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 ABSTRACT 

 In this article, dynamic modeling of double walled cylindrical functionally 

graded (FG) microshell is studied. Size effect of double walled cylindrical 

FG microshell are investigated using modified couple stress theory 

(MCST). Each layer of microshell is embedded in a viscoelastic medium. 

For the first time, in the present study, has been considered, FG length 

scale parameter in double walled cylindrical FG microshells, which this 

parameter changes along the thickness direction. Taking into consideration 

the first-order shear deformation theory (FSDT), double walled cylindrical 

FG microshell is modeled and its equations of motions are derived using 

Hamilton's principle. The novelty of this study is considering the effects of 

double layers and MCST, in addition to considering the various boundary 

conditions of double walled cylindrical FG microshell. Generalized 

differential quadrature method (GDQM) is used to discretize the model and 

to approximate the equation of motions and boundary conditions. Also, for 

confirmation, the result of current model is validated with the results 

obtained from molecular dynamics (MD) simulation. Considering length 

scale parameter (l=R/3) on MCST show, the results have better agreement 

with MD simulation. The results show that, length, thickness, FG power 

index, Winkler and Pasternak coefficients and shear correction factor have 

important role on the natural frequency of double walled cylindrical FG 

microshell.                          © 2019 IAU, Arak Branch.All rights reserved. 

 Keywords : Double walled; Functionally graded material; Modified couple 

stress theory; Vibration analysis; Viscoelastic foundation.  

1    INTRODUCTION 

 G materials are a new group of materials which have many advantages and superior properties, including high 

temperature resistance and high strength. The applications of FG cylindrical shells can be very broad. The FG 
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cylindrical shells can be applied to fuselage structures of civil airliners, aerospace structures, military aircraft 

propulsion system, and other engineering fields. In addition, the investigation of their vibration characteristics of FG 

cylindrical shell is of great interest for engineering design and manufacture.  It is apparent from the literature survey 

that most research on FGMs has been restricted to vibration, fracture mechanics and optimization.  Some researchers 

[1-8] investigated the vibration of cylindrical FG shells and panels. Also,  FG material has a lot of application within 

micro/nano scale structures, for example : atomic force microscopes [9] and micro/nano electromechanical systems 

[10-13]. Here in, it must be prominent that when the sizes of structures change to the nano/micro scale, new 

phenomena are Appeared or constructed. The first one of these phenomena, when transforming macro to micro/nano 

scales, behavior of material properties depends on size effects. Some researchers studied that, modeling cylindrical 

nano or micro shells have been widely used in nano-scale devices and systems. As an example of application of 

micro shells, Mescher et al. [14] presented the buckling behaviors of microtubules in a living cell. It should be noted 

that the effect of scale is not included in the classical continuum theories, so this theory is not suitable for micro and 

nano scales. One of the non-classical theories that including the effect of scale is couple stress theory. Toupin, 

Koiter, and Mindlin [15-17] studied the couple stress theory containing higher order rotation gradients, which the 

asymmetric part of the deformation gradient. According to this theory, it has four material constants (two classical 

and two additional) for isotropic materials. For example of this theory, asghari et al. [18] investigated the effects of 

size scale in Timoshenko beams on the basis of the couple stress theory. Determination of the microstructure related 

length scale parameters are so difficult. In addition, we need to have a continuum theory which involves only one 

additional material parameter of length scale. One of the best and most convenient-known continuum mechanics 

theories that considered scale effects with reasonable accuracy in microscale devices is MCST. Yang et al [18] 

reported a modified couple stress theory, which the couple stress tensor is symmetric and just has a material length 

scale parameter is involved, different from the classical couple stress theory mentioned above. Some investigators 

have studied this theory to test the dynamic and static behavior of micro beams and plates [19-21]. It is noted that , 

nonlocal theory of Eringen is one of the best and most well-known continuum mechanics theories that includes 

small scale effects with good accuracy in nano/micro scale devices, but the results show that MCST coincides with 

experimental results better than Eringen’s nonlocal elasticity and classical theories [22]. Therefore, in this study, the 

MCST has been used.  Unique mechanical properties and extreme electrical conductivity of double-cylindrical shell 

structures have caused them to be of extensive use in various micro/nano devices.  It is worth to maintaining that, 

dynamic behavior of double walled carbon tubes (DWCNTs) are similar to double cylindrical shell structures. 

