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 ABSTRACT 

 The present article deals with the analysis of thermal-bending 

stresses in a heated thin annular sector plate with simply supported 

boundary condition under transient temperature distribution using 

Berger’s approximate methods. The sectional heat supply is on the 

top face of the plate whereas the bottom face is kept at zero 

temperature. In this study, the solution of heat conduction is 

obtained by the classical method. The thermal moment is derived 

on the basis of temperature distribution, and its stresses are 

obtained using thermally induce resultant moment and resultant 

forces. The numerical calculations are obtained for the aluminium 

plate in the form of an infinite series involving Bessel functions, 

and the results for temperature, deflection, resultant bending 

moments and thermal stresses have been illustrated graphically 

with the help of MATHEMATICA software. 

                                © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N structural mechanics and many branches of engineering mechanics and aeronautics, the widespread use of 

plates and shells are made to deal with thermal stresses, deformations, buckling and vibrations of plates and shells 

for which there arises the need for reliance upon different methods of analysis. Analytical techniques in dealing with 

such problems have severe limitations because of difficulties in deriving closed-form solutions of nonlinear 

differential equations. As far as theoretical mechanics is concerned, the solution methods for nonlinear differential 

equations play a very crucial role in many problems using such equations. Many sector plates are subjected to high 

pressure and thermal load may results in nonlinear loaded deflection relationship due to large deformations of the 

plate. A short history of the research work associated with the significant deflection insights various approximate 

methods like the Ritz energy method, Galerkin Method, finite element models and perturbation theory to solve the 

system. For the analysis of large deflections of plates von Karman’s coupled nonlinear partial differential equations 

have extensively been employed by many earlier researchers. Von Karman’s equations are difficult to deal with 

because of its coupled nonlinearity and yet no general solutions of these equations are known. However, 
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approximate and different numerical and computational methods have been adopted for the solution of such large 

deflection analysis of plates and shells. Few authors [1-3] employed von Karman equations to the nonlinear analysis 

behaviour of thin plates, isotropic and orthotropic under mechanical and other kinds of loading with the inclusion of 

curvature and thermal loading parameter. Due to the mathematical complexities, many researchers have resorted to 

the use of different computational and numerical techniques to deal with problems of nonlinear dynamic analysis of 

plates and shells under thermal stresses. To simplify the nonlinear differential equations, Berger [4] proposed quasi-

linear partial differential equations in the decoupled form with extension to thermal stresses for plates and shallow 

shells. This method is based on the neglect of 
2e , the second invariant of the middle surface strains, in the 

expression corresponding to the total potential energy of the system. Although there doesn't seem to be any physical 

justification for this approximation, comparisons of the outcomes with known solutions indicate that for a broad 

scope of problems, Berger’s approach yields adequately accurate results [5]. Basuli [6] has obtained the equation of 

equilibrium for the large deflection by Berger’s approximation under uniform pressure load and thermal heating 

under steady-state temperature distribution. Some authors [7, 8] have obtained a significant deflection based on the 

total strain energy concept devised by Berger. In all, the results obtained by the Berger’s method which is not 

referred the present manuscript was well describes by Nowinski [9] for the edges of plates restrained from in-plane 

motion. An application of this technique to the cases of orthotropic plates has been offered by Iwinski and Nowinski 

[10] and further boundary value problems associated with circular and rectangular plates have been investigated by 

Nowinski [11-13]. Okumura et al. [14] investigated thermal-bending stresses in an annular sector plate with the 

moderate thickness is carried out by the theory of moderately thick plates, together with the thermoelastic 

displacement potential using classical methods. Wang and Lim [15] established the exact relationships between the 

bending solutions of sectorial plates based on the Kirchhoff (or classical thin) plate theory and the Mindlin plate 

theory. Golmakani [16] has performed a study on stiffened annular functionally graded sector plates and ring-

stiffened circular plates using dynamic relaxation numerical method combined with the finite difference 

discretization technique. Eren [17] investigated both horizontal and most considerable vertical deflections for simply 

supported beams under uniformly distributed load. Sitar et al. [18] discussed a relatively simple method for 

determining significant deflection using Euler– Bernoulli and large displacement theory and solved it numerically 

by Runge–Kutta–Fehlberg integration and Newton method. Bakker [19] describes an approximate analytical method 

to determine the large-deflection behaviour of rectangular simply supported thin plates under transverse loading. 

