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 ABSTRACT 

 This paper studies axially symmetric vibrations of a liquid-filled 

poroelastic thin cylinder saturated with two immiscible liquids of 

infinite extent that is surrounded by an inviscid elastic liquid. By 

considering the stress free boundaries, the frequency equation is 

obtained. Particular case, namely, liquid-filled poroelastic cylinder 

saturated with single liquid is discussed.  When the wavenumber is 

large, the frequency equation is reduced to that of Rayleigh-type 

surface wave at the plane boundary of a poroelastic half-space. In 

this case, the asymptotic expressions of Bessel functions and 

modified Bessel functions are used. In both general and particular 

cases, the case of the propagation of Rayleigh waves in a poroelastic 

half-space is obtained.  The parameter values of Columbia fine 

sandy loam saturated with air-water mixture are used for the 

numerical evaluation.  In all the cases, phase velocity as a function 

of  wavenumber is computed and presented graphically. From the 

numerical results, some inferences are drawn.                      

  © 2019 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 N general, wave propagation problems in liquid-saturated  porous media is attracting  many researchers due to its 

importance in various diversified areas of Science and Engineering. These problems have been studied 

extensively in Soil Mechanics, Seismology, Acoustics, Structural Engineering, Geophysics, and Biomechanics. Pipe 

lines in the oil exploration and water supply systems may be surrounded by some kind of liquids. These pipe lines 

are cylindrical and filled with liquids. Study of wave propagation in liquid-filled cylindrical pipes surrounded by 

liquid provides some information about the strength of pipe lines since wave characteristics depend on the strength 

of the material.  Biot developed constitutive equations and the equations of motion in a  poroelastic solid saturated 

with a single fluid [1]. This well established theory could not address the issues in important domains, namely, 

Petroleum Engineering and Bone Mechanics, wherein porous solid is saturated with two or more fluids. To this 
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extent, Tuncay and Corapcioglu developed a theory of wave propagation in a poroelastic solid saturated by two 

immiscible Newtonian fluids in the Eulerian framework by employing the volume averaging technique [2]. A study 

of body waves in poroelastic solid saturated by two immiscible Newtonian fluids is presented [3]. In the paper [3], 

the existence of three compressional waves and one rotational wave in an infinite porous medium is shown 

analytically. Santos et al. proposed a method to determine the elastic constants for isotropic porous media saturated 

by two fluids [4]. Sahay et al. developed a set of equations to describe the low frequency seismic phenomenon in 

porous solid which is inhomogeneous and anisotropic by using the volume average technique [5]. Hunyga 

developed a general dynamical model for porous media saturated by two immiscible fluids [6]. Lo et al. derived a 

general set of coupled  partial differential equations to describe dilatational wave propagation through an poroelastic 

medium saturated by two immiscible fluids [7]. Propagation of axisymmetric waves through compressible, inviscid 

fluid contained in a cylindrical, elastic shell is studied by Lin [8]. Using exact three dimensional equations of linear 

elasticity, the frequency equation for the vibrations of a fluid-filled circular cylindrical shell is derived by Ram 

Kumar[9]. Sharma and Gogna solved the problem of elastic wave propagation in a cylindrical bore in poroelastic 

solid and derived the frequency equation for empty and fluid-filled bores [10]. Axisymmetric wave propagation 

along fluid-loaded cylindrical shells is investigated both theoretically and experimentally by Plona et al. [11]. The 

longitudinal waves in homogeneous anisotropic cylindrical bars immersed in a fluid are studied by Dayal [12]. The 

laws of propagation of axisymmetric normal modes in a hollow cylinder filled with and surrounded by fluid media 

are investigated [13]. Vashishth and Khurana studied the propagation of wave along a cylindrical bore hole 

embedded in an anisotropic porous solid saturated by viscous fluid [14]. Harmonic radiation from a spherical surface 

vibrating at the center of a fluid-filled circular cylindrical cavity is investigated [15]. The propagation of elastic 

waves along a cylindrical bore hole  filled with and without fluid embedded in an infinite porous medium saturated 

by two immiscible fluids is studied by Arora and Tomar [16]. In the paper [16], the dispersion equation of Rayleigh-

type surface waves along the boundary of a poroelastic half space saturated by two immiscible fluids is obtained. 

