   r a        
(79) 

 

             2 41 3 42 43 0

0

0 0z z h
C g C g g J r d        




      

 ,  r b       (80) 

 

 
         2 31 3 32 0 2

0

1
z z h

m

w
C g C g J r d G     





       
,   0 r b        

(81) 

 

Remarking from the integral formula (27) that the homogeneous Eqs. (78) and (80) are identically satisfied by 

setting 
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           
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








  





  






 
(82) 

 

We find that   

 

                     1
2 42 12 12 43 13 42

0

n n n n

n

C M a g M b g g g g g           







     


  

(83)   

 

         
 

 
411

3 21 13
110

n n

n

g
C g M a g

g


     








 
   

  
    43

0

n n

n

M b g  





  


  

(84) 

 

where 

 

         12 41 11 42g g g g        (85) 

 

Substituting these functions C2 and C3 into Eqs. (78) and (80) we obtain 
 

         

         

1 2 0 3

0 0

3 4 0 4

0 0

,0

,0

n n n n m

n

n n n n m

n

M a F M b F J r d G r a

M a F M b F J r d G r b

       

       










      




      






 
(86) 

 

We use the Gegenbauer’s formula (30) into Eq. (86), we get 

 

         

         

1 2 5 0

0 0

3 4 6 0

0 0

n n n n m m m

n

n n n n m m m

n

M a F M b F X a d G

M a F M b F X b d G

        

        










    




    






 
(87) 

 

We obtain the following infinite system of simultaneous equations for obtaining the unknown coefficients
n and 

n  

 

 

 

5 0

0 0

6 0

0 0

n nm n nm m m

n

n nm n nm m m

n

B C G

D E G

  

  










  




 






 

(88) 

 

where 

 

     1

0

nm n mB F M a X a d   



 
 

     2

0

nm n mC F M b X a d   



 
 

     3

0

nm n mD F M a X b d   



 
 

     4

0

nm n mE F M b X b d   



 
 

(89) 



875                               F. Guerrache and B. Kebli 

 

© 2019 IAU, Arak Branch 

We write the infinite system of the simultaneous Eq. (88) in dimensionless form, then 

 

 

 

5 0

0 0

6 0

0 0

n nm n nm m m

n

n nm n nm m m

n

B C G

D E G

  

  










      




     






 
(90) 

 

where 

 

n

n
b


    (91) 

 

n

n
b


    (92) 

 

and 

 

     1

0

nm n mB F t M t X t dt 



 
  

     2

0

nm n mC F t M t X t dt



   

     3

0

nm n mD F t M t X t dt



 
 

     4

0

nm n mE F t M t X t dt



   

(93) 

2.4 Displacements and stresses on two layer boundaries 

The displacement on the bottom of the layer is expressed by a following 

 

 
 

         0
1 2 0 3

0
0 0

z z
z n n n n m

z
n

w
w M a F M b F J a d G       




 




       (94) 

 

On the upper surface z=h, the components of the displacement can be calculated 

 

 
 

         3 4 0 4

0 0

z z h
z n n n n m

z h
n

w
w M a F M b F J a d G       




 




       (95) 

 

The normal stress on the upper surface z=0 for r > a can be expressed as: 

 

 
   2 10

2 20
0

/2z nz
z n

z
n

T r a

r a r


 

 


 




 


  (96) 

 

whereas on z=h we obtain 

 

 
   2 1

2 2
0

/2z nz h
z n

z h
n

T r b

r b r


 

 


 




 


  (97) 
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The expression obtained for the magnitude of the total load P of the punch on the layer is using 

   

 
 

00

1
2 4

2 1

n

z nz h
n

P rdr
n

   

 





   


  (98) 

 

The stress singularity factors corresponding to the studied problem are defined by 

 

   
0

lim 2a z
zr a

S r a 





   (99) 

 

   lim 2b z
z hr b

S r b 





   (100) 

 

Substituting Eqs. (96) and (97) into Eqs. (99), (100). We obtain the simple expression for the stress singularity 

factors as following 

 

0

2
a n

n

S 
 





   (101) 

 

0

2
b n

n

S 






   (102) 

2.5 Numerical results and discussions

 

We solve the infinite set of simultaneous Eq. (90) to determine the unknown coefficients
n  and

n 
 
Replacing the 

integrals (93) by  

 

         
0

0

1

0

t

nm n m n m

t

B F t M t X t dt M t X t dt    



   
 

     2

0

nm n mC F t M t X t dt 



    

     3

0

nm n mD F t M t X t dt 



    

         
0

4

0

nm n m n m

t

E F t M t X t dt M t X t dt
 

     

(103) 

 

As the second and third one converge rapidly whereas
1F  and

4F   tend to one at the infinity . The first term on the 

right hand side of Eq.(103) are integrated numerically by means of Simpson’s rule, here, we choose 1000 

subintervals and t0 =1500. The second term is integrated by using the approximate form of the Bessel functions. For 

large values of    n nM t X t
 
are equivalent to   

 

 
 

  2 2

14
sin 1 cos 2

2

m

t t
t

 
  

  

 (104) 

 

Then, we obtain  
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     
   

0

00
0 02 2

0 0

1 cos 21sin4
2

2

m

n n

t

tt
M t X t dt si t sit

t tt


 

    
    

  (105) 

 

We choose a steel medium with the parameters shown in Table 3. The thermoelastic coefficients
 n  and 

n   are 

shown in the following Tables 4-5
 
with different values of the layer thickness and the radii a and b. 