The method is based on a simple trial function to describe the shape of the initial and total deflections of the plate, 

corresponding to the first buckling mode shape of the plate when subjected to uniform in-plane compression. Jang 

[20] discussed the semi-analytical procedure for moderately large deflections of an infinite non-uniform static beam 

resting on a nonlinear elastic foundation. Very recently, Choi [21] developed a geometrically nonlinear finite 

element program to study the induced cylinder stress due to internal pressure by considering shear deformation 

theory of a doubly curved shell, von Karman’s large deflection theory, as well as a newly proposed strain–

displacement relation including initial strain terms. Bhad [22] investigate the thermoelastic effect on the elliptical 

plate during large deflection while heating with non-stationary temperature distribution. In previously referred 

papers, their objective was to maximize the load carrying capacity of the structural support either by locating the 

supports or by changing stiffness. Even few reports have been based on the calculus of variation, Hamilton’s 

principle, and many others performed large deflection studies with different objects. Thin plates and shells of regular 

polygonal and irregular shapes made of isotropic, orthotropic and sandwich materials are often subjected to different 

kinds of mechanical and thermal loading. Therefore, as a result, such structural components are prone to 

deformations, bucking and vibrations for which proper analysis are required to be made and of great interest to 

designers, engineers, scientists and researchers. Hence, to the best of authors’ knowledge, there exists scarce 

concentration on this topic of research in which large deflection is taken into consideration the thermal moments in 

the strain energy equation. Owing to the gap in existing literature, the authors have been motivated to conduct this 

study. In this paper, an attempt is made to obtain the large deflection of a thin annular sector plate subjected to 

arbitrary temperature on the upper face with the lower face and simply supported edges at zero temperature using 

the method of Berger and Basuli. In the formulations, the equation of equilibrium is modified by introducing a 

thermally induced resultant moment showing little difference with the previous one [6]. The theoretical calculation 

has been considered using the dimensional parameter, whereas graphical calculations are carried out using the 

dimensionless parameter. The success of this novel research mainly lies on the new mathematical procedures that 

present a much more straightforward approach for optimization of the design in terms of material usage and 

performance in engineering problem, particularly in the determination of thermoelastic behaviour in annular sector 

plate engaged as the foundation of pressure vessels, furnaces, etc. 
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2    FORMULATION OF THE PROBLEM 

 

 

Consider a thin annular sector bounded in cylindrical coordinates ( , , )r z , occupying the space 

3{( , , ) :D r z R  ,a r b  / 2 / 2,     / 2 / 2}.z    The center of the plate in the middle surface is 

taken as the origin. 

 

 

 

 

 

 

 

 

 

Fig.1 

Sector geometry of the problem. 

 

We assume that the temperature distribution is given by 

 

1 1

( , , , ) ( ) ( )cos [sinh ( / 2)]q m mq mq

p q

T r z t f t C r m z   
 

 

          
 

(1) 

 

In which ( )m mqC r  denotes a cylinder function of order m as defined in the form 

 

( ) ( ) ( )m mq m mq mq m mqC r J r Y r             (2) 

 

( )

( )

m mq

mq

m mq

J a

Y a





        / ( 1,3,5..)m p p        

 

(3) 

 

The heat conduction of the circular sector is described as: 

 
2, / , ( , ) / , / ,t r r zzT T rT r T r T                (4) 

 

The boundary conditions can be defined as: 

 

( , , , ) 0
r a

T r z t

    , ( , , , ) 0

r b
T r z t


               (5) 

 

/ 2
( , , , ) 0T r z t

 



    (6) 

 

/ 2
( , , , ) 0

z
T r z t


    (7) 

 

0 0 0/ 2

0 0

( , , , ) ( / ) ( , ) for 0

( , ) for

z
T r z t T t t g r t t

T g r t t

 




  

 
   

 

(8) 

 

In which ( , , , )T r z t  is the temperature distribution at any time parameter ,t  0T  is the temperature at 0t  , 

( , )g r   is the sectional heat supply on the upper face, thermal diffusivity is taken as / ,Cv   in which   is the 

thermal conductivity of the material,   is the density and Cv  is the calorific capacity. From the second equation 

of boundary condition (5), we have mq  as the roots of the transcendental equation ( ) ( ) ( ) ( ) 0m mq m mq m mq m mqJ b Y a J a Y b     .  