Rayleigh waves in poroelastic half space and a porous solid lying over an elastic solid are examined by Tajuddin et. 

al. [17,18]. In both the papers, it is assumed that porous solid saturated with a single fluid. A comparative dispersive 

study between the bone without marrow and bone with marrow is made in the framework of Biot's theory of 

isotropic poroelasticity by Malla Reddy et al. [19]. Axially symmetric vibrations of fluid-filled and empty 

poroelastic circular cylindrical shell of infinite extent are investigated by Ahmed Shah [20]. Flexural vibrations of 

poroelastic cylinder of various thicknesses immersed in a fluid are studied in the paper [21]. Vibrations in a fluid 

loaded poroelastic hollow cylinder surrounded by a fluid under plane strain conditions are investigated by Shanker 

et al. [22]. wave propagation in composite hollow sphere and fluid-filled sphere surrounded by fluid are analyzed in 

the papers [23, 24]. Radial vibrations of poroelastic cylindrical shell immersed in an acoustic medium is studied in 

the paper [25].  

In the present paper, axially symmetric vibrations of a liquid-filled poroelastic thin cylinder of infinite extent 

saturated with two immiscible liquids that is surrounded by an inviscid elastic fluid are investigated. Propagation of 

waves in a liquid-filled poroelastic thin cylinder saturated with a single liquid is recovered as a particular case. In 

both the cases, the frequency equation of Rayleigh wave is obtained. The rest of the paper is organized as follows. In 

section 2, governing equations and solution of the problem are presented. Boundary conditions and frequency 

equation are given in section 3. Particular cases are presented in section 3.1. Numerical results are discussed in 

section 4. Finally, conclusion is given in section 5. 

2    GOVERNING EQUATIONS AND SOLUTION OF THE PROBLEM 

Let ( , , )r z be the cylindrical polar coordinates. Consider a homogeneous, isotropic, infinite poroelastic thin 

cylinder saturated with two immiscible liquids loaded internally and externally by inviscid liquids. The axis of the 

cylinder is in the direction of z- axis as shown in Fig. 1. The equations of motion in the absence of body forces for 

low frequency wave propagation in a poroelastic solid saturated with two immiscible fluids are given under [16]: 

 
2

11 12 1 13 2 1 1 2 2 2

1
(( ) ) ( ) ( ) ( ) ,

3

s

fr s fr s s s s

u
a G a a G c c

t


        
             


u u u u v v v v

 
2

1

21 22 1 23 2 1 1 1 2
( ) ( ) ,s sa a a c

t




     
        



u
u u u v v

2

2

31 32 1 33 2 2 2 2 2
( ) ( ) ,s sa a a c

t




     
        



u
u u u v v

 

 

 

(1) 

 



                                                                                           Axially Symmetric Vibrations of a Liquid-Filled….                         274 

 

© 2019 IAU, Arak Branch 

where, 

 

11 12 21 1 1 2 2, ( ) / ,fr sa K a a K S A K D    13 31 2 1 2 1(1 )( ) / ,sa a K S A K D     

2 2

22 1 1 2 23 32 1 2 1 1

1

(1 )( ) / , (1 )(1 ) / ,s s

A
a K S K D a a K K S S D

S
       

 
2 2

33 2 1 1 1 2 2 1,

1

(1 ) (1 )( ) / , (1 )
(1 )

s s

A
a K S K D D K S A K S

S
       


 

2 2 2 2

1 1 1 1 2 1 2 2 1 1(1 ) / , (1 ) (1 ) / , / (1 ),s r s r sc S KK c S KK S             

2 1 1 1 2

1

Pr (1 ), Pr ( ),
d

A S S p p
dS

          

 

 

 