Considering the use of DWCNTs in conveying fluids in Nano devices and the importance of identification of fluid-

conveying DWCNTs, today many researchers attempt to scrutinize the dynamic behavior of these nanostructures 

[23-28]. In the field of stability of the cylindrical shell under various loading, Arani et al [29]  presented buckling of 

a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. They 

in this work examine, influence of various parameters on stability of the cylindrical shell under different forces. In 

another works, electro-thermo-mechanical nonlinear dynamic buckling of an orthotropic piezoelectric 

nanocomposite cylindrical shell conveying viscous fluid is presented by Arani et al [30]. The important result is that, 

the dimensionless critical dynamic buckling load and stability of the structure increase when piezoelectric effect is 

considered.  

In recently, zhang et al [25] are studied free and forced vibration analysis of circular cylindrical double-shell 

structures under arbitrary boundary conditions. The natural frequencies and mode shapes of the structures as well as 

frequency responses under forced vibration of their work are obtained with the Rayleigh–Ritz procedure. The 

novelty of this work is consideration of the size effect in the dynamic behavior of double moderately thick 

cylindrical FG microshell. The main idea of the present work is to propose a numerical model to study the free linear 

vibration of double FG micro shell using MCST, then applying the GDQM to solve it. The outer and inner 

cylindrical FG microshell material of this work is FG material and according to the power law distribution, it is 

assumed that the outer surface is metal and the inner surface is ceramic. The governing equations and boundary 

conditions have been developed using Hamilton principle. The results show that, length, thickness, FG power index, 

Winkler and Pasternak coefficient and shear correction factor play important roles on the natural frequency of the 

double walled cylindrical FG microshell. 

2    GOVERNING EQUATIONS OF MOTION AND CORRESPONDING BOUNDARY CONDITIONS  

Fig. 1 presents a schematic of the double walled cylindrical microshell. Moreover, this figure demonstrates the effect 

of the viscoelastic foundation between the two walls and the surroundings of this structure. L, R and h denote the 
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length, radius and the thickness of the double walled cylindrical microshell respectively. In this study, the double 

walled cylindrical microshell is modeled as two cylindrical viscoelastic shell. 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of a double walled cylindrical microshell. 

 
 According to the FSDT, the displacement field of each cylindrical shell along the three directions of x, θ, z 

would be as follows: 
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where, u(x,θ,t), v(x,θ,t), and w(x,θ,t) represent the displacements in axial, circumferential, and radial-directions 

respectively.  (x,θ,t) and 
x (x,θ,t)  are the rotations about the circumferential and axial directions. In addition, 

strain tensor is expressed as: 
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In Eq. (2) i  and i  represent the components of displacement vector and infinitesimal rotation vector 

respectively. Furthermore, l is the parameter which denotes the additional and independent material length-scale 

parameter which has relates with the symmetric rotation gradients. At the inner and the outer surfaces, the FG 

nanoshell is generally composed of two different materials. The FG cylindrical nanoshell is made of porous material 

and according to the power law distribution, its bulk elastic modulus E (z), mass density ( )z , and Poisson’s ratio 

( )v z are assumed to change along the thickness direction [31]. Power FG index (F) determines the variation profile 

of material properties across the cylindrical FG nanoshell thickness. Assuming that the inner surface is ceramic and 

the outer surface is metal, then for different values of F, the mechanical properties can be written as: 
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The stress-strain equations in plane stress cases are written as follows for the elastic inhomogeneous moderately 

thick cylindrical microshell model: 
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The principle of minimum potential energy is used in order to derive the equations of motion and the associated 

boundary conditions: 
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where, U and T are strain and kinetic energies respectively. The strain energy of a cylindrical shell includes classical 