We assume the Fourier-Bessel series as [14] 
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1 1

( , ) ( )cospq m mq

p q

g r s C r m  
 

 

    
 

(9) 

 

In which 

 
/ 2

/ 2

/ 2
2 2

/ 2
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(cos ) ( ( ))

b

m mq
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pq b

m mq
a

g r r C r m dr d
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
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



   

  






 

 
   

 

(10) 

 

Using Eq. (1) in Eq. (4), one obtains 

 

2 2 2
( ),

(1 ) /
( )

q t

mq

q

f t
m r

f t
       

 

(11) 

 

On integrating Eq. (11), one obtains 

 
2 2 2( ) exp{[ (1 ) / ] }q q mqf t A m r t       (12) 

 

In which the constant qA  is to be determined by the nature of the temperature prescribed on the upper face and prime 

comma denotes differentiation with respect to the variable. 

Now initially we assume 

 

0 0

1

( / ) ( , ) ( )q m mq

q

T t t g r A C r  




     
 

(13) 

 

Then from the theory of Bessel function,  
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2
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[ ( ) ] ( / ) ( , ) [ ( )]
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q m mq m mq
a a

r

m mq
a
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


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Since 
01,

( , )
0, otherwise

a r r
g r 

 
 


hence, 

 
0

0 0( / ) [ ( ) ] /
r

q m mq q
a

A T t t r C r dr N     
(14) 

 

In which 2[ ( )] .
b

q m mq
a

N r C r dr  
 
By substituting the Eq. (12) in Eq. (1) with the value of constant qA  derived 

in Eq. (14), obtained the required expression for temperature distribution. 

2.1 Thermal deflection  

The equation of equilibrium for the large deflection of a heated plate as derived by Basuli [3] on the basis of 

Berger’s approximations is given under uniform load and stationary distribution [i.e.
0( , , ) ( , ) ( ) ( , )T r z T r g z T r    ] 

as: 

 

2 2 2 2

1

( )
( ) ( , , )

1

E f
D w r t T


 


     


   

 

(15) 
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where 
/ 2

/ 2
( ) ( )f z g z dz


  and 2

1  is a normalising constant of integration. 

In deriving the large deflection equation of a heated plate, we have generalized the aforesaid equation of 

equilibrium for the transient temperature distribution, as:  

 
2

2 2 2

1( ) ( , , )
(1 )

TM
w r t

D
 




    


   

 

(16) 

 

where ( , , )w r t  is the normal transverse deflection along the z-direction, 2  indicates the two-dimensional 

Laplacian operator in ( , ),r   the constant   denotes the Poisson’s ratio of the plate, 
3 2/12(1 )D E    is the 

flexural stiffness of the plate and 2

1  is to be determined from 

 
2 2 2 2 2

1, / [ ( , , ), ] / 2 , / [ ( , , ), ] / 2 /12 (1 )r r Tu u r w r t v r w r t r N               (17) 

 

The result of the above heat conduction gives thermally induced resultant moment and resultant force as: [23] 

 
/ 2

/ 2
( , , , )TM E z T r z t dz 


      

(18) 

 
/ 2

/ 2
( , , , )TN E T r z t dz 


     

 

(19) 

 

with   as the coefficient of linear thermal expansion and E symbolise Young’s Modulus of the material of the plate, 

respectively.  