 

s



u  and 
i



u are displacement vectors in the poroelastic solid and in the liquid of phase i  respectively. 
s



v  and 
i



v are 

velocity of  solid phase and in the liquid of phase i respectively; s  is the volume averaged density of porous solid, 

i , i  and iK  are the volume averaged density, viscosity, bulk modulus of fluid phase i respectively. s  is the 

volume fraction of the solid, i  is the volume fraction for the liquid phase i respectively; K is the intrinsic 

permeability of solid  and riK  is the relative permeability of liquid phase i. frG is the shear modulus of solid and 

frK is the frame or drained bulk modulus, 1p 
and 2p 

 are the pressures of non-wetting liquid and wetting liquid. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Liquid-filled thin cylinder surrounded by a liquid. 

 

The stress in solid and the pressure in liquids are: 

 

11 12 1 13 2

2
( ) ( ( ) ),

3

T

s s fr s s sa a a I G
     

           u u u u u u I

 

1 21 22 1 23 2( ) ,sa a a
  

     u u u I  

2 31 32 1 33 2( ) ,sa a a
  

     u u u I   

 

 

 

(2) 

 

where I  is unit tensor matrix. For axially symmetric vibrations, let ( ,0, ),s s su w

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

u  and 

2 2 2( ,0, )u w


u  be the displacement vectors of solid, first liquid and second fluid, respectively; which are functions 

of r,z  and t. The pertinent components are obtained from the field equations Eq. (1) and are given under:  
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where   is the frequency of the wave, k is the wavenumber, t is time, i is the complex unity, 1 2 3 4, , ,A A A A  and 5A  

are all constants, ( )nK x  is the modified Bessel functions of second kind of order n, and 
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In Eq. (4), c is the phase velocity. Here poroelastic thin cylinder under consideration is loaded and surrounded by 

two different liquids. Therefore, we shall proceed  to find the stresses of a liquid. For axially symmetric vibrations, 

the displacement potential function    of a liquid satisfies the following equation: 
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The displacement components of outer liquid  ,( 0, )of of ofu w


u are obtained on similar lines, which are given 

under: 
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By substituting the displacement components from Eq. (3) into Eq. (2), the solid stresses and liquid pressures are 

obtained, which are 
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3    BOUNDARY CONDITIONS AND FREQUENCY EQUATION 

For perfect contact of solid and liquid at the interface, the displacements and stresses must be continuous. Thus the 

boundary conditions to be satisfied on the curved surface r a  to be stress free are turned to be as follows: 
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Substitution of Eqs. (6)-(10) into Eq. (11) result in a system of seven homogeneous equations in seven unknowns 
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3.1.1 Half space saturated with two liquids 
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0

(1 ) , 1,2,3,4,5, 0, (1 ) ,j j

f

c
B B j B B

V
       

 

 

12 14,B B are similar expressions as 11 13,B B with
2

1 1,  and 
2

3 3,   are replaced by 
2

2 2,   and 
2

4 4, ,   respectively, 

42 44,B B are similar expressions as 41 43,B B with
2

1 1,  and 
2

3 3,  are replaced by
2

2 2,   and 
2

4 4, ,   respectively, 

52 54,B B are similar expressions as 51 53,B B with
2

1 1,  and
2

3 3,  are replaced by 
2

2 2,   and
 

2

4 4, ,   respectively. 
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3.1.2 Half space saturated with a single liquid 

When the presence of one liquid, out of the two immiscible liquids and outer fluid are neglected, so that 

12 22 32 0, 0.of ofa a a V      Then the frequency equation Eq. (12) reduces to 

 

0, , 1,2,3,4,ijC i j   (14) 

 

where,  

 

2 2 2 1

11 11 12 1 1 0 1 1 1

22
(2 ( )( )) ( ) ( ),

3
fr fr fr

p
C G a G a p k K p r G K p r

r
       

13 15 14 16 21 31 22 22 23 25 24 31 51, , , , , 0, ,C A C A C A C A C A C C A        

32 52 33 34 41 61 42 62 43 44 66, 0, , , 0, .C A C C C A C A C C A        

 

