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 ABSTRACT 

 This study is limited to study of buckling analysis of a sandwich 

cylindrical shell with functionally graded face sheets and 

homogenous core. High-order sandwich plate theory is improved by 

considering the in-plane stresses of the core that usually are ignored 

in the analysis of sandwich structures. Assume that all properties of 

the face sheets and the core are temperature dependent. Strain 

components are obtained by using the nonlinear Von-Karman type 

relations. The equilibrium equations are derived via principle of 

minimum potential energy. Analytical solution for static analysis of 

simply supported sandwich conical shells with functionally graded 

face sheets under axial in-plane compressive loads and in the 

temperature environments is performed by using Navier‟s solution. 

The results show the critical dimensionless static axial loads are 

affected by the configurations of the constituent materials, 

compositional profile variations, temperature and the variation of 

the sandwich geometry. The comparisons show that the present 

results are in the good agreement with the numerical results. 

                                     © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 UE to the advantages of being able to withstand a severe high-temperature gradient while maintaining 

structural integrity, functionally graded materials (FGMs) have been receiving much more attention in 

engineering communities, especially in applications for high-temperature environment such as nuclear reactors, 

space planes and chemical plants. Functionally graded materials are microscopically inhomogeneous composite 

materials, in which the mechanical properties vary smoothly and continuously from one surface to the other [1]. 

Composition is varied with continuous changes in the volume fraction of constituent materials. These materials are 

usually made from a mixture of metals and ceramics through a powder metallurgy process. The advantage of using 

these materials is that they are able to withstand high temperature gradient environment while maintaining their 

structural integrity. For example, the insulating tile for a re-entry space vehicle can be designed such that the outside 

is a refractory (ceramic) material, and the inside a load-carrying structure made of a strong and tough metal [1]. In 

recent years, functionally graded materials (FGMs) have been developed due to their excellent mechanical and 
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thermal properties. Sandwich structures find an increasing use in aerospace, naval, transportation, and other 

industries, which require stiff and lightweight structural components. Various theoretical models have been 

developed in the recent years to discuss the static and dynamic behavior of sandwich structures. These theories 

assume that the height of the core remains unchanged. A summary of classical theories can be found in the 

textbooks written by Plantema [2], Allen [3], and Zenkert [4]. Javaheri and Eslami studied the stability of FG 

rectangular plates under thermal loads by using the classical plate theory [5]. Zhao et al. investigated the mechanical 

and thermal buckling of FG plates by using the FSDT and element free kp-Ritz method. Exponential distribution is 

applied to model the variation of material properties [6]. Amir et al. studied the buckling behavior of nano 

composite sandwich plates by using first order shear deformation theory. The faces are piezoelectric and the 

flexoelectric effect was considered [7]. Bouderba et al. investigated the thermal buckling of FG sandwich plates with 

various boundary conditions by applying FSDT. The core was homogeneous and a power law distribution was used 

to show the variation of the materials [8]. Amir studied the vibration and instability of orthotropic grapheme sheet 

subjected to thermo magnetic field by using FSDT. Also, orthotropic visco Pasternak foundation was considered [9]. 

Sepiani et al. analyzed the free vibration and buckling of FG cylindrical shell under combined forces. FG materials 

were considered temperature dependent and varied with a power law distribution in the thickness direction. The 

equations are obtained based on FSDT by considering the transverse shear strains and rotary inertia [10]. Amir et al. 

studied the vibration of a porous rectangular plate with two piezo-electromagnetic face sheets resting on Winkler 

Pasternak foundation by applying the two variables sinusoidal shear deformation plate theory and a nonlocal theory 

[11]. Classical theories can often accurately determine the global response of the sandwich structure, for example, 

fundamental vibration frequencies. Modern sandwich structures are usually made of two metallic or laminated 

composite face sheets and a foam or low strength honeycomb core. These types of cores are flexible in all directions 

while upper and lower faces of the sandwich structure exhibit different deformation patterns. These effects denoted 

as localized effects cannot be accurately determined using classical sandwich theories. In order to take into account 

the compressibility of the core, a high-order sandwich theory has been developed by Frostig et al. [12]. High-order 

theory has successfully been used to analyze various problems of sandwich structures [13-18]. Seidi et al. by using a 

high order theory studied the buckling of truncated conical sandwich shells. The material of FG face sheets and 

homogenous core were temperature dependent [19]. Cylindrical shells are widely used in many engineering fields 

such as aerospace, chemical, civil, mechanical, naval, and nuclear. A predominant failure mode of axially 

compressed thin cylindrical shells is axial buckling, and this problem has been studied for more than a century [20–