Eqs. (19) and (20) have to be solved for heated thin simply supported annular sector plate along the edges for 

which the boundary conditions are 

 

,( , , ) ( , , ) 0rr a r a
w r t w r t 

 
      

(20) 

 

,( , , ) ( , , ) 0rr b r b
w r t w r t 

 
      

(21) 

2.2 Thermal stresses 

Now the equations of resultant forces ( , , , )ijN i j r  , resultant bending moments per unit width ( )ijM  are 

defined as: 

 

0r rN N N       (22) 

 

r T

T

r

M D w r t w r t r w r t Mrr r r

M D w r t w r t r w r t Mrr r r

M D w r t r
r

2

, , , 2

,

{ ( , , ) [ ( , , ) / ( , , ) ]} /(1 ), , , /

{ ( , , ) [ ( , , ) / ( , , ) ]} /(1 )
/

(1 ) ( , , ) /





    


    


 


     



      


  

   

 

 

(23) 

 

The aforementioned first equation of Eq. (23) must satisfy for simply supported plate 

 

0,r r a
M


   for all   in / 2 / 2      (24) 

 

The thermal stress components in terms of resultant forces and resultant moments are given as: [24] 
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3 3

3 3

3

1 12 1 1 12
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1 12 1 1 12

(1 )

1 12
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z z
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z
N M

  

  

 


 




 
      

   
 

      
  


  



   

 

 

 

(25) 

 

The Eqs. (1) to (25) constitute the mathematical formulation of the problem under consideration. 

3    SOLUTION OF THE PROBLEM  

On substituting Eq. (1) in Eq. (18), one obtains the thermal moment as: 

 

2 2 2 2

1 1

{ exp{[ (1 ) / ] } ( )cos [ (1 cosh ) 2sinh ]/ 2 }T q mq m mq mq mq mq mq

p q

M E A m r t C r m        
 

 

         
 

(26) 

 

Using Eq. (1) and (19), one yield 

 

2 2 2

1 1

{ exp{[ (1 ) / ] } ( )cos ( 1 cosh ) / }T q mq m mq mq mq

p q

N E A m r t C r m      
 

 

         
 

(27) 

 

Now substituting Eq. (26) in (16), one obtains the equation of equilibrium as: 

 

2 2 2 2 2 2

1

2( ) ( , , ) { exp{[ (1 ) / ] } ( )cos
(1 ) 1 1

2[ (1 cosh ) 2sinh ]/ 2 }

m

E
w r t A m r t C r mq mq mq

D p q

mq mq mq mq


     



   

 
       

  

 

 
   

 

 

(28) 

 

To solve the completeness of conjugate harmonic axisymmetric equations, that is, Laplacian and Helmholtz type 

operator, Wang [25] have generalized the Almansi’s theorem concerning the representation of the general solution 

of the equation 
2 0.n   If 

1( , , )w r t  and 2 ( , , )w r t  are harmonic functions, then it must satisfy the homogeneous 

equations 

 
2

1( , , ) 0w r t     (29) 

 
2 2

1 2( ) ( , , ) 0w r t       (30) 

 

The periodic solution of Eqs. (29) and (30) which are axisymmetric can be obtained as: 

 

1

1 1

( , , ) [ ( ) ( )]cospq m mq pq m mq

p q

w r t B J r C Y r m   
 

 

     
 

(31) 

 

2

1 1

( , , ) ( )cospq m mq

p q

w r t D C r m  
 

 

    
 

(32) 

                                                          

In which, pqB , pqC and pqD are the arbitrary constants.  

Therefore, the conjugate complementary function for Eq. (30), which is finite at the origin, is given by 
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1 1

( , , ) [ ( ) ( ) ( )]cospq m mq pq m mq pq m mq

p q

w r t B J r C Y r D C r m    
 

 

      
 

(33) 

 

The particular solution of the Eq. (28) is given as: 

 

( , , ) cospqw r t Z m     (34) 

 

In which 

 

2 2 2 2 2

1

1 1

{ exp{[ (1 ) / ] } ( )[ (1 cosh ) 2sinh ]/ ( )}
2 (1 )

pq q mq m mq mq mq mq mq

p q

E
Z A m r t C r

D


       



 

 

       


    
 

(35) 

 

Now using boundary conditions Eq. (20) and the first equation of Eq. (21), one obtains the constants pqB , 

pqC and pqD  as: 

 

( )[ ( ) ( ) ( ) ( )] ( )[ ( ) ( ) ( ) ( )]