 

 

Table 3 

Thermal and elastic constants for steel medium. 

 

 

Table 4 

Values of thermoelastic coefficients for a/b=0.75and various values of h/b. 

 

 

 

 

Temperature (°C) Coefficient of  linear thermal expansion (K-1) Poisson ratio (v) 

                  100                                                                               18.8x10-6                    0.29 

h/b=0.75 

n n  n   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 0.037063906323658 

-0.049186362118059 

 0.014005932182722 

-0.000921252780973 

 0.000217822572496 

 0.000104048373888 

 0.000091012514144 

 0.000080598766410 

 0.000067903981412 

 0.000047736467711 

 0.019588180160849 

-0.021122729190494 

 0.003799932721199 

-0.000722124317185 

-0.000225587133000 

-0.000129184115299 

-0.000114178946520 

-0.000046097698105 

-0.000055491857328 

 0.000000630440299 

h/b=1 

n n  n   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 0.045364049531263 

-0.042990237267195 

0.004672496413822 

-0.000401933474951 

-0.000042044101045 

 0.000137480440466 

 0.000223299398252 

 0.000254957691014 

 0.000242823222587 

 0.000182609042888 

 0.022565770573150 

-0.014755288555510 

-0.002005426282923 

-0.001302986863204 

-0.000839069755529 

-0.000406889047939 

-0.000336483735700 

-0.000138335497595 

-0.000156550725376 

-0.000001362455372 

h/b=1.25
 

n n  n   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

-0.016640424709399 

-0.015966485330693 

 0.019912931290127 

-0.000407696772340 

 0.000609981363588 

-0.000046594450001 

-0.000288234692434 

-0.000390574704145 

-0.000395266378638 

-0.000305969403527 

-0.001300588087711 

-0.001422192925306 

 0.001912951387677 

 0.000003423421174 

 0.000170537389376 

 0.000071675210362 

 0.000059398101645 

 0.000024530927899 

 0.000027345467725 

 0.000000386708857 
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Table 5 

Values of thermoelastic coefficients for h/b=1.25 and various values of a/b. 

 

Figs. 5-6 show the variation of the nondimensional normal stress with different values for h/b and a/b, 

respectively. The distribution gets it at maximum values at the centre of the rigid base. The stress has an infinite 

value  r/b=a/b. It decreases with increasing the layer thickness and decreasing the radius of the rigid base. 

 

 

 

 

 

 

 

 

 

 

Fig.5 

The variation of  
0




 


for a/b=0.75 and various values of 

h/b. 

  

a/b=0.5 

n n  n   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

-0.014860403570175 

 0.007798887911232 

 0.001912041704800 

 0.000511212249070 

 0.000147998786974 

-0.000029331923887 

-0.000113624048535 

-0.000148079358976 

-0.000148208706544 

-0.000114310619160 

-0.001788792054877 

 0.000402854905408 

 0.000777891728993 

 0.000082990403248 

 0.000098249324534 

 0.000050645427679 

 0.000036533087666 

 0.000019591022413 

 0.000015787688326 

 0.000004227381694 

a/b=0.75 

n n  n   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

-0.016640424709399 

-0.015966485330693 

0.019912931290127 

-0.000407696772340 

 0.000609981363588 

-0.000046594450001 

-0.000288234692434 

-0.000390574704145 

-0.000395266378638 

-0.000305969403527 

-0.001300588087711 

-0.001422192925306 

 0.001912951387677 

 0.000003423421174 

 0.000170537389376 

 0.000071675210362 

 0.000059398101645 

 0.000024530927899 

 0.000027345467725 

 0.000000386708857 

a/b=1 

n n  n   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

-0.023605662338271 

-0.073818764065537 

 0.075230786150529 

-0.009843668855371 

 0.002421516314454 

-0.000254285212655 

-0.000717611458449 

-0.000950907186823 

-0.000953250812152 

-0.000734375936788 

 0.006587218140131 

-0.007207988112731 

 0.000917152879540 

 0.000022116365662 

-0.000035634470479 

-0.000015270475110 

-0.000024500325864 

-0.000004441384152 

-0.000014040435172 

 0.000005200083905 
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Fig.6 

The variation of   
0




 


  for h/b=1.5 and various values of 

a/b. 

 

The distribution of the nondimensional axial displacement at the edge of the rigid base is given in Fig. 7 with 

various values of h/b. It is noted that the value are decreasing with increasing the layer thickness and decreasing the 

rigid base radius. Graphically they are illustrated in Fig. 8. 

 

 

 

 

 

 

 

 

 

Fig.7 

The variation of   
0

w 





 for a/b=0.75 and various values 

of h/b. 

  

 

 

 

 

 

 

 
Fig.8 

The variation of    
0

w 





 for h/b=1.25 with and various 

values of a/b. 

