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 ABSTRACT 

 Iso-geometric analysis is the recent development in the field of 

engineering analysis with high performance computing and greater 

precision.  This current research has opened a new door in the field of 

structural optimisation.  The main focus of this research study is to 

perform topology optimisation of continuum structures in civil 

engineering using Iso-geometric analysis. The continuum structures 

analysed here in this study are reinforced concrete, steel and laminated 

composite plates.  Reinforced concrete is a rational union of concrete 

and steel.  Topology optimisation of reinforced concrete structures is 

an emerging area of study to determine the optimal layout of material 

in the concrete domain.  Laminated structures are made of several 

layers of material and bonded to achieve high stiffness and low weight 

to strength ratio. The deformed shape at the optimal state can be 

determined with topology optimisation of laminated composites.  The 

formulation for composite plates is done using Kirchhoff thin plate 

theory without any shear contribution.  B-splines are used to model the 

geometry.  The objective is to optimise the energy of the structure and 

optimality criteria is used to calculate the newer values of relative 

densities.  First order sensitivity analysis is performed to determine the 

newer values of objective function.  The code is written in MATLAB® 

and a few problems have been solved with different domains.  The 

results are verified and have shown a good agreement with those in the 

literature.                       © 2021 IAU, Arak Branch. All rights reserved. 

 Keywords: Reinforced concrete; Iso-geometric; Topology; 

Optimisation; Laminates. 

1    INTRODUCTION 

 EINFORCED concrete structure is a rational union of concrete and steel combined to act jointly. The joint 

action of concrete reinforced by steel bars in a reinforced concrete section will carry the loads and transfer them 

to the supports [1]. The arrangement of steel within the concrete has to address the nature and magnitude of the 
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stresses produced within the material domain. This arrangement of steel has to be a valid arrangement and should 

have a rationale behind the arrangement.  Several theories have been applied to design the arrangement of steel such 

as strut and tie model have been used in the past.  The strut and tie model is a basic structure which is an idealisation 

of the given domain to carry the applied loads safely [2]. The strut and tie model is a truss model with struts carrying 

the compressive loads and ties carrying the tensile forces. The strut and tie models provide us with the basic 

understanding of the domain and its behavior under loading [3]. The strut and tie models can be prepared for a single 

loading.  In case of multiple loads, the strut and tie models can be overlapped for each individual loading and a final 

form can be obtained.  This becomes very repetitive and consumes lot of time and effort. Topology optimisation can 

be effectively useful in case of reinforced concrete domains carrying multiple loads. The optimisation process, 

evolutionary structural optimisation is performed with strain energy as the objective function.  The elements which 

do not participate in the load carrying are gradually eliminated from the domain.  The final distribution of material 

should be able to carry the given loading safely so that the stresses developed are well within the permissible limits 

[4]. Mohammed et.al. [5] did their study on optimisation of footing and retaining wall.  Their research gave a 

modified Particle swarm optimisation (PSO) and compared the results with the previous studies which proves the 

validity and reliability of the algorithm. The objective of the study by James [6] is development of a new procedure 

to design reinforced concrete flat plate systems. The designs were compared with other flat plate modelling 

techniques including ACI direct design and equivalent frame techniques.  Kwak and Filippou [7] did their study on 

motonic behavior of reinforced concrete beams slabs and beam-column joints sub assemblages. Concrete and steel 

are represented by different models which are combined together using a model to describe the combined behavior.  

The authors present a new procedure for layout design of reinforcement in concrete structures. Classical topology 

optimisation based on ground structure approach is applied to determine the optimal topology. Concrete is 

represented by a gradient enhanced continuous damage model and reinforcement is modeled as elastic bars 

embedded in concrete. Kaveh [8] present his work on optimal design of three dimensional multi-storied reinforced 

concrete building using charged system search, a meta-heuristic algorithm. The objective function is to minimise the 

weight of the structure.  Pre-determined sections available are assumed for beams and columns and checked whether 

the section is acceptable or not.  Kim and Baker [9] studied the optimisation of reinforced concrete structures using 

evolutionary structural optimisation. It accounts for bimaterial orthotropic nature of reinforced concrete by 

employing principal stress to drive optimisation. The optimisation formulation in his study also allows material to be 

added, optimising towards a fully stressed design. Oded amir [10] presented a gradient based continuum damage 

model for concrete and the reinforcement bars are embedded. Adjoint sensitivity analysis is derived in complete 

consistency with respect to path-dependency and the non-local model. Oded [11] presented in his model the 

reinforcement is represented by a set of all acceptable positions of rebars and are embedded into the continuum 

concrete domain.  Both concrete and steel are designed simultaneously combining truss based and continuum-based 

methods. Oded Amir and Bogomolny [12] did their research study on computational procedure for optimal 

conceptual design of reinforced concrete structures based on topology optimisation with elastic-plastic material 

modelling. Several examples have been solved to illustrate the capability and potential of proposed procedure.  

Q.Q.Liang et.al.,[13] present performance based evolutionary topology optimisation to automate the optimal strut 

and tie model with displacement constraints. The element strain energy is calculated for element removal, while a 

performance index is used to monitor the evolutionary process. The optimal topology of strut and tie model is then 

determined. Several examples are solved to demonstrate the capability of the proposed method. Kamal and Adeli 

[14] presented a review of cost optimisation of concrete structures. These structures include beams, slabs, columns, 

frame structures, bridge, water tanks, folded plates, pipes, and shear walls and the important and interesting results 

are presented. Sara [15] did her study on artificial neural networks to perform cost optimisation of simply supported 

beams designed according to ACI-318-08 code.  Computer models have been developed for structural optimisation 

of reinforced concrete structures using NEURO SHELL-2 software. Andres Guerra [16] presented the optimal sizing 

and reinforcing for beam and column members in multi-bay and multi-storey reinforced structures. A non-linear 

program searches for minimum cost solution that satisfies ACI code is used to perform the optimisation. Bikramjit 

[17] did his research work on optimisation of reinforced concrete doubly reinforced beams subjected to imposed 

loads.The design variables are taken as discrete variables to minimise the cost of the structure. Kaveh [18] presented 

big bang crunch algorithm to optimise reinforced concrete planar frames under gravity and lateral loads. The design 

is done according to ACI 318-08 code. Second order effects are also considered for compression members and 

column are checked for slenderness and end moments are magnified wherever necessary. Three building frames are 

optimised using big bang crunch algorithm and the results are compared with those obtained using genetic 

algorithm. Yousif [19] did his research on optimal design of continuous beams based on specifications of ACI 

satisfying the strength, serviceability, ductility, and durability. The dimensions of reinforcing bars are introduced as 

design variables considering flexure, shear and torsion effects on the beam.  The optimum design results are in good 
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agreement with those in the literature. McCarthy and Cluskey [20] developed a new procedure to perform 

optimisation of reinforced concrete beams using particle swarm optimisation with multiple constraints following the 

specifications of Australian code 3600. Karthiga [21] presents finite element analysis of monotonic behavior 

reinforced concrete beams, slab and beam-column joint assemblages. Concrete and steel are represented as separate 

models which are combined together with an interaction between steel and concrete through bond-slip to describe 

the behavior of reinforced concrete composite material. The study has shown that the effect of tension stiffening and 

bond-slip are very important and should be included in finite element models of reinforced concrete structures. NSS 

and Chandrasekhar [22] did their work on step by step approach to analyse a two dimensional planar structure.  The 

results of Iso-geometric analysis exactly matched with the results of finite element analysis. Chandrasekhar [23] 

presented his work on sizing optimisation of beams using Iso-geometric analysis.  NSS and Chandrasekhar [24] 

presented their work on topology optimisation of continuum structures. The Michelle truss problem and a three-

dimensional cube problem were analysed and optimised. The results obtained using Iso-geometric analysis were 

better than the optimisation results obtained by performing finite element analysis. 

The recent developments in the field of materials has led to the invention of composite structures. These 

materials have been used in aerospace to civil engineering. Laminated structures are made in several layers and 

bonded to achieve high stiffness [25]. Laminated composites provide convenient design with tailor made layers, 

stacking sequence to obtain the design strength characteristics useful for several engineering applications.  The 

analytical solutions can be obtained by using standard formulation to simple standard cases, but in real world 

complex problems needs complex analysis and solutions. There is a need to look for a analysis method which can 

provide us with accurate solutions [26]. Iso-geometric analysis is a recent computational approach that offers the 

possibility of giving solutions to complex problems. IGA offers the possibility of integrating the Nurbs based 

computer aided design tools with the finite element analysis.  This comes from the family of meshless methods and 

overcome the drawback of finite element method [27].The surfaces can be represented using higher order 

polynomials and construct the shape of the structure.  In the present formulation, cubic order polynomials are used 

with C
2
 continuity condition.  A mesh for a Nurbs patch is formed by the product of knot vectors.  The knots divide 

the design domain into elements. The control points are associated with the the basis functions that define the 

geometry.  The boundary conditions can be applied to the control points [28]. Accurate modeling and prediction of 

the response of the laminated structures is a complex task because the composite laminates are orthotropic in nature.  

Meshless methods for the analysis of laminated plates are gaining increasing interest because of higher order 

approximation and refinement to obtain accurate results [29].  The formulation used here is classical laminated plate 

theory known as Kirchoff theory of thin plates [30]. Dufour et.al. [31] proposed a 3D geometric based method to 

study the variation of stress through the thickness. This method used a C
0
 continuity of each ply of the laminate.  

The results have shown a good agreement when applied on slender composite stacks with a large number of layers.  

The method proves computationally effective over traditional layer wise methods and where the researchers are 

looking for better alternatives, this method proves to be an alternate solution. Navid et.al. [32] in his study on 

functionally graded plates, has used NURBS and performed static, vibration, buckling analysis. The material 

properties are assumed to be graded in the thickness direction and the effective properties are computed using Mori-

Tanaka scheme.  The solution obtained has shown good agreement with the three dimensional analytical solution.  A 

detailed numerical study has been performed to study the influence of gradient index, plate thickness and plate 

aspect ratios and determine the global response of the laminate.  Xuan et.al. [33] did his study on buckling analysis 

of generally laminated composite beam with various boundary conditions. The model is detailed by applying the 

principle of virtual work.  Numerical results of critical buckling loads and mode shapes are presented.  The impact 

of modulus ratios, fibre angles, stacking sequence and slenderness ratio on the critical buckling effects are evaluated.  

The results have shown a good agreement with those in the literature. Madhukar and Amirtham [34] did their 

research on bending and vibration analysis of plates and laminates. They presented meshless natural Galerkin 

method to take the advantage of geometric flexibility of meshless method. The nodal connectivity is imposed on 

nodal sets with reduced size, reducing significantly the computational effort required to construct shape functions.  

Several numerical examples are presented to demonstrate the efficacy of the present method to calculate stresses, 

deflections. Weeger et.al. [35] presented a novel approach of isogeometric finite elements. A non-linear framework 

based on the harmonic balance principle is used here in their study on non-linear Euler Bernouli beam vibrations.  