strain energy U1, and non-classical strain U2. Therefore, the variation of strain energy would be written as follows: 
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where classical and non-classical force and momentum are defined as below: 
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Furthermore, the kinetic energy of the double walled cylindrical microshell can be expressed as: 
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The work done by Pasternak foundation, as the surrounding medium, acting on the double walled cylindrical 

microshell can be expressed as [30]: 
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In which 
wK  and 

pK  are the Winkler and Pasternak coefficients respectively. The energy dissipated by the 

dampers acting on the double walled cylindrical microshell by the surrounding medium can be expressed as [30]: 
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In which dC  is the damping constant. Now equations of motion and boundary conditions can be obtained 

substituting Eqs. (6), (9), (10), and (11) into (5), and integrating by parts. 

For inner cylindrical microshell: 
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For outer cylindrical microshell: 
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(13) 

 

Also, associate boundary conditions for each cylindrical microshell are as below: 
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For example: 

The clamped boundary conditions at x=0, L: 

 

0xu v w        (15) 

 

The simply supported boundary conditions at x=0, L: 
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v w N M
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 
 (16) 

3    SOLUTION PROCEDURE  

Generalized Differential Quadrature method (GDQ) has comprehensively used to solve the governing equations of 

motion in these structure [32-34]. Surveying the literature reveals the shortcoming of investigations in order to the 

analysis of the moderately thick cylindrical nano-shell considering the modified couple stress and centrifugal force.  

In this study, GDQ method is used to calculate the spatial derivatives of field variables in equilibrium equations. In 
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the implementation of GDQ, Grid points describe the locations of calculated derivatives and field variables.  Thus, 

the "r – th" order derivative of a function "f(x)" can be defined as the linear sum of the function values which is: [35]  
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where, n is the number of grid points along the x direction. Also, ijC  is obtained as follows: 
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and M is defined as: 
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Superscript "r" is the order of the derivative. Also, C
(r)

 is the weighing coefficient along the x direction, which 

could be written as: 
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In order to obtain a better mesh point distribution, Chebyshev-Gauss-Lobatto technique has been defined: 
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Applying Eq. (21) into the governing and B.C equations, for each cylindrical microshell have: 
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 (22) 

 

In which the subscripts b and d refer to the boundary and domain grid points, respectively. Also   define the 

displacement vector. Eq. (22) can be transformed to a standard eigenvalue problem: 
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Finally, with setting this polynomial to zero, we can find natural frequency of the microstructure. 
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4    RESULTS  

The numerical results of the vibration behavior of double walled cylindrical FG microshell are investigated based on 

the MCST for the various boundary conditions. Sufficient number of grid points is necessary to achieve accurate 

results in GDQ method. As it is shown in Table 1., for the good results, 31 grid points are appropriate. The Results 

are shown and analyzed in two sections. The first one verifies proposed model with existing literatures. Second 

section shows the effect of length, thickness, FG power index, Winkler and Pasternak coefficient and shear 

correction factor on the natural frequency of double walled cylindrical FG microshell. 

 
Table 1 

The effect of the number of grid points on evaluating convergence of the natural frequency of the double FG cylindrical 

microshell with respect to the different FG power index, boundary conditions with  
1 2 10L L m  , 

1 1/ 10L R  , 

1 2 1 /10h h R  , 
1 14ml m , 

1 1 / 2c ml l , 
1 2m ml l , 

1 2c cl l , 1 14wK e , 0pK   and 
2 11.125R R  . 

B.Cs FG power index 

(m) 