( )[ ( ) ( ) ( ) ( )] /

pq pq m m mq m mq m m pq m mq m mq pq

m mq pq m m pq pq

B Z a Y b C a C b Y a Y a Z b C a C b Z a

C a Z b Y a Y b Z a Q

   



      

  
   

 

(36) 

 

( )[ ( ) ( ) ( ) ( )] ( )[ ( ) ( ) ( ) ( )]

( )[ ( ) ( ) ( ) ( )] /

pq m pq m mq m mq pq pq m m mq m mq m

m mq m pq pq m pq

C J a Z b C a C b Z a Z a J b C a C b J a

C a J b Z a Z b J a Q

   



      

  
   

 

(37) 

 

( )[ ( ) ( ) ( ) ( )] ( )[ ( ) ( ) ( ) ( )]

( )[ ( ) ( ) ( ) ( )] /

pq m m pq pq m m m pq pq m

pq m m m m pq

D J a Y b Z a Z b Y a Y a J b Z a Z b J a

Z a J b Y a Y b J a Q

      

  
   

 

(38) 

 

In which  

 

( )[ ( ) ( ) ( ) ( )] ( )[ ( ) ( ) ( ) ( )]

( )[ ( ) ( ) ( ) ( )]

pq m m m mq m mq m m m m mq m mq m

m mq m m m m

Q J a Y b C a C b Y a Y a J a C a C b J a

C a J b Y a Y b J a

   



      

  
   

 

 

Finally by substituting the values of ,pqB  pqC and pqD  in Eq. (33) results in the required expression for the 

desired thermal deflection. Using the equation of thermal deflection in Eq. (23), one obtains the equations for the 

bending moments as: 

 

2 2 2

1 1

2 2

2

cos exp( (1 ) / ) ( )[ (1 cosh( ))
2

2sinh( )] / ( 1 ) 2 [ ( ( ) ( ) ( )) ( ( )

( ) ( ))] / 2

r q mq m mq mq mq

p q

mq mq pq m mq pq m mq pq m mq mq pq m mq

pq m mq pq m mq m

D
M m E A km t r C r

m D C r B J r C Y r r D C r

B J r C Y r r

     

        

  

 

 


      



       

   



2 ( "( ) ( ) ( ) )q pq m mq pq m mq pq m mqD C r B J r C Y r      

   

 

 

 

(39) 

 

2 2 2
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q mq m mq mq mq

p q
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pq m mq pq m mq mq

D
M m E A km t r C r

m D C r B J r C Y r r r D C r

B J r C Y r r

      

       

  

 

 


      



      

   



2 ( ( ) ( ) ( ) )pq m mq pq m mq pq m mqD C r B J r C Y r        

   

 

 

 

(40) 

 

 
1 1

( 1 )sin ( ( ) ( ) ( )) /r mq pq m mq pq m mq pq m mq

p q

M D m m D C r B J r C Y r r      
 

 

          
 

(41) 
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3.1 Solution for the associated thermal stresses 

The resulting equations of stresses are obtained by substituting the Eqs. (1), (22), (26), (27) and (39)-(40) in Eq. (25) 

as: 

 





2 2 2 2 2 2

2 3
1 1

2

2 2

1
cos ( ) 12 ( 1 ) exp( (1 ) / )

[ ( 6(1 ) ) cosh( ) 12(1 ) ) sinh( ) ( 6(1 )

sinh( ( / 2)))] / ( 1 ) 12 [

rr m mq pq mq q mq

p q

mq mq mq mq mq mq

mq mq pq

m C r D D m z E r A k m t r
r

D z r D z r D z

z D z B m

       

     

   

 

 


      



          

    



2( ) ( ) ( ( )

( ) ( ) ( ) ( ) ( ))]

m mq pq m mq mq pq m mq

pq m mq pq m mq pq mq m mq pq mq m mq pq mq m mq

J r C m Y r r D C r

B J r C Y r D r C r B r J r C rY r

     

         

 


         


   

 

 

 

 

(42) 

 





2 2 2 2 2 2

2 3
1 1

2 2 2

1
cos ( ) 12 ( 1 ) exp( (1 ) / )

[ ( 6(1 ) ) cosh( ) 12(1 ) sinh( ) ( 6(1 ) sinh( ( / 2))