They demonstrated that Isogeometric finite elements with B-Splines in combination with harmonic balance method 

gave good results. Alessia et.al. [36] did their study on using Isogeometric collocation method over Galerkin method 

to reduce the computational effort. The plates are modelled with one element through the thickness to guarantee the 

results of in-plane stress components.  The continuity demand is fully met and excellent results are obtained using a 

minimal number of collocation points per direction. Saeed et.al. [37] used isogeometric finite element method to 

perform free vibration and buckling analysis of laminated composite plates. The essential boundary conditions are 
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formulated separately using Lagrange multiplier method, while an orthogonal transformation technique is applied to 

impose boundary conditions. Several problems have been solved with different boundary conditions, fibre 

orientation, eigen modes to check the efficiency of the proposed method. The results obtained are in good agreement 

with the analytical method or other numerical methods in the literature. Amir and Mohammad [38] present their 

study on optimisation of laminated plates using NURBS to model the geometry and to calculate the field variables.  

Boundary conditions are imposed using collocation method.  A few examples are evaluated using proposed method 

and verified using element free Galerkin and theoretical method.  The optimisation of orientation, number and 

stacking sequence of lamina is performed using genetic algorithm with a multi-objective structural optimisation 

problem. Chien et.al. [39] did their study on composite laminate sandwich plates using classical laminate plate 

theory and Iso-geometric analysis. B-Splines can be used to approximate geometry and displacements and provide a 

flexible way to perform degree elevation and refinement. In the present formulation, only non-dimensional 

displacement is evaluated at each control point. Several numerical examples are illustrated to check the performance 

of the present method with other published methods. Farshad and Roger [40] did their research on non-linear shell 

elements.  They proposed two formulations for modelling thin laminated composite shells.  The composite shell is 

modelled in the framework of equivalent single layer theory. The solution is obtained using quadratic NURBS based 

elements to ensure the smoothness required for analysis of thin shells. The accuracy of the proposed method is 

verificed with several numerical examples. Shuang [41] did his study on multi-level optimisation of laminated 

composite thin-walled structures. The aim of this research is to apply the iso-geometric analysis to the multilevel 

optimisation design. This new method has high efficiency and high safety for industrial design of thin-walled 

structures. Hitesh [42] did his research on composite structures and developed code to perform stress analysis of 

composite and sandwich beams and plates. Nurbs based Iso-geometric analysis both linear and non-linear code is 

developed for static and dynamic analysis of laminated composite plates. Stress analysis of plates with a hole and 

stress concentration factor is calculated.  The results are in good agreement with those obtained in the literature 

using other methods. Abha and Anup [43] did their study on thermo-elastic behavior of laminated sandwich 

composite plates. They used iso-geometric analysis to perform a parametric study with quadratic, cubic and quartic 

NURBS elements with respect to temperature. Changes in deflections, stresses and moment resultants are analysed 

with an aim to understand the response of laminated composite plate. Several examples have been solved and the 

results are compared with those existing in the literature and validate. Cesar [44] in his research work on composites 

focusses on two areas pertaining to the field of structural analysis and other within the field of structural health 

monitoring. His work is divided into two parts. The first portion is focused on Nurbs based analysis of composites. 

The second part is in the field of delamination detection in carbon fibre reinforced polymer plates. Several numerical 

and experimental analysis are performed to study the delamination detection through the use of piezo-electric 

sensors and actuators. They have used a 4-node quadrilateral delaminated composite plate element for damage 

detection. Mode shape changes, frequency shifts, frequency response function changes are computed to study the 

effect of delamination. Josef [45] in his research work on shape optimisation of shell structures using Iso-geometric 

analysis. Another co-operation project with the structural formulation integrated with the environment and is applied 

to a three dimensional simulation of a wind turbine blade rotating in air flow. This example shows how the 

application to large industrial structures can be performed.  Loc et.al. [46] did their research work on Isogeometric 

analysis with third order shear deformation theory for thermal buckling of composite laminates. TSDT accounts for 

shear deformation without shear correction factor. The material properties of plates are assumed to vary according to 

power law distribution of volume fraction of constituents. The temperature field through the plate thickness is 

described by polynomial series.  Numerical results of circular and rectangular plates are provided to validate the 

proposed model.  Vinh Loc [47] did his research work on composite laminates using higher order shear deformation 

theory and Iso-geometric analysis.  His work is divided into four parts.  Firstly, bending analysis using HSDT 

models secondly the elastic instability behavior of functionally graded plates under in-plane comparision load is 

investigated.  Thirdly, dynamic problems related to free and forced vibrations are solved.  Finally , cracked plates 

are modelled and analysed using general shear deformation theory. Michael et. al. [48] in his work prevented a new 

method to determine the optimal segmentation of shell structures built from precast patches made from fibre 

reinforced concrete using iso-geometric analysis.  The procedure is integrated with Rhino3D and successfully 

demonstrated. Iso-geometric analysis is applied with a damage model to simulate progressive failures by X.Deng 

[49].  The proposed methodology is valid for thin shells where damage occurs without significant delamination. The 

results are validated against experimental data in the context of composite damage analysis.  Kiani [50] presented 

his study on thermal post-buckling analysis for composite laminated plates reinforced with graphene sheets.  He 

used third order shear deformation plate theory. The material properties are estimated by refined Haptin-Tsai 

approach which contains efficiency parameters. Thermally induced post buckling curves of composite plate 

reinforced by graphene are provided for different aspect ratios, side to thickness, boundary conditions. They found 
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that X-pattern of graphene reinforcement results in highest load and least post-buckling deflection. Pavan and 

Mallikarjun [51] did their study on Iso-geometric collocation methods to perform the analysis using Reissner-

Mindlin plate theory. The collocation method discretises the governing equation in strong form and retain inherent 

IGA features by using Non-uniform rational B-Splines.  H.Liu [52] presented his work on IGA-SIMP method for 

stress-constrained topology optimisation.  He formulated the optimisation problem as a minimisation problem under 

maximum Von-Mises stress constraint.  He compared the stress obtained using IGA and FEA. He presented several 

examples using bi-linear quadratic elements and optimised using IGA-SIMP method.  The results obtained using the 

proposed method IGA-SIMP are in good agreement with those given in the literature. Omer [53] in his research 

presented the geometrically nonlinear static analysis of thin rectangular plates on Winkler-Pasternak elastic 

foundation.  The differential equations have been solved using discrete single convolution method. The geometry of 

a typical rectangular plate resting on Winkler elastic foundation is modeled and the governing equations are derived. 

The effect of boundary conditions is studied on the response of the structure measured in terms of the deflections. 

The parameters K and G of the Winkler and Pasternak foundation has been found to have significance influence on 

the displacements of the plates.  Omer and Okyay [54] applied discrete singular convolution method for numerical 

solution of the equation of motion of Timoshenko beam. The effect of different boundary conditions is studied in 

detail.  They studied the variation of frequency with h/L ratios for several boundary conditions and they found that 

they effect is more visible in higher modes than in the first mode when the ratio of h/L is higher. DSC is important 

for large-scale computations and is a promising approach for computational mechanics. Bekir Akgoz and Omer 

Civalek[55] presented their study on microstructure-dependent buckling behavior of single-walled carbon nanotubes 

surrounded by a two-parameter elastic foundation. They performed a parametric study to indicate the effects of 

diameter-t0-length ratio, shear deformation, shear correction factor and foundation parameters on buckling loads of 

single walled carbon nano tubes. Higher order shear deformation theory is used in this study.  It is found that the 

classical normalised buckling loads corresponding to all shear deformation theories is nearly equal to one for smaller 

D/L but as the ratio of d/L increases there is a decrement in the normalised buckling loads.  Shear deformation is 

more significant on the buckling loads for shorter carbon nanotubes.  Helong et.al. [56] did their research on thermo-

mechanical parametric instability of functionally graded multilayer GPLRC plates under a periodic uniaxial force 

with a uniform rise in temperature.  Shen et.al. [57] did their study on nonlinear vibration behavior of uniformly 

distributed and functionally graded graphene reinforced laminated cylindrical panels. A parametric study is 

conducted and they determined that the ratio of nonlinear to linear frequency ratios are increased by increasing the 

temperature. 

Section 1 discussed the existing literature on the optimisation of reinforced concrete structures. In the section 2, 

the theoretical background on Isogeometric analysis is presented. Section 3, the flowchart showing the approach 

followed to conduct this study. The assumptions made are stated here. In section 4, several problems having 

different reinforced concrete domain have been analysed and the optimal results are discussed.  In the section 5, the 

static analysis is performed and the results are compared with those given in the literature. In section 6, the topology 

optimisation of simply supported laminated composite square plate is performed for four different lamina.  In 

section 7, the conclusions are presented and the future scope of the study is given.  Towards the end of the paper, the 

references followed to conduct this study are given in order. 

Objectives of the study: 

1.    To model and analyse the reinforced concrete structures using Isogeometric analysis. 

2.    To perform topology optimisation with compliance as the objective function using cubic B-splines and 

determine the optimal distribution of material. 

3.    To plot the stress distribution for the optimal distribution of material within the material domain.  

4.    To determine the performance index of the optimal distribution based on Compliance. 

5.    To perform topology optimisation of SSSS laminated composite plates using cubic B-splines subjected to 

sinusoidal loading.  

Scope of the study: 

1.   The study is valid within the linear static elastic limits only. 

2.   Hooke’s law is valid. 

3.   The study does not include buckling analysis. 

4.   The effect of temperature and moisture are not included in the analysis. 

5.   The age of reinforced concrete material is not included in the analysis. 
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2    THEORETICAL BACKGROUND 

In the previous section, the literature review has been done.  In this section, the theory and the formulation necessary 

to analyse the given domain using Iso-geometric analysis is presented here. 

2.1 Connectivity analysis [58]  

Connectivity analysis will identify all the elements above the threshold value and also has a face connectivity with 

other elements connecting all the seed elements within the given continuum.  In other words, all the elements having 

an edge or a corner connectivity and/or not connected will be assigned a very small density value equal to 1e-5 

during the analysis.  The Fig. 1(a) shows an example of elements that are not connected and Fig. 1(b) shows two 

elements connected with a face connectivity in common. 

 

 

 
(a) 

 

 

 

 
(b) 

 

Fig.1 

(a) Elements not connected. (b) Elements connected - Face connectivity. 

 

FE analysis is performed using a constant meshing technique in which all the elements in the structure will be 

considered during the analysis and all the elements without connectivity are assigned a lower density value of 1e-5.   

2.2 Theory behind the knot vectors  

The theory behind the knot vectors for a quadratic and a cubic curve are given here.  

2.2.1 Quadratic  

For degree of the curve is p = 2, the support is over p+1 knot spans.  The knot vector of p+1+1 knots is required to 

calculate the basis functions.   

The element is defined using a knot span and the basic functions are valid for a knot span. The knot span is 

different for each element and the corresponding basis functions have to be calculated separately for each element. 

For example, p=2 and knot vector is {0, 0, 0, 1/4, 2/4, 3/4, 4/4, 4/4, 4/4}.  The number of local knots is equal to four 

per element, which means that the basis functions are (N1 N2 N3) as shown in Table 1. 
 