N=15 N=19 N=23 N=27 N=31 N=34 

Simply- 

Simply 

Only metal 0.48146166 0.48146166 0.48146166 0.48146166 0.48146166 0.48146166 

1 0.68933699 0.68933699 0.68933699 0.68933699 0.68933699 0.68933699 

10 0.80166448 0.80166448 0.80166448 0.80166448 0.80166448 0.80166448 

Only ceramic 0.82412107 0.82412107 0.82412107 0.82412107 0.82412107 0.82412107 

Clamp- 

Simply 

Only metal 0.56806511 0.56794809 0.56794649 0.56794853 0.56794852 0.56794852 

1 0.87162888 0.87146831 0.87144774 0.87145249 0.87145264 0.87145264 

10 1.03504190 1.03490931 1.03489181 1.03489577 1.03489582 1.03489582 

Only ceramic 1.06745638 1.06732910 1.06731387 1.06731751 1.06731752 1.06731752 

Clamp- 

Clamp 

Only metal 0.66162622 0.66164744 0.66164278 0.66164272 0.66164274 0.66164274 

1 1.06307791 1.06314833 1.06313858 1.06313795 1.06313800 1.06313800 

10 1.27890989 1.27897364 1.27896266 1.27896217 1.27896221 1.27896221 

Only ceramic 1.32155387 1.32161012 1.32159908 1.32159869 1.32159873 1.32159873 
 

4.1 Model validation  

For results verification of this work with other articles, Table 2 and Fig. 2 give a comparison of results for 

dimensionless natural frequency, of the simply supported cylindrical nanoshell between the presented results with 

those obtained by other articles, for different geometrical parameters. Table 2 shows the obtained results for 

dimensionless natural frequency of simply supported cylindrical nanoshell for difference length scale parameter. 

They are in good agreement with those given by Ref [36]. Another verification of this work, according to Fig. 2, it is 

revealed that the proposed modeling can provide good agreement with molecular dynamic simulation. In this Figure 

show that, as l = R/3, the results of the current research based on FSDT are very similar to those of MD simulation. 

In addition, this issue is reported by Refs [37, 38] .The material properties of single-walled carbon nanotubes are 

presented in Table 3. 
 

Table 2 

Comparison of dimensionless first three natural frequencies of isotropic homogeneous nanoshells, with different thicknesses. 

h/R n 
Ref [36] 

(l=0) 

Present 

(l=0) 

Ref [36] 

(l=h) 

Present study 

(l=h) 

 

0.02 

 

1 0.1954 0.19536215 0.1955 0.19543206 

2 0.2532 0.25271274 0.2575 0.25731258 

3 0.2772 0.27580092 0.3067 0.30621690 

 

0.05 

 

1 0.1959 0.19542305 0.1963 0.19585782 

2 0.2623 0.25884786 0.2869 0.28543902 

3 0.3220 0.31407326 0.4586 0.45457555 
 

 

 

Table 3 

The material properties of single-walled carbon nanotubes. 

E v h  

1.06 TPa 0.19 0.34 nm 2300 kg/m3 
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Fig.2 

Comparison of the natural frequency of cylindrical nanoshell 

with the results obtained by MD simulation [39]. 

4.2 Parametric results 

The material for this paper is FG for inner and outer layer of the cylindrical microshell and it is assumed that the 

inner surface is ceramic and the outer one is metal. Volume fraction index (m) determines the variation profile of the 

material properties across the thickness of the FG cylindrical microshell. The material properties are given in Table 

4. 

 
Table 4 

Material properties of FGM constituents. 
 

Material properties Unit Aluninum Silicon 

E GPA 70 210 
  Kg/m3 2700 2370 

v - 0.3 0.24 

 

Table 4 gives a presentation of shear correction factor, thickness, winkler and pasternak stiffness effect on 

natural frequency under the various boundary conditions. As it can be seen from Table 5, an increase in shear 

correction factor leads to an increase in the natural frequency. This trend is observed under all types of boundary 

conditions. In addition, the increase in the winkler and Pasternak stiffness of the frequency results in considerable 

increase in natural frequency. Simply-Simply boundary condition has the lowest frequency because of its particular 

condition, and Clamp-Clamp boundary condition has the highest frequency. In addition, the effect of Pasternak 

stiffness (
pK ) has the high effect on the natural frequency in compare with winkler stiffness Also, by increasing the 

thickness, the natural frequency tends to decrease. 