 

12C are similar expressions as 11C  with 
2

1 1,p   and  
2

3 3,p   are replaced by 
2

2 2,p   and  
2

4 4, ,p   respectively. The 

frequency equation Eq. (14) is analogous to the Eq. (3.8) of the paper [19]. when ka  , the Eq. (14) reduces to 

the frequency equation of Rayleigh wave in a fluid-filled poroelastic half space saturated with single liquid, which is 

given under  

 

0, , 1,2,3,4,ijD i j 
 

11 11 12 12 13 15 14 16 21 31 22 22 23 25 24, , , , , , , 0,D B D B D B D B D B D B D B D       
 

31 51 32 52 33 34 41 61 42 62 43 44 66, , 0, , , 0, .D B D B D B D B D B D D B         

 

 

(15) 

4    NUMERICAL RESULTS
 

For numerical work, we consider poroelastic thin cylinder saturated with non-viscous liquids. In this case,  

0,j  which implies 0, 1,2.jc j 
 
Frequency equations are investigated for a cylinder made up of Columbia fine 

sandy loam saturated with air-water mixture [16]. The physical parameters for the above solid are given in Table 1. 

Oil is mostly available in sandstone reservoirs. Cylindrical casing pipes containing perforations are used to pump the 

oil to the surface. These casing pipes sometimes made of sandstone itself.  The velocity of sound in water ( )ifV  and 

kerosene ( )ofV  are taken to be 31.432 10 /m s  and 31.3251 10 /m s , respectively. Density of water ( )if  and kerosene 

( )of  are taken to be 31000 /kg m  and 3820.1 /kg m , respectively. Employing these values in frequency equations, 

we obtain a implicit relation between phase velocity and wavenumber.  

 
Table 1 

Parameter values. 

 

Material parameter value 

frK  9 21.44 10 /N m  

sK  9 235 10 /N m  

1K  6 20.145 10 /N m  

2K  9 22.25 10 /N m  

frG  9 21.02 10 /N m  

s  32650 /kg m  

1  31.1 /kg m  

2  3997 /kg m  
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Bisection method is used to solve the frequency equations and numerical process is performed in MATLAB. 

Numerical results are depicted graphically in Figs. 2-3. Fig. 2 depicts variation of phase velocity against 

wavenumber in the case of liquid -filled poroelastic thin cylinder saturated with two liquids surrounded by a liquid. 

From Fig. 2, it is seen that the phase velocity is periodic in nature. Fig. 3 depicts variation of phase velocity against 

wavenumber in the case of liquid-filled poroelastic thin cylinder saturated with a single liquid. From Fig. 3, it is 

observed that the phase velocity is periodic in nature. when ka  , liquid-filled thin cylinder immersed in a liquid 

reduces to half-space separating  two liquids. The phase velocity of the Rayleigh mode at the half space is computed 

and are depicted in the figures. From figures, it is seen that the phase velocity of Rayleigh wave in the case of half 

space saturated with two liquids is more than that of half space saturated with a single liquid.  
 

 

 

 

 

 

 

 

Fig.2 

Variation of phase velocity against wavenumber in the case 

of liquid-filled poroelastic solid saturated with two liquids 

surrounded by a liquid. 

 

  

 

 

 

 

 

 

 

Fig.3 

Variation of phase velocity against wavenumber in the case 

of liquid-filled poroelastic solid saturated with a single 

liquid. 

 

 

5    CONCLUSIONS 

Axially symmetric vibrations in a liquid-filled poroelastic thin cylinder saturated with two immiscible liquids 

surrounded by a liquid are investigated in the framework of Tuncay and Corapcioglu. Frequency equation in the 

case of poroelastic cylinder saturated with a single liquid is obtained as a particular case. In both the cases, Rayleigh 

waves in the poroelastic half space are investigated. Phase velocity against wavenumber is computed and depicted 

graphically. From numerical results, it is observed that the phase velocity of Rayleigh mode in the case of half space 

saturated with two liquids is more than that of half space saturated with a single liquid. 
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