Table 1  

For p=2, the local knot vector per element. 

Local knot vector Greville Points for Identity parameterization only 

                 0 0 0 1/4                                                               0.5 * (0+0 ) = 0 

                 0 0 1/4 2/4                                                               0.5 * (0+1/4) = 1/8 

                 0 1/4 2/4 3/4                                                               0.5 * (1/4+1/2) = 3/8 

                 1/4 2/4 3/4 1                                                               0.5 * (1/2+3/4) = 5/8 

                 2/4 3/4 1 1                                                               0.5 * (3/4+1) = 7/8 

                 3/4 1 1 1                                                               0.5 * (1+1) = 1 

 

 

 

Fig.2 

The number of local knots for the quadratic curve. 
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The IGA elements are rotation free elements. The continuity can be maintained by having knots in common in 

Fig.2.  For a quadratic degree, we have two in common and for a cubic degree curve we have three in common. 

2.2.2 Cubic curve 

For degree of the curve is p = 3, the support is over p+1 knot spans. The knot vector of p+1+1 knots is required to 

calculate the basis functions. The element is defined using a knot span and the basis functions are valid for a knot 

span.   

The knot span is different for each element and the corresponding basis functions have to be calculated 

separately for each element.  For example, p=3 and knot vector is {0, 0, 0, 0, 1/4, 2/4, 3/4, 4/4, 4/4, 4/4, 4/4}. The 

number of knots is equal to five per element, which means that the basis functions are (N1 N2 N3 N4) as shown in 

Table 2. 

 
Table 2  

For p=3, the local knot vector per element. 

Local knot vector Greville Points for identity parameterization only 

               0 0 0 0 1/4                                                          (1/3) * (0+0+0 ) = 0 

               0 0 0 1/4 2/4                                                          (1/3) * (0+0+1/4) = 1/12 

               0 0 1/4 2/4 3/4                                                          (1/3) * (0+1/4+1/2) = 1/4 = 3/12 

               0 1/4 2/4 3/4 1                                                          (1/3) * (1/4+1/2+3/4) = 1/2 = 6/12 

               1/4 2/4 3/4 1 1                                                          (1/3) * (2/4+3/4+1) = 3/4 = 9/12 

               2/4 3/4 1 1 1                                                          (1/3) * (3/4+1+1) = 11/12 

               3/4 1 1 1 1                                                          (1/3) * (1+1+1) = 12/12 

 

 

 

 

Fig.3 

The number of local knots for a cubic curve. 

 

The IGA elements are rotation free elements.  The continuity can be maintained by having knots in common in 

Fig.3.  For a quadratic degree, we have two in common and for a cubic degree curve we have three in common. The 

problems in structural mechanics requires control points to be defined at the points where deflection has to be 

calculated.  The control points can be defined at equal intervals over the entire length of the beam.  The behavior can 

be non-linear in such cases. 

2.3 Nurbs formulation 

The basic theory is discussed in this section. The NURBS basis functions and the parent to parametric mapping are 

discussed. The strain displacement matrix is presented and then form the stiffness matrix. Chandrasekhar [23] 

presents an example of a two-dimensional plate continuum is analysed using Iso-geometric analysis. The NURBS 

basis functions are used and are discussed first. The stiffness matrix is derived in a step wise manner. The solution 

for the displacement vector at each node is compared with the results from the standard finite element analysis. The 

results show that the nodal displacement is in good agreement with the results obtained from IGA and the nodal 

displacements using standard FEA.   

2.3.1 Basis functions [24]  

The basis functions are given by 

 

1

,0

1
( )

0

i i

i

if
N

otherwise
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   

  
 

       
 

 

 

For p = 1, 2, 3, …. They are defined by 
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This is referred to as the Cox-de Boor recursion formula. 

Derivatives of B-Spline Basis functions. The derivatives of the basis functions are given by 
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Generalize to higher order derivatives [59]. The generalized higher order derivatives of the basis functions is 

given by 
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, , 1 1, 11 1

1 1

( ) ( ) ( )
k k k

i p i p i pk k k

i p i i p i

d p d p d
N N N

d d d
  

     

 

   

   

   
    

    
           

 

(2) 

 

B-spline curves. The B-spline curve is given by 
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B-spline surfaces. B-spline surfaces is given by 
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B-spline solids. B-spline solids is given by 
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2.4 Performance index 

Liang [60] in his work on Performance based topology optimisation of reinforced concrete structures presents the 

measures of performance of the structure based on compliance of the structure. 

If W0 denotes the weight of the structure and Wi denotes the weight of structure in each iteration.  If C0 denotes 

the compliance of the structure and Ci denotes the compliance of the structure at each iteration. Performance index 

of the structure is defined as: 
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(4) 

 

The performance index of the structure indicates the non-dimensional measure of the efficiency of the structure 

in carrying the load and transfer to the supports effectively. 

2.5 Formulation of laminated plates 

Let   be the domain in R
2
 by the mid plane of the plate and u, v, w denote the displacement components in x, y, z 

directions respectively. Using the Kirchoff theory [61] the displacements at any point can be expressed as: 
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( , , ) ( , ) ( , )o xu x y z u x y z x y 
 

( , , ) ( , ) ( , )o yv x y z v x y z x y   

( , , ) ( , )w x y z w x y            

 

(5) 
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. In-plane strains through the following equation 
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(7) 

E11 and E22 are Young’s modulus of elasticity parallel and perpendicular to the fibre orientation. G12 is the shear 

modulus and are 
12  and 

21  are Poisson’s’ ratios [62].  As shown in the Fig.4, the layers of lamina are given, the 

distance is measured from the centre of the lamina. 

 

 

 

 

 

 

 

Fig.4 

Showing the layers of lamina. 
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(8) 

 

The value of z is measured from the centre of the lamina as shown in the Fig.4. Using the NURBS basis 

functions, both the description of the geometry for the physical and the displacement field are expressed as: 
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where, n, x, m is the number of basic functions.   

( )Tx x y  is the physical coordinate vector, ( , )AR    is rational basic functions and  
T

A A A Aq u v w  is 

the degrees of freedom of hu  associated to the control point A. 

The strains can be expressed to following nodal displacements as: 
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AB  and  b

AB are membrane and bending strain displacement matrices using the derivatives of the basis function 

[62]. Global stiffness matrix 
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For sinusoidal loading, 0 sin( / ) sin( / )p p x a y b  . q is the global displacement vector 

2.6 Derivation for second derivative 

We know that 
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Differentiating w.r.t. ξ 

 
2

2

d N d dN dx d dN dy

d dx d d dy dd    

    
      

     
   

dN dN
P Q

dx dy
 

      

2 2 2

2 2 2

d N dP dx dP dy dx dQ dx dQ dy dy dN d x dN d y

dx d dy d d dx d dy d d dx dyd d d       

   
        
   

   

2 22 2 2 2 2 2 2

2 2 2 2 2

d N d N dx d N dx dy d N dx dy d N dy dN d x dN d y

d dxdy d d dxdy d d d dx dyd dx dy d d       

   
        

   
  

2 22 2 2 2 2 2

2 2 2 2 2
2

d N dx d N dx dy d N dy d N dN d x dN d y

d dxdy d d d dx dydx dy d d d      

   
        

   
         

 

 

 

 

Similarly, 
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Differentiating Eq.(23) w.r.t. η 
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3    APPROACH  

Continuum optimisation problems are usually classified as NP Hard Problems, which mean non-deterministic 

polynomial problems which usually cannot be solved manually [63]. The objective here is to perform topology 

optimisation of continuum structures using Isogeometric analysis instead of applying finite element analysis. The 

topology optimisation as shown in the Fig.4 is one of the important steps in the Integrated optimisation process in 

order to arrive at a final layout of the material distribution. Integrated optimisation [5960] process involves several 

stages. The process begins with problem definition where in the real time need of the design is clearly defined. The 

physical aspects of the problem is identified, the four properties of the domain namely the geometry, the material 

properties, the forces acting and the support conditions are identified. The formulation of the problem, and the 

assumptions involved are identified at this stage. The next phase of the integrated optimisation is boundary 

smoothing which is done using Auto CAD. The topology output is refined and is given a definite shape and 

dimensions.  The final model from Auto CAD is then used to reconstruct the solid model which is normally done 

using a finite element analysis package namely Solid Works ® from Dassault systems (DSS).  The solid model is 

analysed to check for permissible stresses and displacements. Upon successful analysis, the shape optimisation of 

the solid model can be performed using Design Works, a commercial package. The final distribution of material 

design can then be sent to the casting division for a prototype. 

The main focus of this study is to perform topology optimization of a few basic problems in civil engineering 

applying Isogeometric analysis.  The topology optimisation requires the sound knowledge of Isogeometric analysis.  

The literature review is done extensively and the existing work by several authors in the field of civil engineering is 

thoroughly reviewed [66]. The basic problems in Civil Engineering were solved and different types of problems 

were identified, and segregated. 

As shown in the Fig.5 the approach model and formulation for each type of problem is performed first and then 

we applied the isogeometric concept to analyse the domain. The basis functions were derived using NURBS which 

define the geometry of the domain. The same basis functions were used to compute the displacements, and the co-

ordinates at any point of the structure. For each problem, the degree of the NURBS and the knot vector are 

determined first and the mathematical formulation is done.  The necessary governing equations were developed and 

a process to analyse as shown in the Fig. 6 is developed and the coding is done in MatLab® to solve the design 

domains. 

The optimisation process flowchart connector (C) has been developed as shown in the Fig.7. The process 

parameters and variables have been identified. The process begins with the initial set of values for the variables.  

The parameters such as lower limit for the elemental stress at the centroid and the lower limit for the relative density 

of each element are set initially at the beginning of the flowchart. The material properties namely the Young’s 

modulus of elasticity and the Poisson’s ratio are taken as input.  The initial values for the relative density variable of 

each element is generated. The process is repeated until the convergence criteria which is the number of iterations is 

reached.  The graph showing the convergence of the objective function with the objective function on Y-axis and the 

number of iterations on X-axis are plotted.   

3.1 Assumptions for plates carrying in the plane loading 

1. The reinforced concrete section is assumed to be fully cracked section at ultimate state. 

2. The principal stress is calculated at the centroid of each element and verified with the allowable principal 

stress for the given material. 

3. The material is assumed to be homogeneous and Isotropic. 
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3.2 Problem statement 

3.2.1 Plates carrying in plane loading 

The aim of the project is to find an optimal linearly elastic structure with the help of isogeometric analysis which 

gives more accurate solutions compared to finite element analysis. Optimal solution refers to a design which is light 

but strong and rigid at the same time i.e mathematically our goal is to minimize the weight of the structure that is 

indirectly maximizing the total forces that are acting on the structure. 

An objective function describes the main aim of the model whether to minimize or maximize the objective 

function and also our objective is to minimize the weight of the structure subject to constraints as well. Minimize, 

the compliance of the structure subjected to  
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i  is the density parameter of the element,  

iv  is the volume of the element, and   is the density of the 
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  , where,  

aV  is the allowable material in percentage, and v  is the 

volume of the structure 
min0 1e    , where   is stress constraint,u  is displacement constraint, v is volume 

constraint and ρ is relative density with given state variables Young modulus ‘E’ and Poisson’s ratio ‘ ’ along with 

Neumann and Dirichlet boundary conditions.  