 
Table5 

 Variation of the fundamental natural frequency, with different thickness of a double walled FG cylindrical microshell for 

different shear correction factor, winker and pasternak stiffness with various boundary conditions and 
1 2 10L L m  , 

1 1/ 10L R  , 
1 2h h , 

1 14ml m , 
1 1 / 2c ml l , 

1 2m ml l , 
1 2c cl l , 

2 11.125R R  , 1.m    

B.Cs pK =0 pK =100 

 
sK =0 

sK =5/6 
sK =0 

sK =5/6 

Simply_Simply 
wK =1e14 

wK =1e15 
wK =1e14 

wK =1e15 
wK =1e14 

wK =1e15 
wK =1e14 

wK =1e15 

 1h m    

0.1 0.687427 1.19883 0.689337 1.20122 0.778507 1.24393 0.780368 1.24645 

0.2 0.636747 0.961331 0.641959 0.965259 0.692019 0.990906 0.696887 0.994775 

0.3 0.617666 0.863184 0.628401 0.871239 0.657995 0.886043 0.668113 0.893923 

Simply_Clamp  

 1h m  

0.1 0.866874 1.331686 0.8716289 1.336483 0.9472032 1.374034 1.378875 0.9517374 

0.2 0.8242185 1.112314 0.8339751 1.120407 0.8710811 1.139584 1.147561 0.8803839 

0.3 0.8086962 1.022929 0.8254644 1.036825 0.8420691 1.043792 1.057477 0.858198 

Clamp_Clamp  

 1h m  

0.1 1.055548 1.484719 1.063078 1.492008 1.12715 1.524666 1.134418 1.531971 

0.2 1.018709 1.279139 1.034333 1.292736 1.059203 1.30451 1.074339 1.317973 

0.3 1.005598 1.196397 1.031063 1.218672 1.03397 1.215613 1.058798 1.237657 
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Figs. 3-5 show the effect of the length on natural frequency (GHz) of double walled cylindrical FG microshell 

with different boundary conditions and 
1 1R m , 

1 2 1 /10h h R  , 
1 14ml m , 

1 1 / 2c ml l , 
1 2m ml l , 

1 2c cl l , 

1 14wK e , 100pK  , 
2 11.125R R  . It can be seen from Figs. 3-5 that the increase in length leads to the 

increase in natural frequency. This is because increasing the length is eventuated to decrease in stiffness and natural 

frequency of the double FG cylindrical microshell. Other results are that, the double cylindrical microshell which, is 

made of only metal, has the lower frequency compare with only ceramic. The other remarkable point is related to 

Fig.3 where the effect of length on natural frequency of simply-simply boundary condition is less than two others. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

The effect of length on the natural frequency with simply-

simply boundary conditions. 

  

 

 

 

 

 

 

 

 

 

Fig.4 

The effect of length on the natural frequency with clamp-

simply boundary conditions. 

  

 

 

 

 

 

 

 

 

Fig.5 

The effect of length on the natural frequency with clamp-

clamp boundary conditions. 

 

 

Figs. 6-8 illustrate the effect of Winkler foundation on natural frequency of double walled cylindrical microshell 

for the case where 
1 2 10L L m  , 

1 1/ 10L R  ,
1 2 1 /10h h R  , 1 14ml m , 

1 1 / 2c ml l , 
1 2m ml l , 

1 2c cl l , 

100pK  , 
2 11.125R R  . Figs. 6-8 respectively are related to the simply-simply, clamped-simply and clamp-

clamp boundary conditions. As we can see in all three figures, with increase in Winkler stiffness, natural frequencies 

increase. Also increase in FG power index leads to increase in natural frequencies. In simply-simply, frequency 

variations are modest again. Figs. 6-8 show that with considering the coefficient of Pasternak, there is an exceptional 

trend by increasing Winkler coefficient, at first frequency increase and reach to a peak point then the natural 

frequency tends to be constant in all boundary conditions.  
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Fig.6 

The effect of Winkler stiffness on the natural frequency 

with simply-simply boundary conditions. 

  

 

 

 

 

 

 

 

 

 

Fig.7 

The effect of Winkler stiffness on the natural frequency 

with clamp-simply boundary conditions. 

  

 

 

 

 

 

 

 

 

 

Fig.8 

The effect of Winkler stiffness on the natural frequency 

with clamp-clamp boundary conditions. 