33]. For example, Winterstetter and Schmidt [23] have conducted a comprehensive experimental and numerical 

investigation of the buckling of a steel cylindrical shell under combined loading. Kim and Kim [24] used the 

commercial finite element code ABAQUS to analyze the effect of geometric imperfections on the buckling of 

axially compressed cylindrical shells and tanks. Pinna and Ronalds [25] have studied numerically the buckling and 

post-buckling of cylindrical shells with one end pinned and the other free, and computed the collapse and bifurcation 

loads. Eslami [27, 28] employed the Wan-Donnell and Koiter shell theories to investigate buckling deformations of 

isotropic and orthotropic laminated cylindrical shells subjected to mechanical and thermal loads. Mushtari and 

Sachenkov [29] investigated the buckling behavior of cylindrical and conical shells under external pressure. Lopatin 

and Morozov [30] presented an approximate analytical solution for the buckling problem of a composite sandwich 

cylindrical shell subjected to a uniform external lateral pressure. Malinowski et al. [31] analyzed the buckling and 

post-buckling problems of an elastic seven-layered cylindrical shell under uniformly distributed pressure. The 

buckling problems of functionally graded cylindrical shells are solved by a number of authors. For example, Shen 

[32, 33] used the perturbation method to analyze the thermal post-buckling of axially loaded and pressure-loaded 

cylindrical shells made of functionally graded materials. Li and Batra [34] studied the buckling of a simply-

supported three-layer cylindrical shell under the axial compressive load. The inner and outer layers of the shell are 

comprised of the same homogeneous and isotropic material, and the middle layer is made of a functionally graded 

material. Sofiyev [35] discussed the vibration and buckling of sandwich cylindrical shells covered by different types 

of coatings, such as functionally graded, metal and ceramic coatings, and subjected to a uniform hydrostatic 

pressure. Shahsiah and Eslami [36] investigated thermal buckling behavior of functionally graded cylindrical shell 

based on improved Donnell equations. Woo et al. [37] provided an analytical solution for the post buckling behavior 

of moderately thick plates and shallow shells made of functionally graded materials under edge compressive loads 

and a temperature field. Ravikiran and Ganesan [38] studied linear thermal buckling and free vibration of 

functionally graded cylindrical shells with clamped–clamped boundary conditions based on temperature-dependent 

material properties.  

But, there are no studies in the open literature on the buckling analysis of sandwich cylindrical shells with FG 

face sheets and temperature-dependent properties. In this study, a new improved high-order theory is presented for 

axial and thermal overall buckling analysis of sandwich cylindrical shells with FG face sheets and homogenous core. 
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First-order shear deformation plate theory is used for the face sheets and cubic functions are assumed for the 

transverse and in-plane displacements of the core. Strain components are calculated by use of nonlinear von Kármán 

relations. Continuity conditions of transverse shear stresses at the interface as well as the condition of zero 

transverse shear stresses on the upper and lower surface of the cylinder are satisfied. Also, transverse flexibility of 

the core and consequently the core transverse normal strain and stress are considered. The equation of motion and 

boundary conditions are derived via principle of minimum potential energy. Analytical solution for static analysis of 

sandwich cylinders with simply-supported boundary conditions under axial in-plane compressive loads is presented 

using Navier‟s solution. 

2    STRUCTURE AND MATERIAL 

A sandwich cylinder with functionally graded face sheets is considered under axial loads, see Fig. 1.  
0h  and 

ih  are 

the thicknesses of the outer and inner FG face sheets, respectively, and R indicate the radius of the cylinder. The face 

sheets material are assumed to be functionally graded and the core is assumed as homogeneous material with 

thickness of
ch . The properties of the FG face sheets,  ,jp z T , such as Young‟s modulus, Poisson‟s ratio, thermal 

expansion coefficient and the density of FG face sheets, are introduced by power-law function as: 
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where ( )j

ceP T  and ( )j

mP T  are the materials properties of the ceramic and metal, respectively. And they are 

expressed as a function of temperature as [39] 
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where T is temperature and is expressed in Kelvin;  0 1 1 2 3, , , ,C C C C C  are the coefficients and are unique to the 

constituent materials [40]. 