The objective is to find the minimum weight of the structure subjected to the constraint on the amount of 

material used and the elemental stresses and nodal displacements in the structure. The corresponding global stiffness 

matrix is given by 

 

1

eN
p

e e

e

K k


   
 

 

 

3.2.2 Laminated composite plates carrying out of plane loading 

The plate is discretised with 24   24 elements.  Each element in the control mesh has 16 control points.  The degree 

of the polynomial is taken as equal to 3.  C
2 
connectivity is ensured. 16 point gauss quadrature is used to perform the 

numerical integration and form the stiffness matrix for each element. The NURBS polynomials and the derivatives 

are given in Appendix A.   

A SSSS laminated composite plate having dimensions 1   1 is subjected to sinusoidal loading along both the 

directions.  The ratio of the Young’s modulus along two directions is taken as 25.  The thickness of the laminate is 

equal to 0.01.  The Poisson’s ratio is equal to 0.25.  The Shear modulus are related using the following relation and 

are given below [67].   

 

E1/E2 = 25, a = 1; b = 1; E1 = 25  10
3
; E2 = 1  10

3
; thick = 0.01; Nu = 0.25; G12 = 0.5  10

3
;  

G13 = 0.5  10
3
; G23 = 0.2  10

3
 

 

 

 

The support boundary conditions for all the control points along the x-axis is taken as 101. The support boundary 

conditions for all the control point along the y-axis is taken as 011.   

(a) Static analysis of SSSS laminated composite square plate. 

The plate is discretised using 729 nodes with 24   24 elements.  Each element in the control mesh has 16 

control points. The degree of the NURBS polynomial is taken as equal to 3. There are three points overlapping 

between two elements.  One node in common will ensure C
0
 connectivity. Two nodes in common will ensure C

1
 

connectivity.  Three nodes in common will ensure C
2
 connectivity.  16 gauss point quadrature is used to perform the 

numerical integration and form the stiffness matrix for each element.  The non-dimensional central displacement is 

compared with the analytical results given in the literature.   
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(b) Topology optimisation of SSSS laminated composite square plate using strain energy as the objective 

function.  The plate is optimised for several different lamina and optimise 0.5 TU K U   .  The deflected 

shape of the optimised laminate is presented and discussed. 

3.3 Research significance 

Topology optimisation of reinforced concrete structures is an interesting and a complex domain of research. To 

determine the optimal layout of steel within the domain is an NP-Hard problem. When the domain is new and 

carries multiple loadings the task to determine the optimal layout of main steel is an uphill task. A few methods such 

as strut-and-tie method has been proposed in the past which are easy to handle when a single point concentrated load 

is acting on the structure. In case of multiple loadings, the strut-and-tie model has to be determined for each load 

applied individually and then determine the final form of layout of steel. This requires lot of time and effort.  

Topology optimisation can give a better solution when multiple loads are acting on the structure at the same time.  

Isogeometric analysis is a well proven method to analyse the structure as it accounts for an exact geometry and uses 

basis functions derived from the geometry of the structure. The nodal displacements, strains and stresses can be 

precisely calculated when compared with the traditional finite element analysis.  The use of B-splines, NURBS and 

T-Splines can give us a precise geometrical description of the structure. In addition to this, a measure of the 

performance of the structure is required to determine the efficiency of the distribution of the material. Performance 

Index based on compliance of the structure can a suitable measure to assess the material distribution. 

There is a need to use a precise method and give us an exact measure of the stresses developed and the energy 

carried by the structure. The main focus of this research study is to apply isogeometric analysis and perform 

topology optimisation of reinforced concrete domain to determine the optimal layout of the material. The stress 

distribution can give us more information on the areas where the tensile stresses are developed and sufficient 

reinforcement can be provided to carry these stresses. Throughout the analysis the concrete section is assumed as a 

fully cracked section within the elastic limit. 

The present study on iso-geometric analysis for topology optimisation of laminated composites opens up a new 

door for research area in Civil Engineering. The advantages of applying iso-geometric analysis over finite element 

analysis is well known from the literature over the past decade. Laminated composites are being used in several 

areas of Engineering such as shell roofings, bridges, automobile, marines and aeronautical applications, for example 

components of rockets and aircrafts. The exactness and speed of precision of iso-geometric analysis is an advantage 

over other methods.  There is a need to do further research in this area of laminated composites. 

3.4 Flowchart 

The flowchart for Integrated Topology optimization [65] is as shown below in Fig.5. Topology optimisation is the 

first step which shows the broad outline of the distribution of material. The design is then improved in CAD 

software by smoothing the boundaries.  The model is then analysed using an software package Solid Works® and if 

successful it then finally optimised usign DesignWorks®.  In case the analysis in Solid Works fails then the model is 

redesigned.  This process continues until the analysis is done and the stresses and displacements are well within the 

permissible limits. The final design obtained is then casted for use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Integrated topology optimisation [64][65]. 
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The design problem is the physical problem with the given constraints. Topology optimisation is performed to 

determine the optimal distribution of material within the given material domain subjected to the given constraints.  

The output is then import into CAD work and the design is smoothened by eliminating the corners. The material 

distribution is then analysed using Solid works® and Design works® packages as shown in the Fig.5. The final 

design is then either casted or 3D printed [65]. The entire process is iterative which means that the final distribution 

of material is arrived after several cycles. The focus of this study is to perform topology optimisation and does not 

deal with the other steps in the design process. Topology optimisation can give a broad idea of the layout of 

material.  This step in the design process will show the direction for the layout of the material. 

The literature review is performed and the rational type B-spline basis functions are formulated in this study.  

Static analysis is performed to verify the formulation. The code is written in MATLAB. Fig.5 shows the flowchart to 

perform topology optimisation. The program is divided into two modules.  

(a) Static analysis module 

(b) Topology optimisation module 

The input data of the structure is divided into four areas namely  

 The geometry  

 The material property  

 Force boundary conditions 

 Displacement boundary conditions 

The geometry data consists of length and breadth of the plate, the thickness of the plate. The material property 

consists of Modulus of elasticity E11 and E22, shear modulus of elasticity G12, G13, G23 and the Poisson’s ratio. The 

force boundary conditions comprise of the loading, which is sinusoidal loading. The displacement boundary 

conditions consist of the support conditions, in this case it is simply supported plate on all four sides. Fig.6 shows 

the steps involved to perform static analysis. 

For in case of isotropic material, E11 = E22 = E 

In case of isotropic material, G12 = G23 = G13 

The optimisation module consists of first order sensitivity analysis. The first derivative of the strain energy is 

used to perform sensitivity analysis. The optimality criteria is used to determine the relative densities of each 

element and calculate the objective function. With the newer values of the relative density the stiffness matrix is 

assembled again and the nodal displacements are determined. The process repeats until convergence is met. Same 

flow chart can be useful to perform topology optimisation for different lamina as shown in the Fig.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Flow chart for static analysis. 
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Fig.7 

Flowchart for topology optimization. 

 

4    ISOGEOMETRIC TOPOLOGY OPTIMISATION OF PLATES CARRYING IN PLANE LOADING 

The numerical problems are modeled and analysed in this section using iso-geometric analysis. The reinforced 

concrete domain is modeled using B-splines with the degree along x-axis equal to one and y-axis equal to one.  

Topology optimisation of the RC structure is performed using Iso-geometric analysis with minimising the 

compliance as the objective function and optimality criteria as the optimizer to redistribute the relative density of the 

elements. Sensitivity analysis is performed to determine the newer values of the objective function with first order 

approximation by eliminating all the higher order terms in Taylor series. Few problems are solved here to determine 

the strut and tie models for each reinforced concrete section. The strut and tie models using the proposed method are 

compared with the strut and tie models in the literature and checked for validity of the proposed method. The 

performance index as given by Liang [68] is determined for each distribution for each iteration.  The performance 

index is used as an indicator of the efficiency of the strain energy of the distribution, it is calculated by neglecting 

the higher order terms in the sensitivity analysis.   

4.1 Simply supported beam with the left end hinge and right end roller carrying a point load at the centre acting 

vertically downwards 

A initial design domain of MBB beam is as shown in the Fig. 8. The plate is having the dimensions of 600 mm 

length and 100 mm height and thickness of one unit. The plate is simply support with a hinge at the left end support 

and a roller support at the right end. A load of magnitude 100 N is applied acting vertically downwards at the centre 

node of the top edge. The domain is meshed using 120   20 first order four node quadrilateral elements. The 

dimensions of each element is 5 mm   5 mm.  The Young’s modulus of Elasticity is taken as 200 GPa and the 

Poisson’s ratio is taken as 0.30.  The degree of polynomial for B-splines is taken as one along both the directions, 

p=1 and q=1.  Iso-geometric analysis [69] is used to perform the static analysis and determine the displacements at 

each control point in each iteration. The optimisation is performed using Strain Energy as the objective function.  

Optimality criteria is used to determine the relative densities of each element during the optimisation.  

  

 

 

 

 

 

 

 

Fig.8 

Hinge support on the left and roller support on the right. 
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Fig.9 

IGA Stress distribution of MBB Beam. 

 

The optimal distribution of material for MBB beam using the present method is as shown in the Fig.9. The 

optimal distribution of material presented by Anna [70] is as shown in the Fig. 10. The stress distribution shows tha 

the maximum compressive stress in the material is indicated by blue region is about 25 MPa. The maximum tensile 

stress shown in yellow color is about 15 MPa. The distribution of material along the horizontal line joining the 

supports is carrying tensile stress indicating it is a tie member of the truss. The material on the top edge is in blue 

color carrying compressive stress is similar to a strut member of the truss. The inclined members in blue color are 

carrying compressive stress and the inclined members in yellow color are carrying tensile stress.  

 

 

 

 

 

 

 

Fig.10 

Distribution of material for MBB beam presented by 

Anna[70]. 

 

 

The penalisation factor for Youngs’ Modulus of Elasticity is equal to 2 required to penalise the stiffness matrix.  

The total number of iterations required is 36.  The move limit is taken as 0.30 and the stabilisation factor, SF is equal 

to 0.50. The final volume is equal to 0.30 and the filter radius is set equal to 2. The minimum stress cutoff to plot the 

stress distribution in the material is equal to 0.75. 

 

 
(a) 

 
(b) 

Fig.11 

(a) Compliance based performance index. (b) Compliance of the structure. 

 

Fig.11 showing the variation of compliance-based index and total compliance of the structure for each iteration. 