  

Figs. 9-11 illustrate the effect of Pasternak foundation on natural frequency with 
1 2 10L L m  , 

1 1/ 10L R  ,
1 2 1 /10h h R  , 

1 14ml m , 
1 1 / 2c ml l , 

1 2m ml l , 
1 2c cl l , 1 14wK e , 

2 11.125R R  . Figs. 9-

11 respectively are related to simply-simply, clamped-simply and clamp-clamp boundary conditions; as it is obvious 

in all figures with increase in Pasternak stiffness the natural frequencies tend to increase. Also increase in FG power 

index causes to increase in natural frequencies. Also, this kind of foundation has more influence on frequency in 

comparison with Winkler. In simply-simply, frequency variations are modest again. Figs. 9-11 show that with 

considering the coefficient of Winkler, there is an exceptional trend by increasing Pasternak coefficient, at first 

frequency increase and reach to a peak point then the natural frequency tends to be constant in all boundary 

conditions.  

 

 

 

 

 

 

 

 

 

 

Fig.9 

The effect of Pasternak stiffness on the natural frequency 

with simply-simply boundary conditions. 
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Fig.10 

The effect of Pasternak stiffness on the natural frequency 

with clamp-simply boundary conditions. 

  

 

 

 

 

 

 

 

 

 

Fig.11 

The effect of Pasternak stiffness on the natural frequency 

with clamp-clamp boundary conditions. 

 

Figs. 12-14 demonstrates the effect of dampers on the natural frequency of the double walled cylindrical 

microshell with 
1 2 10L L m  , 

1 1/ 10L R  ,
1 2 1 /10h h R  , 

1 14ml m , 
1 1 / 2c ml l , 

1 2m ml l , 
1 2c cl l , 

1 14wK e and 
2 11.125R R  . In addition, Figs. 9-11 respectively are related to simply-simply, clamped-simply 

and clamp-clamp boundary conditions. It can be understood from Fig. 12 that increase in the dampers constant 

reduces the natural frequency of the microstructure, but the reduction of the frequency is more intense in the greater 

constants of FG power index (only ceramic). The difference between Figs. 12, 13 and 14 is that, while a B.Cs 

changes from simply-simply to clamp- clamp, the natural frequency increases. This is because, clamp- clamp B.Cs 

improves the structure stability.   

 

 

 

 

 

 

 

 

 

 

Fig.12 

The effect of damping stiffness on the natural frequency 

with simply-simply boundary conditions. 

  

 

 

 

 

 

 

 

 

 

Fig.13 

The effect of damping stiffness on the natural frequency 

with clamp-simply boundary conditions. 
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Fig.14 

The effect of damping stiffness on the natural frequency 

with clamp-clamp boundary conditions. 

5    CONCLUSIONS 

This paper presents the free vibration analysis of double walled FG cylindrical microshell surrounded by viscoelastic 

foundation. MCST introduces the size-dependent effect. The equations of motion and non-classic boundary 

conditions is derived using Hamilton’s principle. In addition, for confirmation, the result of current model is 

validated with the results obtained from molecular dynamics (MD) simulation. Considering length scale parameter 

(l=R/3) on MCST show, the results have better agreement with MD simulation. The natural frequency of the double 

walled cylindrical FG microshell is investigated with respect to the length, thickness, FG power index, damping 

constant, Winkler-Pasternak coefficients and shear correction factor for different boundary conditions of the double  

cylindrical FG microshell. The followings important results can be obtained from this study: 

1- By increasing the damping constant, length and thickness the natural frequency tend to decrease while, by 

increasing the FG power index, the natural frequency increases. 

2- Simply-simply boundary condition has the lowest natural frequency because of its particular condition, and 

Clamp-Clamp boundary condition has the highest natural frequency. 

3- The results show that, increase in the length to radius ratio and material length scale parameter lead to 

increase in the critical speed of the rotation FG cylindrical nanoshell. 

4- By considering the coefficient of Winkler and Pasternak, there is an exceptional trend by increasing 

Winkler and Pasternak coefficient, at first frequency increase and reach to a peak point then the natural 

frequency tends to be constant in all boundary conditions.  
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