 

 

 

 

 

 

 

 
Fig.1 

Two-dimensional view of sandwich cylinder with axial in-

plane compressive load. 

3    FORMULATION 

In the present paper, the first shear deformation theory is adopted for the face sheets: 

   0( , , ) , ,j
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where 
0 0,u v  and 

0w  are displacements of mid-surface along the s,   and z direction and j

s  and j

  are rotations 

of the normal to the mid-surface along  and s axis, respectively. The core layer is much thicker and softer than the 

face sheets. Thus, the displacement fields for the core are assumed as a cubic pattern for the in-plane and vertical 

displacement components [41]:  
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(4) 

 

where 
ku  and 

kv (k=0, 1, 2, 3) are the unknowns of the in-plane displacement components of the core and 
kw (k=0, 

1, 2, 3) are the unknowns of its vertical displacements, respectively. In this model, there are twenty eight unknowns: 

ten displacement unknowns for both face sheets, twelve displacement unknowns for the core, and six Lagrange 

multipliers. 

In the present model, assumed core is perfectly bonded to the face sheets. Hence, there are three interface 

displacements in each face sheet-core interface, which can be obtained as follows: 
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The nonlinear von Kármán strain-displacement relations for the face sheets (j=o , i) can be defined as: 
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In addition, the nonlinear von Kármán strain-displacement relations for the core can be expressed as: 
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(7) 

 

For determination of stress resultants for each FG face sheet (j=o , i) constitutive equations are as follows: 
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It should be noted that 
2

12


is the shear correction factor of FSDT. In addition, the strain components for a 

sandwich cylinder are defined as: 
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where    , , ,j j j j j jE z T z T  and  , ,j j jz T ( , )j o i  are the modulus of elasticity, Poisson„s ratio and the 

thermal expansion coefficient of the FG face sheets, respectively, and introduced by power-law function of FGMs. 

"o" and "i" refer to the outer and inner face sheet layers, respectively. In addition, twenty-three stress resultants of 

the core are defined as: 
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(11) 

4    GOVERNING EQUATIONS 

The governing equations are derived through the principle of minimum potential energy: 

 
0U V  

 
 (12) 

where U is the total strain energy, V is the total potential energy and  denotes the variation operator. The total 

potential energy is equals to: 

 
2

0 0

0 0

( )

L

o i

s o s iV n u n u r d ds



        
 

(13) 

 

where ,oo oiu u are mid-plane displacements of the outer and inner face sheets in the longitudinal direction, 

respectively. o

sn  and i

sn are the in-plane external loads of the outer and inner face sheets, respectively. In addition, 

the first variation of the total strain energy is as follows: 
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(14) 

 

where j

ss  and j

 (j=o, i) are the in-plane normal stresses and j

ss  and j

 (j=o, i) are the in-plane normal strains of 

the outer and inner face sheets; , ,c c c

ss      and c

ss are the in-plane normal stresses and strains of the core, 

respectively; j

s  and j

s (j=o, i, c) are the in-plane shear stresses and strains in the face sheets and the core; c

zz  

and c

zz  are the normal stress and normal strain in the vertical direction of the core; c

sz  and c

sz  are the vertical 

shear stress and vertical shear strain in the core; 
0 , iV V  and 

coreV  are the volume of outer and inner face sheets and 

the core, respectively; ,sj j   and zj (j=o, i) are six Lagrange multipliers for compatibility conditions at the outer 

and inner face sheet-core interfaces. By using the Eqs. (12, 13, 14) and after some algebraic manipulation, the 

twenty eight equations of equilibrium are calculated as follows:  

Five equations for the outer FG face sheet: 
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
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    

 

 

 

 

 

(15) 

 

Five equations for the inner FG face sheet: 
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0

0

i i i

ss s s si s

i i
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2
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(16) 

 

Twelve equations for the core: 
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(17) 

 

and six compatibility conditions corresponding to perfect bonding: 
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(18) 

 

where    0 , iN w N w  and  cN w  are defined in Appendix A. 