The variation of compliance-based performance index for each iteration is as shown in the Fig.11(a). The 

performance index at convergence is equal to 1.0.  The variation of the compliance of the structure for each iteration 

is as shown in the Fig.11(b). The compliance of the structure at convergence is nearly equal to 1.0e5 N-mm. 
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4.1.1 Simply supported beam having both ends hinged carrying a point load acting vertically downwards at the 

centre of the top edge 

A simply supported beam having both ends pinned is 600 mm length and 100 mm depth. The thickness of the beam 

is equal to unity. The beam is supported on hinge supports at both the lower ends. A point load of 100 N is acting 

vertically downwards at the centre of the beam on the top edge as shown in the Fig.12. The domain is composed 

using 120   20 first order four node quadrilateral elements. The dimensions of each element is 5 mm   5 mm. The 

Young’s modulus of Elasticity is taken as 200 GPa and the Poisson’s ratio is taken as 0.30. The optimisation is 

performed using Strain Energy as the objective function. Optimality criteria is used to determine the relative 

densities of each element during the optimisation.   

The penalisation factor for stiffness is taken as equal to 2. The filter radius is 2 and the stabilitsation factor is 

taken as 0.50. The move limit is 0.10. The total number of iterations required are 36. The final volume fraction is 

equal to 0.3. Stabilisation factor is equal to 0.5 and the cutoff relative density for display is 0.2. The minimum Stress 

is equal to 0.50.  

 

 

 

 

 

 

 

 

 

Fig.12 

Shows the initial domain. 

  

 

 

 

 

 
Fig.13 

Shows the optimal distribution of material by Anna [70]. 

  

 

 

 

 

 

 

 

 

 

 

 
Fig.14 

IGA stress distribution of the beam at optimal state. 

 

The stress distribution of the beam hinged at both the ends using the present method is as shown in the Fig.14.  

The distribution of material is given by Anna as shown in the Fig. 13. The stress distribution is similar to a strut and 

tie model showing tensile and compressive stress over the design domain. The green color to blue color indicates 

elements carrying compressive stress. The maximum compressive stress is equal to 25 MPa.  The orange color to 

yellow color indicates elements carrying tensile stress. The maximum tensile stress is about 5 MPa.  Fig.15(a) 

Shows the variation of the performance index for each iteration. The maximum value of performance index at 

convergence is equal to 1.50.  Fig.15(b) Shows the variation of the total compliance of the structure on Y-axis with 

each iteration on X-axis. The total compliance of the structure at convergence is equal to 3e4 N-mm.   
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(a) 

 
(b) 

Fig.15 

(a) Compliance based performance index. (b) Compliance of the structure. 

 

Fig.15 showing the variation of (a) the compliance based performance index and (b) total compliance of the 

structure with iteration number. 

4.2 Simply supported plate with both ends supports as hinged and carrying point load at the centre of the bottom 

edge - Michelle truss 

A simply support plate has both the ends as hinged carries a point load of magnitude 10 N acting vertically 

downwards at the centre of the bottom edge as shown in the Fig.16. The dimensions of the plate are 2H   H, where 

2H is the length parallel to horizontal axis and H as the vertical depth. The side H is taken as equal to 160 mm. The 

Young’s modulus of elasticity of the material is taken as 200 GPa and the Poisson’s ratio is equal to 0.30. The 

control mesh of domain is taken as 64   32 four node quadrilaterals. The size of each quadrilateral is 5 mm   5 mm 

square. The total number of nodes is equal to 2145 and total number of quadrilateral elements is 2048. The thickness 

of the plate is taken as equal to 1 mm.   

The total number of iterations is equal to 66. The penalisation factor for stiffness is taken as equal to 2, and filter 

radius is equal to 2. The move limit is equal to 0.05. The cut off for display of relative density is equal to 0.1. The 

minimum stress for display is taken as equal to 0.01. The distribution of material within the domain is as shown in 

the Fig.16(b). The stress distribution for the optimal distribution is as shown in the Fig.16(b). The maximum stress is 

equal to 1 MPa in tension and compression. 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

Fig.16 

(a) Initial design domain. (b) IGA Stress distribution at 

optimal state. (c) optimal distribution by Abolbashari [71]. 

 

 

Fig.16 shows initial design domain and optimal distribution of material for supported plate having both the 

supports as hinged (Michelle Truss). The initial design domain is as shown in Fig. 16(a). The optimal distribution as 

shown in Fig.16(b) clearly shows the regions where the elements are carrying tensile stress indicated in green color 
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and yellow color. The maximum value of the tensile stress is about 1MPa. The region in blue color are elements 

carrying compressive stress. The maximum value of the compressive stress is about 1 MPa. Fig.16(c) shows the 

optimal distribution of material presented by Abolbashari [71]. 

The variation of compliance for each iteration is as shown in Fig.17(a). The compliance-based performance 

index for each iteration is as shown in the Fig.17(b). The maximum performance index at convergence is equal to 

1.0. The compliance of the structure at convergence is equal to 50 N-mm. 

 

 
(a) 

 
(b) 

Fig.17 

(a) Performance Index. (b) Compliance of the structure. 

 

Fig.17 Variation of the performance index and the total compliance of the structure.  

4.2.1 Simply supported plate having left end hinged and right end roller support carrying a point load acting 

vertically downwards at the centre of the line joining the supports 

A simply supported plate with the left end hinged and right roller is having the dimension of 2H   H, where 2H is 

the length parallel to the horizontal axis and H is the depth in the vertical direction as shown in the Fig.18. The 

thickness of the plate is one unit. The side H is equal to 160.  The plate carries a point load of magnitude 10N acting 

vertically downwards at the centre of the bottom edge of the plate joining the supports. The total number of control 

points is equal to 2145 and the total quadrilaterals is equal to 2048.  The control mesh of the domain is 65   33.  

The Young’s modulus of elasticity of the material is equal to 200 GPa and the Poisson’s ratio is equal to 0.30.   

The total number of iterations required is equal to 80. The penalisation factor for stiffness matrix is equal to 2 

and the move limit is taken as 0.05. The fraction volume of the domain is equal to 0.3. The stabilisation factor is 

equal to 0.5. The minimum stress for cutoff is taken as equal to 0.01. The stress distribution of the material is as 

shown in the Fig.18(b).  Fig.18(c) shows the distribution of material presented by Abolbashari [71]. The distribution 

of material obtained using the present method IGA is similar to the distribution given in the literature. 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

Fig.18 

(a) Initial design domain.(b) Optimal distribution using IGA. 

(c) Optimal distribution of material by Abolbashari [71]. 

 

 

Fig.18 shows the initial domain and the optimal distribution of material. The variation of the compliance of the 

structure is as shown in the Fig.19. The initial portion of the curve is rising which is due to a term change in 
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compliance (dC) included in the optimality criteria.  The results are valid at convergence. Fig.19 shows the variation 

of the compliance-based performance index on Y-axis and for each iteration on X-axis. The performance index is 

observed to be reducing during the initial portion of the curve and this is due to the similar reason said above. The 

values of the performance index are valid at convergence. The elements in blue color indicates compressive stress. 

The maximum value of the compressive stress is equal to 1 MPa. The elements in green color and yellow color 

indicates the elements are carrying tensile stress. The maximum value of the tensile stress for this fan like optimal 

distribution of material is about 1 MPa.  

 

 
(a) 

 
(b) 

Fig.19 

(a) Compliance based Performance Index. (b) Compliance of structure. 

 

Fig.19 Variation of (a) Compliance based performance index and (b) Compliance of the structure with iteration 

number 

4.3 Bridge design 

A rectangular plate area of 5000 mm   2500 mm is hinged on both corners at the bottom edge. The plate is divided 

into 1250 quadrilaterals and 1326 control points. The size of each quadrilateral is 100 mm   100 mm.  The Youngs’ 

modulus of elasticity of the plate is 20 GPa and the Poisson’s ratio is taken as 0.10.  The thickness of the plate is one 

unit. The plate carries a uniformly distributed load of 20 N/m.  Two types of loading acting on the bridge are 

considered as follows:  

(a) Through type bridge design in which udl is applied at the bottom edge over the entire span of 5000 mm 

between the supports. 

(b) Deck type bridge design in which udl is applied at the top edge over a length of 5000 mm. 

For stiffness matrix, the penalisation factor for Youngs’ modulus of elasticity is equal to 4. The filter radius is 

taken as two and the move limit is equal 0.05. The stabilisation factor is taken as 0.50 and the fraction volume is 

equal to 0.30. The number of iterations required for convergence is equal to 50. The cutoff for minimum stress is 

taken as equal to 0.12 for display for the deck type bridge. The stress in the optimal distribution of material is 

compressive in nature as shown in the Fig.20. The maximum compressive stress is about 6 MPa. For the through 

type bridge design, the minimum stress intensity for cutoff is taken as 1e-3 to display the optimal distribution of 

material. The maximum compressive stress is 6 MPa and the tensile stress is nearly 1 MPa. The arch in green color 

shows that compressive stresses are developed. The distribution of material as given by XY Yang is as shown in the 

Fig.21. The distribution of material using the proposed method using iso-geometric analysis is similar to the 

distribution of material given in the literature. 

 

 
(a) 

 
(b) 

Fig.20 

(a)Deck type bridge design. (b) Through type design. 
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(a) 

 
(b) 

Fig.21 

Distribution of material given by X Y Yang [72]. 

5    STATIC ANALYSIS OF LAMINATED COMPOSITE SQUARE PLATE USING ISOGEOMETRIC 

ANALYSIS 

The static analysis of the SSSS laminated composite plate is performed here. The mesh is 24   24 elements and the 

total number of control points are 27   27 = 729.   

The problem statement is given in section 3.2.2 and the step-by-step procedure to determine the second 

derivatives using six elements is given in great detail in Appendix A. The Input data is given as follows. 

 

E1/E2 = 25, a = 1; b = 1; E1 = 25  10
3
; E2 = 1  10

3
; thick = 0.01; Nu = 0.25; G12 = 0.5  10

3
;  

G13 = 0.5  10
3
; G23 = 0.2  10

3
 

 

 

 

Xi Knot vector =

1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0

24 24 24 24 24 24 24 24 24 24 24 24

13 14 15 16 17 18 19 20 21 22 23 24 24 24 24

24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
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 
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Eta Knot vector =

1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0

24 24 24 24 24 24 24 24 24 24 24 24

13 14 15 16 17 18 19 20 21 22 23 24 24 24 24

24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

 
  
 
 
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Control points along X-axis = 

1 1 2 3 4 5 6 7 8 9 10 11 12
0

72 24 24 24 24 24 24 24 24 24 24 24 24

13 14 15 16 17 18 19 20 21 22 23 71 24

24 24 24 24 24 24 24 24 24 24 24 72 24

 
  
 
 
  

 

 

 

 

Control points along Y-axis = 

1 1 2 3 4 5 6 7 8 9 10 11 12
0

72 24 24 24 24 24 24 24 24 24 24 24 24

13 14 15 16 17 18 19 20 21 22 23 71 24

24 24 24 24 24 24 24 24 24 24 24 72 24

 
  
 
 
  

 

 

 

 

 
 

Table 3  

Non-dimensional deflection at centre of SSSS plate subjected to sinusoidal loading. 

Lamina/mesh 12   12 24   24 Theoretical Ratio 

0/90/0 0.4482 0.4357 0.4343 [73, Table 2],[67, Table 1] 1.003 

0/90 1.1040 1.0743 1.0742 [73, Table 6] 1.000 

0/90/90/0 0.4478 0.4356 0.4347 [62, Table 3] 1.002 
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The results obtained using 24   24 elements as shown in the Table 3 are nearly equal to the analytical results 

given in the literature.  We can perform topology optimisation in the next section.   