/ ( 1 ))] 12 [ (

m mq pq mq q mq

p q

mq mq mq mq mq

mq mq pq m m

m C r D D m z E r A k m t r
r

D z r D z r D z z

D z B m J

      

    

   

 

 


       



          

    



2) ( ) ( '( )

( ) ( ) ( ( ) ( ) ( )))]

q pq m mq mq pq m mq

pq m mq pq m mq mq pq m mq pq m mq pq m mq

r C m Y r r D C r

B J r C Y r r D C r B J r C Y r

  

     

 


         


   

 

 

 

 

(43) 

 

 3

1 1

12 ( 1 )sin [ ( ) ( ) ( )]/r mq pq m mq pq m mq pq m mq

p q

D m z m D C r B J r C Y r r      
 

 

          
 

(44) 

 

To find the constant 2

1  we assume the in-plane displacements [7, 8], 

 

1

( ) cos
m

u u r m




    
 

(45) 

 

1

( ) sin
m

v v r m




    
 

(46) 

 

Subjected to the boundary conditions 

 

( ) ( ) 0u a v a     (47) 

 

The above form of u and v satisfy the condition that 0u   perpendicular to the bounding diameter and 0v   

along the bounding diameter. These in-plane displacements have been eliminated by integrating Eq. (21) over the 

area of the plate. Integrating Eq. (21) with  respect to r from 0 to a and    from 0 to , one gets 

 

2 2 2 2

1 2 2

0 0

12
[ ( , , ), ] [ ( , , ), ] (1 )

a

r Tw r t w r t dr d a N
a



      


  
      

  
     

 

(48) 

 

Substituting the value of   and TN , Eq. (48) after integration, becomes an Eq. for determining 2

1 . 

4    NUMERICAL RESULTS, DISCUSSION AND REMAKS   

For the sake of simplicity of calculation, we introduce the dimensionless values as: 



Analysis of Thermal-Bending Stresses in a Simply.…                               732 
 

© 2019 IAU, Arak Branch 

2

3

0 0

0

/ , [ ( / 2)] / , / ,

/ , / , / ,

/ ( , , )

ij ij

ij ij

r r b z z b t b

T T T w w T b M M Eb

E T i j r

 



   

    


   


  

   

 

 

(49) 

 

Substituting the value of Eq. (49) in Eqs. (1), (33) and (42)-(44), we obtained the expressions for the 

temperature, deflection and thermal stresses respectively for the numerical discussion. The numerical computations 

have been carried out for Aluminum annular sector plate with physical parameter as 

0 3a . m , 1 ,b m 0.08 ,m
2

1 0.020   and reference temperature as 150 
0
C. Applying prescribed surface 

temperature 
2( , ) (2 / )g r   2 2[( / 2) ]   along a r b   and follows quadratic parabola along / 2 / 2     , 

/ 2  . The thermo-mechanical properties are considered as modulus of elasticity E = 70 GPa, Poisson’s ratio  = 

0.35, thermal expansion coefficient  = 2310
-6

/
0
C, thermal diffusivity  = 84.1810-6 m

2
s

−1
 and thermal 

conductivity  = 204.2 Wm
−1

K
−1

. The mq  0.529, 0.679, 0.826, 0.977, 1.129, 1.282, 1.436, 1.599, 1.746, 1.902 are 

the positive and real roots of the transcendental equation ( ) ( )m mq m mqJ b Y a   ( ) ( ) 0m mq m mqJ a Y b   . To examine 

the influence of heating on the plate, the numerical calculations were performed for all the variables, and numerical 

calculations are depicted in the following figures with the help of MATHEMATICA software.   