 

The nondimensional normal stress in upper surface can be seen from Figs. 9-10. It is shown for various values 

for h/b and a/b, respectively. The distribution gets its maximum values with the centre of the punch. It decreases 

with increasing the thickness of the elastic layer and the radius of the rigid base. 

 

 

 

 

 

 

 

 

Fig.9 

The variation of   
 

 


 for a/b=0.75 and various values 

of h/b. 
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Fig.10 

The variation of   
 

 


 for h/b=1.5 and various values of 

a/b. 

 

The distribution of the nondimensional displacement at the edge of the punch is shown from Figs. 11-12 with 

h/b, a/b. It increases with increasing the layer thickness and decreasing the rigid base radius. 

 

 

 

 

 

 

 

 

Fig.11 

The variation of   w 
 




 

for a/b=0.75 and various values 

of h/b. 

  

 

 

 

 

 

 

 
Fig.12 

The variation of   w 
 



  
for h/b=1.5 and various values of 

a/b. 

     

The variations of the total load
4

P
P



  applied to the punch with the layer thickness and rigid base are 

mentioned in Figs. 13-15. It is noted that the value of P   changes with the layer thickness and the rigid base radius. 

 

 
(a) 

 
(b) 

Fig.13 

The variation of P   for a/b=0.75 and various values of h/b. 
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(a) 

 
(b) 

Fig.14 

The variation of P   for h/b=1.5 and various values of a/b. 

 

The variation of the stress singularity factors corresponding to the studied problem is graphically illustrated in 

Figs. 15-18. The stress singularity factors aS  and bS , give a large value with decreasing the layer thickness and 

increasing with the rigid base radius. 

 

 
(a) 

 
(b) 

Fig.15 

The variation of aS
 
for h/b=1.5 and various values of a/b. 

 

 
(a) 

 
(b) 

Fig.16 

The variation of aS  for a/b=0.75 and various values of h/b. 

  

 
(a) 

 
(b) 

Fig.17 

The variation of bS  for a/b=0.75 and various values of h/b. 
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(a) 

 
(b) 

Fig.18 

The variation of bS  for h/b=1.5 and various values of a/b. 
 

3    CONCLUSIONS 

In the present paper, we studied a mixed boundary value problem corresponding to a thermoelastic layer. An 

analytical solution was obtained through an infinite system of simultaneous equations using the Gegenbauer 

formula. The coefficient can calculate of the series.  

The obtained results are summarized as follows: 

 Analytical solution based upon the integral Hankel transforms for contact problem have been developed 

and utilized. 

 The analytical solution was obtained using the thermal and the thermoelastic coefficients. An infinite 

algebraic system has been solved with different values of the elastic layer thickness and the rigid base 

radius. 

 The numerical results revealed the effects of the layer thickness and the radius of the punch with the rigid 

base on the temperature, the displacement, the normal stress, the load and the stress singularity factors. 

The graphs obtained are analyzed as follows: 

 The temperature distribution gets its maximum values at the center of the punch, whereas the temperature 

increases with decreasing the layer thickness and increasing the rigid base radius. It is noted that it becomes 

infinite in the rigid base edge where it decreases at different distances from it. The variation of the flux in 

the plane z/b=0 becomes infinite in the rigid base edge. It decreases at different distances from it. 

 The variation of the nondimensional normal stress  
0




 


for h/b and a/b gets its maximum values at the 

centre of the rigid base. The stress has an infinite value r/b=a/b. It decreases with increasing layer thickness 

and decreasing the radius of the rigid base.  

 It is noted that, the distribution of the nondimensional displacement  w 
 




at the edge of the rigid base 

with various values of h/b decreases with increasing the layer thickness and decreasing the rigid base 

radius. 

 The nondimensional normal stress in the plane z=h/b gets its maximum values at the centre of the punch. It 

decreases with increasing of the elastic layer thickness and the rigid base radius. 

 An opposite behaviour is remarked for the distribution of the displacement at the edge of the punch. 

 The variations of the total load P  applied to the punch with the layer thickness and rigid base as also 

mentioned. It is noted that the value P  changes with the layer thickness and rigid base radius. 

 The variation of the stress singularity factors of the problem is graphically illustrated. The stress singularity 

factors aS  and bS , give a large value with decreasing the layer thickness and increasing with the rigid base 

radius.   

 The graphical result illustrates the effects of the layer thickness and the punch radius with the rigid base on 

the applied load and the stress singularity factors.  

 The obtained graphs for the isothermal case are incomplete agreement with those given by Kebli et al. [12]. 
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APPENDIX A  

The Hankel transform of the displacement components vector  U z ,  W z  and the temperature  HT z  are 

defined as: 

 

     0

0

,U z ru r z J r dr



   

     0

0

,W z rw r z J r dr



   

     1

0

,HT z rT r z J r dr



   

(A.1) 

 

The functions  ijg   in the system of dual integral Eqs. (78), (79), (80) and (81) are given by 
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(A.2) 
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The functions given in the system Eq. (86) are expressed by 
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The functions given in the system Eq. (87) are defined 
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