5.1 SSSS plate having Angle ply lamina θ /-θ /θ /-θ subjected to sinusoidal loading 

E1/E2 = 25, a = 1; b = 1; E1 = 25  10
3
; E2 = 1  10

3
; thick = 0.01; Nu = 0.25; G12 = 0.5  10

3
;  

G13 = 0.5  10
3
; G23 = 0.2  10

3
 

 

 

 
Table 4  

Non-dimensional deflection for SSSS plate carrying sinusoidal loading with varying fibre orientation. 

Lamina 0/0/0/0 15/-15/15/-15 30/-30/30/-30 45/-45/45/-45 

Non-dimensional 0.4357 0.3892 0.3001 0.2665 

Lamina 60/-60/60/-60 75/-75/75/-75 90/-90/90/-90  

Non-dimensional 0.3002 0.3894 0.4357  

 

The results in the Table 4 clearly show a symmetrical vertical non-dimensional displacements at the centre of the 

square plate carrying sinusoidal loading for different fibre angle orientation varying from 0 - 90. 

 

 

 

 

 

 

 

 

 

 

Fig.22 

Variation of non-dimensional displacement at the centre of 

SSSS square plate for / / /     . 

 

The graph clearly shows that the non-dimensional vertical displacement is minimum when the fibre orientation is 

45/-45/45/-45 as shown in the Fig.22.  The graph is showing symmetrical non-dimensional deflection at the centre of 

the plate carrying sinusoidal loading for different values of fibre orientation varying from 0 - 90 degrees.  

6    ISOGEOMETRIC TOPOLOGY OPTIMISATION OF LAMINATED COMPOSITE SQUARE PLATE 

SUBJECTED TO SINUSOIDAL LOADING 

In the previous section, we have performed static analysis of SSSS laminated composite plate. The applied 

mechanical load is sinusoidal load in both directions. In this section, we perform the topology optimisation of 

laminated composite plate using first order sensitivity analysis and optimality criteria for different lamina. The mesh 

is 24   24 elements with 729 nodes.  The support boundary conditions for all control points along x- axis is 101 and 

the control points along the y-axis is 011 for displacement along x, y, z axes respectively. There is no rotation degree 

of freedom at any node. 

The following input data is considered in this study. The penalisation factor is taken as equal to 2. The filter 

radius is equal to 2. The move limit is taken as 0.30 and the stabilisation factor is equal to 0.50. The final fraction of 

volume is taken as equal to 0.2. 

6.1 SSSS plate having 0/90 lamina subjected to sinusoidal loading 

The lamina considered for this problem is 0/90. The objective function is taken as strain energy of the structure.  

First order sensitivity analysis is performed and the relative densities are filtered. The optimality criteria is used to 

determine the newer values of the relative densities of each element and compute the objective function. The total 

number of iterations are 17. The deformed shape is as shown in the Fig.23. The elements at the centre of the edge 

are carrying higher values of relative density. These elements form an arrangement of a plus sign. The deflected 
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shape of the laminate shows that the sagging portion of the laminate appears to behave like a cloth. The magnitude 

of the load is kept constant and the relative densities are changed after each iteration. The portion of the material 

near the supports shows a large drop indicating that there is no bending moment. The deformed shape shows a 

pattern of U-shaped tub. The vertical displacement along the centre line is nearly equal in both the directions.  

 

 

 

 

 

 

 

 

 

Fig.23 

Isogeometric topology optimisation of SSSS plate having 

0/90 lamina subjected to sinusoidal loading in 17 iterations. 

 

6.2 SSSS plate having 0/90/90/0 lamina carrying sinusoidal loading 

The SSSS plate having 0/90/90/0 symmetric lamina carries sinusoidal loading and optimised with strain energy as 

the objective function and optimality criteria is the optimsation method. The deformed profile after 16 iterations is 

as shown in the Fig.24.  The distribution as shown in Fig.24(a) clearly shows the fibres along the x-direction near the 

centre of the plate are carrying higher value of strain energy. The deformed profile shows that the fibres on either 

sides of the centre line along the x-axis are sagging as shown in Fig.24(b).   

 

 
(a) 

 
(b) 

Fig.24 

(a) Distribution of material at iteration16. (b) Deflected shape in three dimensions. 

   

Fig.24 Iso-geometric topology optimisation of laminated composite plate having 0/90/90/0 lamina subjected to 

sinusoidal loading in 16 iterations. 

6.3 SSSS plate having 0/90/0/90 lamina carrying sinusoidal loading 

 
(a)Top view 

 
(b) Deformed profile 

Fig.25 

Iso-geometric topology optimisation of SSSS laminated composite plate having 0/90/0/90 lamina subjected to sinusoidal 

loading in 14 iterations. 
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The SSSS square plate having 0/90/0/90 lamina is anti-symmetric laminate carrying sinusoidal loading. The 

distribution of strain energy after optimisation using optimality criteria is as shown in the Fig.25. The elements 

along the centre line in the form of a plus sign carry higher value of strain energy.  The deformed profile after 14 

iterations of the laminate is as shown in Fig.25. The deformed profile is symmetrical about both the axis. The fibres 

near the corners are sagging more than the fibres near the centre of the plate. The deformed profile appears to 

behave like a cloth when the loading is applied even after few elements are penalised.   

6.4 SSSS plate having lamina 45/-45/45/-45 subjected to sinusoidal loading 

SSSS square plate having 45/-45/45/-45 lamina is subjected to sinusoidal loading is optimised with strain energy as 

the objective function and optimality criteria. The deformed profile is as shown in the Fig.26. 

The following observations were made after every iteration during the optimisation process: 

1.    The yellow color in the inclined direction, joining the middle points of the edges, fibres along the 45 

degrees angle are stretched. 

2.    The yellow color ring formation, and the stress distribution is uniform. 

3.    The width of yellow color ring has increased, the load is shared by neighbouring elements, stress 

distribution is equal in the vicinity of the element.   

4.    The yellow color is throughout the plate, stress distribution is nearly equal throughout the plate within the 

ring. The yellow color fading along inclined lines, the fibres along the 45 degrees are not carrying load. 5. 

Moving towards centre aligning themselves in the orientation of 0/90.   

5.   The top view in Fig.26(a) clearly shows the elements along the line joining the mid points of the adjacent 

edges are showing similar color indicating similar relative density value of each element. When the 

deflections are similar, the elasticity matrix and the strain displacement matrix are same, then the stress 

vector is also same.   

6.   The laminate forms a flat surface having higher value of vertical deflection within the ring form a tub as 

shown in Fig. 26(b). 

 

 
(a) Top view 

 
(b) Deformed profile 

Fig.26 

Isogeometric topology optimisation of SSSS square plate having 45/-45/45/-45 lamina in 15 iterations. 

7   CONCLUSIONS 

The current research topic on iso-geometric topology optimisation of steel, concrete and laminated composite plates 

and opens up a new door in the field of structural optimisation. The accuracy of iso-geometrical analysis over finite 

element analysis is well known from the literature over the past few years. In this study, three two-dimensional 

planar section problems are designed using topology optimisation. The objective function is to minimise the total 

compliance of the structure.  First order sensitivity analysis is performed and optimality criteria is used to recalculate 

the relative densities of the elements. First problem, the problem of MBB beam is analysed using iso-geometric 

analysis. The total number of control points are 2541. The total number of iterations required are 36. The total 

compliance of the structure at convergence is equal to 1e5 N-mm. The performance index based on compliance is 

found to be 1.0 at convergence. The distribution of material obtained using isogeometric analysis is very similar to 

the distribution of material using finite element analysis.  Second problem analysed is the Michelle truss problem.  

The total number of control points are 2145. The total number of iterations required are 66. The total compliance of 
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the structure is equal to 50 N-mm   at convergence. The performance index is found to be 1.0. Third problem is the 

well known design of bridge problem from the given continuum material. Two types of loading were applied and the 

distribution of material for a deck type bridge and a through type bridge design are presented. A simply supported 

SSSS square laminate  having different lamina is considered. The objective function is strain energy and  optimality 

criteria is used as the optimisation method in this study. Four different problems have been solved with different 

lamina namely 0/90, 0/90/0/90, 0/90/90/0, 45/-45/45/-45. The formulation is done using the Kirchoff thin plate 

theory without any shear contribution. The governing equations are derived and given in the theoretical background 

section. The analysis is presented in three different section. The laminate having one unit dimensions is considered 

with the side to thickness ratio as 100. The ratio of the Young’s modulus of elasticity is taken as 25 and the 

Poisson’s ratio is equal to 0.25. The input data is chosen from the literature along with the analytical solution. The 

step-by-step procedure to determine the second derivatives is presented in section 4. The basis functions are derived 

for a cubic order spline polynomial. The derivation for the second derivative is given in detail. In the next section, 

the static analysis is performed to verify the maximum displacement at the centre of the plate carrying sinusoidal 

loading. The results from the Iso-geometric analysis are checked with the analytical results given in the literature.  

The plate having the lamina of 0/90, the maximum central non-dimensional deflection is found as 1.0743 compared 

with the analytical result of 1.0742. The plate having lamina of 0/90/0 has the maximum central non-dimensional 

deflection of 0.4357 and compared with the analytical solution is 0.4343. Another case of the plate having the 

0/90/90/0 lamina, the maximum central non-dimensional deflection using iso-geometric analysis is found to be 

0.4356 and the analytical solution is 0.4347. The results of static analysis using Iso-geometric analysis are in close 

agreement with those of the analytical solutions. The variation of non-dimensional vertical displacements were 
determined for θ /-θ /θ /-θ lamina varying the fibre orientation from 0 - 90 degrees is found to be symmetrical. The 

non-dimensional displacement is minimum when the fibre angle is 45 degrees. 

Topology optimisation is performed in the next section.  A square plate simply supported on all four sides having 

different lamina is optimised using optimality criteria with strain energy as the objective function. The lamina 

considered are 0/90, 0/90/0/90, 0/90/90/0, 45/-45/45/-45.  The distribution of strain energy and the deformed profile 

are presented for each lamina. The deformed profile of the plate having 0/90 lamina is a trough with the elements 

along the centre line joining the mid points of the sides carry maximum value of strain energy. These elements form 

a plus sign. The deformed profile of the plate having 0/90/0/90 lamina is symmetric about the centre lines joining 

the midpoint of the edges. The elements near the corners were found to be sagging more than the element at the 

centre. For the case of the plate having 0/90/90/0 lamina, the strain energy distribution is found to be higher for all 

the elements along the centre line parallel to the x-axis. The elements adjacent to these are found to be sagging on 

either side of the centre along the x-axis. The plate having 45/-45/45/-45 lamina shows a symmetrical distribution of 

strain energy. The elements joining the lines joining the centre of the side s of the square carry higher value of strain 

energy. The portion of the laminate within these lines form a trough with a flat surface with equal vertical 

displacement. 