Fig. 2(a) shows that the temperature distribution along the radial direction for various thickness. Temperature 

distribution approaches to zero at both extreme ends, i.e. at r a  and r b  due to the more compressive force 

acting along the edges, whereas temperature gradually increases and attains the maximum value due to a tensile 

force. Fig. 2(b) as expected due to less thickness, the temperature along z the axis for different values of  r  varies 

linearly from zero temperature to the highest due to the availability of sectional heat supply at / 2.z   Fig. 2(c) 

shows the temperature distribution along the angular direction for the different radius. It is noted from Fig. that 

structural size increases the temperature along angular direction attains a maximum at mid-core due to tensile force 

for different values of  r . Fig. 3(a) illustrates thermal deflection that is sinusoidal in nature and it attains zero at 

inner and outer boundary surfaces along the radial direction for different angles. From Fig. 3(b), it was observed that 

the thermal deflection along time   for different values of r increases with increase in radius towards the outer 

edge due to the accumulation of the heat source. 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

Fig.2 

a) Temperature distribution along r  for different values of 

z .b) Temperature distribution along z for different 

values of r .c) Temperature distribution along  for 

different values of r . 

 



733                             T. Dhakate et.al. 
 

© 2019 IAU, Arak Branch 

 
(a) 

 
(b) 

Fig.3 

a) Thermal deflection along r for different values of  .b) Thermal deflection along time for different values of r . 

 

It was observed in Fig. 4 that the thermal bending moments (
rM  and M  ) attains zero at  r a  satisfying Eq. 

(24) and increases gradually along the radial direction. The moment 
rM  attains maximum magnitude at the mid-

core then starts decreasing towards the outer edge, whereas the moment 
rM increases towards the outer edge. The 

nature of thermal bending moment 
rM   is behaving its effects along the radial direction with an opposite character 

from negative to positive magnitude value. 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Thermal bending moments along r for a different time . 

 

Fig. 5(a) illustrates the variation of the radial stress distribution of the plate along the radial direction for various 

values of  z . The stress profile gradually increases and then it becomes constant. The maximum value of radial 

stress magnitude occurs at the outer edge due to the accumulation of energy from the available sectional heat supply. 

Figs. 5(b) and 5(d) indicates the radial and tangential stress along time parameter for different values of  r and z  

respectively. It is clear from the figures that at the early stage, stress attains zero and suddenly increases attaining 

maximum stress at the upper limit of the core. 

Fig. 5(c), shows that the tangential stress along the radial direction for different time parameters, initially 

tangential stress is on negative side due to compressive stress occurring at the inner region whereas goes on 

increasing towards outer radius due to maximum tensile stress. Fig. 5(e), depicts shear stress along the radial 

direction for different values of z , initially the shear stress attains maximum expansion due to the accumulation of 

thermal energy dissipated by sectional heat supply, which is further decreases of the outer surface. In Fig. 5(f), the 

shear stress along the angular direction for different values of  ,r  follows the nearly sinusoidal curve. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

  

 
(e) 

 
(f) 

Fig.5 

a) Thermal stress rr  along r for different values of z .b) Thermal stress rr  along time for different values of r . 

c) Thermal stress   along r for different values of  .d) Thermal stress   along time   for different values of .z  

e) Thermal stress 
r  along radius r  for different values of z .f) Thermal stress 

r  along   for different values of r . 

5    CONCLUSIONS 

In this article, we have described the theoretical treatment of thermal bending stress analysis for the simply 

supported annular sector plate with prescribed surface temperature on the top. The temperature distribution and the 

thermal deflection are used to determine the thermal stresses by classical methods. The expressions for the 

temperature distribution, thermal deflection and thermal bending stresses are obtained in a series form involving 

Bessel’s functions. The analytical technique proposed here is relatively simple and widely applicable compared with 

the methods proposed by other researchers. The mentioned results obtained while carrying our research are 

described as follows: 

1. The advantage of this approach is its generality and its mathematical power to handle different types of 

mechanical and thermal boundary conditions during large deflection under thermal loading.  

2. The value of rr  at the top face reaches a maximum and then it becomes constant itself at the boundary of 

the prescribed surface temperature. The value of  at the top face reached a maximum at the outer edge 

due to the accumulation of energy from the available sectional heat supply. The value of r  at the top face 

decreases of the outer surface. 

3. The maximum tensile stress shifting from central core to outer region may be due to heat, stress, 

concentration or available heat sources under considered temperature field. 

4. The aforementioned large deflection concept can be very beneficial in the field of micro-devices or micro-

system applications, planar continuum robots, predicting the elastoplastic bending and so forth.  
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