APPENDIX  

A step-by-step analysis of SSSS laminated composite plate subjected to sinusoidal loading. In the previous section, 

the necessary theoretical background and the governing equations are given.  In this section, a square plate having 1 

  1 dimension is considered. The plate is simply supported and subjected to a sinusoidal loading in the both the 

directions. We perform a step by step formulation and the numerical answers required to compute second derivatives 

are given in this section. The stiffness matrix can be assembled using the governing equations. The Fig.5 shows the 

control mesh and the element wise nodes. 

 

 
(a) Control points 

 
(b) Control mesh 
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(c) Element wise nodes 

 

 

 

 

 

 

 

 

 

 

SSSS laminated composite plate. 

 

 

Table 1  

Showing the control mesh for elements in the first two rows. 
 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 

1 1 2 3 4 10 11 12 13 19 20 21 22 28 29 30 31 

2 2 3 4 5 11 12 13 14 20 21 22 23 29 30 31 32 

3 3 4 5 6 12 13 14 15 21 22 23 24 30 31 32 33 
4 4 5 6 7 13 14 15 16 22 23 24 25 31 32 33 34 

5 5 6 7 8 14 15 16 17 23 24 25 26 32 33 34 35 

6 6 7 8 9 15 16 17 18 24 25 26 27 33 34 35 36 
7 10 11 12 13 19 20 21 22 28 29 30 31 37 38 39 40 

8 11 12 13 14 20 21 22 23 29 30 31 32 38 39 40 41 

9 12 13 14 15 21 22 23 24 30 31 32 33 39 40 41 42 
10 13 14 15 16 22 23 24 25 31 32 33 34 40 41 42 43 

11 14 15 16 17 23 24 25 26 32 33 34 35 41 42 43 44 

12 15 16 17 18 24 25 26 27 33 34 35 36 42 43 44 45 

 

 

 

Table 2  

Showing the knot mesh for each element in the first two rows. 

 1 2 3 4 

1 1 3 21 19 

2 3 4 22 21 

3 4 5 23 22 

4 5 6 24 23 

5 6 7 25 24 

6 7 9 27 25 

7 19 21 30 28 

8 21 22 31 30 

9 22 23 32 31 

10 23 24 33 32 

11 24 25 34 33 

12 25 27 36 34 

 

 

1
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1

0

i i

iN
otherwise
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0 0 0 0 1/6 2/6 3/6 4/6 5/6 1 1 1 1 
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Table 3  

Showing the basis functions. 
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Knot vector is given by  
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1  
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The gauss points are as shown in Table 4. 

 

Table 4 

 4 × 4 Gauss quadrature and the gauss points. 

aa(1,1)=0.8611363116

 

aa (1,2)= 0.8611363116

 

wg(1,1)=0.3478548451

 

wg (1,2) = 0.3478548451

 aa (2,1)=0.8611363116

 

aa (2,2) =-0.8611363116

 

wg(2,1)=0.3478548451

 

wg (2,2) = 0.3478548451

 aa (3,1)=0.8611363116

 

aa (3,2) = 0.3399810436

 

wg (3,1)=0.3478548451

 

wg (3,2) = 0.6521451549

 aa (4,1)= 0.8611363116

 

aa (4,2) = -0.3399810436

 

wg (4,1)=0.3478548451

 

wg (4,2) = 0.6521451549

 aa (5,1)=-0.8611363116

 

aa (5,2)= 0.8611363116

 

wg (5,1)=0.3478548451

 

wg (5,2) = 0.3478548451

 aa (6,1)=-0.8611363116

 

aa (6,2) =-0.8611363116

 

wg (6,1)=0.3478548451

 

wg (6,2) = 0.3478548451

 aa (7,1)=-0.8611363116

 

aa (7,2) = 0.3399810436

 

wg (7,1)=0.3478548451

 

wg (7,2) = 0.6521451549

 aa (8,1)=-0.8611363116

 

aa (8,2) = -0.3399810436

 

wg (8,1)=0.3478548451

 

wg (8,2) = 0.6521451549

 aa (9,1)=0.3399810436

 

aa (9,2) = 0.8611363116

 

wg (9,1)=0.6521451549

 

wg (9,2) = 0.3478548451
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wg (14,2) = 0.3478548451

 aa (15,1)=-0.3399810436

 

aa (15,2) = 0.3399810436

 

wg (15,1)=0.6521451549

 

wg (15,2) = 0.6521451549

 aa (16,1)=-0.3399810436

 

aa (16,2) = -0.339981043

 

wg (16,1)=0.6521451549

 

wg (16,2) = 0.6521451549

  

I=3, 

p=3 

3 7
3,3 3,2 4,2

6 3 7 4

N N N
   

   

 
 

 
 

3,2

6

3
N


 3,2 4,2

6 4 6

3 3
N N

 


 

3,2 4,2

6 4 6

3 3
N N

 


 
4,2

4 6

3
N


   

I=4, 

p=3 

4 8
4,3 4,2 5,2

7 4 8 5

N N N
   

   

 
 

 
  

4,2

6 1

3
N

 

 

4,2 5,2

6 1 5 6

3 3
N N

  


 

4,2 5,2

6 1 5 6

3 3
N N

  


 
5,2

5 6

3
N


  

I=5, 

p=3 

5 9
5,3 5,2 6,2

8 5 9 6

N N N
   

   

 
 

 
   

5,2

6 2

3
N

 

 

5,2 6,2

6 2 6 6

3 3
N N

  


 

5,2 6,2

6 2 6 6

3 3
N N

  


 

2,6
3

66
N



 

I=6, 

p=3 

6 10
6,3 6,2 7,2

9 6 10 7

N N N
   

   

 
 

 
    6,2

6 3

3
N

 
 6,2 7,2

6 3 6 6

3 2
N N

  


 

2,72,6
2

66

3

36
NN

 




 

I=7, 

p=3 

7 11
7,3 7,2 8,2

10 7 11 8

N N N
   

   

 
 

 
     7,2

6 4

2
N

 
 2,82,7

1

66

2

46
NN

 




 

I=8, 

p=3 

8 12
8,3 8,2 9,2

11 8 12 9

N N N
   

   

 
 

 
      

2,8)56( N

 



K.N.V. Chandrasekhar et.al.                          262 

 

© 2021 IAU, Arak Branch 

 

Table 5  

The equivalent natural coordinates for the gauss points. 

 5.0*)()(*5.0 11 iiii     1 10.5*( ) ( )*0.5j j j j         

1 1 1
0.5*( )(0.8611363116) 0.5( ) 0.1550946926

6 6
   

1 1
0.5*( )(0.8611363116) 0.5( ) 0.1550946926

6 6
   

2 1 1
0.5*( )(0.8611363116) 0.5( ) 0.1550946926

6 6
   

1 1
0.5*( )( 0.8611363116) 0.5( ) 0.01157197403

6 6
    

3 1 1
0.5*( )(0.8611363116) 0.5( ) 0.1550946926

6 6
   

1 1
0.5*( )(0.3399810436) 0.5( ) 0.111665087

6 6
   

4 1 1
0.5*( )(0.8611363116) 0.5( ) 0.1550946926

6 6
   

1 1
0.5*( )( 0.3399810436) 0.5( ) 0.0550015797

6 6
    

5 1 1
0.5*( )( 0.8611363116) 0.5( ) 0.01157197403

6 6
    

1 1
0.5*( )(0.8611363116) 0.5( ) 0.1550946926

6 6
   

6 1 1
0.5*( )( 0.8611363116) 0.5( ) 0.01157197403

6 6
    

1 1
0.5*( )( 0.8611363116) 0.5( ) 0.01157197403

6 6
    

7 1 1
0.5*( )( 0.8611363116) 0.5( ) 0.01157197403

6 6
    

1 1
0.5*( )(0.3399810436) 0.5( ) 0.111665087

6 6
   

8 1 1
0.5*( )( 0.8611363116) 0.5( ) 0.01157197403

6 6
    

1 1
0.5*( )( 0.3399810436) 0.5( ) 0.0550015797

6 6
    

9 1 1
0.5*( )(0.3399810436) 0.5( ) 0.111665087

6 6
   

1 1
0.5*( )(0.8611363116) 0.5( ) 0.1550946926

6 6
   

10 1 1
0.5*( )(0.3399810436) 0.5( ) 0.111665087

6 6
   

1 1
0.5*( )( 0.8611363116) 0.5( ) 0.01157197403

6 6
    

11 1 1
0.5*( )(0.3399810436) 0.5( ) 0.111665087

6 6
   

1 1
0.5*( )(0.3399810436) 0.5( ) 0.111665087

6 6
   

12 1 1
0.5*( )(0.3399810436) 0.5( ) 0.111665087

6 6
   

1 1
0.5*( )( 0.3399810436) 0.5( ) 0.0550015797

6 6
    

13 1 1
0.5*( )( 0.3399810436) 0.5( ) 0.0550015797

6 6
  

 

1 1
0.5*( )(0.8611363116) 0.5( ) 0.1550946926

6 6
 

 
14 1 1

0.5*( )( 0.3399810436) 0.5( ) 0.0550015797
6 6

  

 

1 1
0.5*( )( 0.8611363116) 0.5( ) 0.01157197403

6 6
  

 
15 1 1

0.5*( )( 0.3399810436) 0.5( ) 0.0550015797
6 6

  

 

1 1
0.5*( )(0.3399810436) 0.5( ) 0.111665087

6 6
 

 
16 1 1

0.5*( )( 0.3399810436) 0.5( ) 0.0550015797
6 6

  

 

1 1
0.5*( )( 0.3399810436) 0.5( ) 0.0550015797

6 6
  

 
 

 

 

Table 6  

Basis functions at gauss points. 

Basis functions Ni and Mi 0.1550946926 0.01157197403 0.111665087 0.0550015797 

0,3 3,0(1 6 )*(1 6 )*(1 6 )N N       3.3471 x 10-4 0.8058320 0.035940 0.30075023 

 1,3 3,0 3,0 3,0

(2 6 ) (2 6 )
6 *(1 6 )*(1 6 ) 6 (1 6 6 )

2 2
N N N N

 
     

  
      

 
 

0.30510371 0.187187 0.5162916 0.562845 

2,3 3,0 3,0

6 (2 6 ) 3 6 6
6 *(1 6 ) *6 6

2 2 3 2
N N N

   
   

    
      

   
 

0.56025621 6.9243 x 10-3 0.3976432 0.130414 

3,3 3,0

6 6
* *6

3 2
N N

 
  

0.13430534 5.5785 x 10-5 0.050125 5.99 x 10-3 

 1.0000000 1.00000000 1.0000000 1.000000 
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Table 7  

Basis functions in local coordinate system. 

1 3,0(1 6 )*(1 6 )*(1 6 )N N       

 2 3,0 3,0 3,0

(2 6 ) (2 6 )
6 *(1 6 )*(1 6 ) 6 (1 6 6 )

2 2
N N N N

 
     

  
      

 
 

3 3,0 3,0

6 (2 6 ) 3 6 6
6 *(1 6 ) *6 6

2 2 3 2
N N N

   
   

    
      

   
 

4 3,0

6 6
* *6

3 2
N N

 
  

1 3,0(1 6 )*(1 6 )*(1 6 )M M       

 2 3,0 3,0 3,0

(2 6 ) (2 6 )
6 *(1 6 )*(1 6 ) 6 (1 6 6 )

2 2
M M M M

 
     

  
      

 
 

3 3,0 3,0

6 (2 6 ) 3 6 6
6 *(1 6 ) *6 6

2 2 3 2
M M M

   
   

    
      

   
 

4 3,0

6 6
* *6

3 2
M M

 
  

 

 

Table 8  

The basis function for element #1. 

Gauss point #1 - Basis function for Element #1 

Node #   

1 N1M1 3.3471 x 10-4  x 3.3471 x 10-4 = 1.120307 x 10-7  
2 N2M1 0.30510371 x 3.3471 x 10-4 = 1.0212 x e-4 

3 N3M1 0.56025621 x 3.3471 x 10-4 = 1.875233 e-4 

4 N4M1 0.13430534 x 3.3471 x 10-4 = 4.495334 e -5 

10 N1M2 3.3471 x 10-4 x 0.30510371 = 1.02121 e-4 

11 N2M2 0.30510371 x 0.30510371 = 0.09308827 

12 N3M2 0.56025621 x 0.30510371 = 0.1709362482 

13 N4M2 0.13430534 x 0.30510371 = 0.0409770 

19 N1M3 3.3471 x 10-4
 x 0.56025621 = 1.875233e-4 

20 N2M3 0.30510371 x 0.56025621 = 0.1709362482 

21 N3M3 0.56025621 x 0.56025621 = 0.31388702 

22 N4M3 0.13430534 x 0.56025621 = 0.0752454 

28 N1M4 3.3471 x 10-4 x 0.13430534 = 4.495334 e-5 

29 N2M4 0.30510371 x 0.13430534 = 0.04097705 

30 N3M4 0.56025621 x 0.13430534 = 0.0752454 

31 N4M4 0.13430534 x 0.13430534 = 0.01803792 

  Total = 1.00000000 

 

Similarly at other gauss points, we can write the basis functions. 

 

  = 0.1550946926                  = 0.1550946926  

 

      

Table 9  

The basis functions and its derivatives. 

Basis functions and first derivatives At Xi 

1 3,0 1 3,0(1 6 )*(1 6 )*(1 6 ) (1 6 )*(1 6 )*(1 6 )N N M M              3.347x10-4 

2 21 1
3,0 3,03(1 6 ) ( 6) , 3(1 6 ) ( 6)

dN dM
N M

d d
 

 
       -0.086774 

2 2

1 1
3,0 3,02 2

(3)(2)(1 6 )( 6)( 6) , (3)(2)(1 6 )( 6)( 6)
d N d M

N M
d d

 
 

       

 

14.9973 

 2 3,0 3,0 3,0

(2 6 ) (2 6 )
6 *(1 6 )*(1 6 ) 6 (1 6 6 )

2 2
N N N N

 
     

  
      

 
 

0.3051 
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 2 3,0 3,0 3,0

(2 6 ) (2 6 )
6 *(1 6 )*(1 6 ) 6 (1 6 6 )

2 2
M M M M

 
     

  
      

 
 

2

2
3,02

6 *2*(1 6 )*( 6) (1 6 ) (6) (1 3 )(6)(1 6 ) (1 3 )( 6)(6 ) (6 )( 3)(1 6 )

(1 3 ) (6) 6 (2)(1 3 )( 3)

dN
N

d

        

   

              
       

 

2

2
3,02

6 *2*(1 6 )*( 6) (1 6 ) (6) (1 3 )(6)(1 6 ) (1 3 )( 6)(6 ) (6 )( 3)(1 6 )

(1 3 ) (6) 6 (2)(1 3 )( 3)

dM
M

d

        

   

              
       

 

-4.97303 

2

2

2
12(1 6 )( 6) (6)( 12)(1 6 ) 12(1 6 )( 6) ( 6)(6)(1 3 ) (6)(1 6 )( 3) 36(1 3 )

36( 3)( ) 18 ( 6) 18( 6 ) 12( 3)(1 3 ) 36(1 3 ) 36 ( 3)

d N

d
     



     

                 

           
 

2

2

2
12(1 6 )( 6) (6)( 12)(1 6 ) 12(1 6 )( 6) ( 6)(6)(1 3 ) (6)(1 6 )( 3) 36(1 3 )

36( 3)( ) 18 ( 6) 18( 6 ) 12( 3)(1 3 ) 36(1 3 ) 36 ( 3)

d M

d
     



     

                 

           
 

27.7548 

3 3,0 3,0

6 (2 6 ) 3 6 6
6 *(1 6 ) *6 6

2 2 3 2
N N N

   
   

    
      

   
 

3 3,0 3,0

6 (2 6 ) 3 6 6
6 *(1 6 ) *6 6

2 2 3 2
M M M

   
   

    
      

   
 

0.56025 

2 2 2

3
3,0

36 36 36
( 6) (1 6 )(36 ) ( 3) (1 3 )(36 ) ( 2) 36 (1 2 )

2 2 2

dN
N

d

  
     



 
            
 

 

2 2 2

3
3,0

36 36 36
( 6) (1 6 )(36 ) ( 3) (1 3 )(36 ) ( 2) 36 (1 2 )

2 2 2

dM
M

d

  
     



 
            
 

 

2.4619347 

2

3
3,02

(36)(2) (36)(2) (36)(2)
( 6) (1 6 )(36) ( 6)(36 ) ( 3) ( 3)(36 ) (1 3 )(36) ( 2)

2 2 2

36 ( 2) 36(1 2 )

d N
N

d

  
   


 

 
              

 
      

2

3
3,02

(36)(2) (36)(2) (36)(2)
( 6) (1 6 )(36) ( 6)(36 ) ( 3) ( 3)(36 ) (1 3 )(36) ( 2)

2 2 2

36 ( 2) 36(1 2 )

d M
M

d

  
   


 

 
              

 
      

-76.2525 

4 3,0

6 6
* *6

3 2
N N

 


 

4 3,0

6 6
* *6

3 2
M M

 


 

0.134303 

24
3,036*3*

dN
N

d



  

24
3,036*3*

dM
M

d



  

2.597871 

2

4
3,02

36*3* 2*
d N

N
d




  

2

4
3,02

36*3* 2*
d M

M
d




  

33.5 

 

 

Table 10  

Control point coordinates for element #1. 

 X Y 

N1 0 0 

N2 0.055555555555556 0 

N3 0.166666666666667 0 

N4 0.333333333333333 0 

N10 0 0.055555555555556 

N11 0.055555555555556 0.055555555555556 
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N12 0.166666666666667 0.055555555555556 

N13 0.333333333333333 0.055555555555556 

N19 0 0.166666666666667 

N20 0.055555555555556 0.166666666666667 

N21 0.166666666666667 0.166666666666667 

N22 0.333333333333333 0.166666666666667 

N28 0 0.333333333333333 

N29 0.055555555555556 0.333333333333333 

N30 0.166666666666667 0.333333333333333 

N31 0.333333333333333 0.333333333333333 

 

For gauss point #1 
 

Table 11  

Derivatives for element #1. 

1 1dN dM

d d 
 

0.00752973710746563 
9 9dN dM

d d 
 

-0.213632070617073 

2 2dN dM

d d 
 

0.431530165929331 
10 10dN dM

d d 
 

-12.2432804180917 

3 3dN dM

d d 
 

-0.213632070617073 
11 11dN dM

d d 
 

6.06112284463265 

4 4dN dM

d d 
 

-0.225427832419724 
12 12dN dM

d d 
 

6.39578964407610 

5 5dN dM

d d 
 

0.431530165929331 
13 13dN dM

d d 
 

-0.225427832419724 

6 6dN dM

d d 
 

24.7310472396657 
14 14dN dM

d d 
 

-12.9192969875034 

7 7dN dM

d d 
 

-12.2432804180917 
15 15dN dM

d d 
 

6.39578964407610 

8 8dN dM

d d 
 

-12.9192969875034 
16 16dN dM

d d 
 

6.74893517584699 

 

For gauss point #1 
 

 

Table 12  

Second derivatives for element #1. 

 Value  Value  Value  Value 
2

1
12

d N
M

d
 

 

0.00501 

2

1
22

d N
M

d
 

 

4.57572 

2

1
32

d N
M

d
 

 

8.40231 

2

1
42

d N
M

d
 

 

2.01421 

2

2
12

d N
M

d
 

 

0.00928 

2

2
22

d N
M

d
 

 

8.46808 

2

2
32

d N
M

d
 

 

15.5497 

2

2
42

d N
M

d
 

 

3.72761 

2

3
12

d N
M

d
 

 

-0.02552 

2

3
22

d N
M

d
 

 

-23.2649 

2

3
32

d N
M

d
 

 

-42.7209 

2

3
42

d N
M

d
 

 

-10.241 

2

4
12

d N
M

d
 

 

0.01121 

2

4
22

d N
M

d
 

 

10.2211 

2

4
32

d N
M

d
 

 

18.7688 

2

4
42

d N
M

d
 

 

4.4992 

 

 

 

 

dx

d
 

dy

d
 

dx

d
 

dy

d
 

2

2

d x

d
 

2

2

d x

d
 

2

2

d y

d
 

2

2

d y

d
 

2d x

d d 
 

2d y

d d 
 

1 0 0 1 0 0 0 0 0 0 
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 Value  Value  Value  Value 
2

1
12

d M
N

d
 

 

0.005019 

2

2
12

d M
N

d
 

 

0.00928 

2

3
12

d M
N

d
 

 

-0.02552 

2

4
12

d M
N

d
 

 

0.01121 

2

1
22

d M
N

d
 

 

4.57572 

2

2
22

d M
N

d
 

 

8.46808 

2

3
22

d M
N

d
 

 

-23.2649 

2

4
22

d M
N

d
 

 

10.2211 

2

1
32

d M
N

d
 

 

8.40231 

2

2
32

d M
N

d
 

 

15.5497 

2

3
32

d M
N

d
 

 

-42.7209 

2

4
32

d M
N

d
 

 

18.7688 

2

1
42

d M
N

d
 

 

2.01421 

2

2
42

d M
N

d
 

 

3.72761 

2

3
42

d M
N

d
 

 

-10.241 

2

4
42

d M
N

d
 

 

4.49929 

 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

d2N/

dx2 
0.005 0.0093 

-

0.0255 
0.0112 4.5757 8.4681 -23.2649 10.2211 8.4023 15.5498 -42.7209 18.7688 2.0142 3.7276 -10.2411 4.4993 

d2N/

dy2 
0.005 4.5757 8.4023 2.0142 0.0093 8.4681 15.5498 3.7276 

-

0.0255 
-23.2649 -42.7209 -10.2411 0.0112 10.2211 18.7688 4.4993 

d2N/

dxdy 

0.007

5 
0.4315 

-

0.2136 

-

0.2254 
0.4315 24.731 -12.2433 -12.9193 

-

0.2136 
-12.2433 6.0611 6.3958 

-

0.2254 
-12.9193 6.3958 6.7489 
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