5    SIMPLY-SUPPORTED BOUNDARY CONDITIONS 

In this section, assumed the outer and the inner face sheets are simply-supported and the vertical displacements 

through the depth of the core at the edges of the sandwich cylinder are prevented, see Fig. 2. A Navier‟s solution 

method with twenty-eight trigonometric Fourier series, which satisfies the boundary conditions, is established. The 

Fourier series can be expressed as: 
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(19) 

 

where , , , , , , , , ,uj vj wj sj j uK vK wK sj jC C C C C C C C C C    and 
zjC  are the twenty-eight unknown constants of the 

Fourier series. In addition, m and n are the wave numbers and M and N are the number of terms in the Fourier series. 

After substitution of the Fourier series, Eqs. (19), into the equilibrium equations, Eqs. (15)– (18), along with the 

stress resultants of the functionally graded face sheets, and the high-order stress resultants of the core, the problem 

can be expressed in matrix form as: 

 

    L C F  (20) 

where  C  vector contains twenty-eight unknown constants and components of  L  matrix are not presented here 

for the sake of brevity, but nonzero components of  F  vector are shown in Eq. (21). Eq. (27) is solved for  C  by 

using MATLAB software, and the twenty-eight unknown constants are obtained. 
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(21) 

 

where 
1 2 3, , ,cT cT cT cT

c c c cR M M M  are the thermal stresses resultants of the core and are defined as: 
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Fig.2 

Three-dimensional view of sandwich cylinder with simply-

supported boundary conditions. 
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6    NUMERICAL RESULTS AND VALIDATION 

In this section, the numerical results of sandwich cylinders with FG face sheets are calculated for two types of 

ceramic and metal combinations as defined in Table 1. The material properties C in the FG face sheets can be 

expressed as a function of temperature as Eq. (2). Table 2, shows the temperature-dependent properties of 

constituent materials of Si3N4, Ni, ZrO2 and Ti–6Al–4V defined by five constants for third-order function of 

temperature that is introduced by Eq. (2), [41]. In two examples defined in Table 1, the outer surfaces of the FG face 

sheets are assumed to be ceramic rich (Si3N4 or ZrO2) and the FG face sheets in the face sheet-core interfaces are 

assumed to be pure metal (Ni or Ti–6Al–4V). In addition, numerical examples are simulated by ABAQUS software 

for validation of the present approach in special cases. 

 
Table 1 

Two examples of sandwich cylinder. 

 FG face sheets core 

Type I Silicon nitride/Nickel Stainless steel 

Type II Zirconia/Titanium Titanium 

 

 

Table 2 

Temperature-dependent properties of constituent materials of the FG face sheets [30]. 

  Si3N4 ZrO2 

 

E v   E v   

0c  348.4323 102 
0.24 2370 244.27 102 0.2882 3000 

1c
 0 0 0 0 0 0 

1c  -3.0697386 10-4 0 0 -1.371 10-2 1.133 10-4 0 

2c  2.160186 10-7 0 0 1.214 10-6 0 0 

3c  -8.946165 10-11 0 0 -3.681 10-9 0 0 

 
Ni Ti–6Al–4V 

0c  223.95 102 0.31 8900 122.56 105 0.2884 4420 

1c
 0 0 0 0 0 0 

1c  -2.794 10-4 0 0 -4.586 10-4 1.122 10-4 0 

2c  -3.998 10-9 0 0 0 0 0 

3c  0 0 0 0 0 0 

 

The critical dimensionless axial loads are shown in Table 3, for various temperatures. Table 3, shows this 

variation in a uniform temperature distribution for simply supported symmetric sandwich cylinders and for different 

power law indices, "N". The results are calculated by present formulations and also calculated by ABAQUS finite 

element code and then they are compared together. “H” is the total thickness of the sandwich cylinder, and the 

critical dimensionless axial load is defined as: 

 

0

.
cr

ce

N
N

E H
  

 

(23) 

 

where ceE  is Young‟s modulus of the homogeneous ceramic. As depicted in Table 3., while the temperature is 

increased, the critical dimensionless axial loads are decreased. Because, according to Eq. (2), increasing of the 

temperature, causes decreasing in the strength of the material. To clarify this phenomenon, the effect of temperature 

on the Young's modulus of ceramic and metal is indicated in Table 4. With increasing the temperature, elasticity 

modulus of metal and ceramic are decreased, but due to the microstructural reasons, decreasing the elasticity 

modulus of metal is more. Therefore, increasing the temperature reduces the mechanical properties, and it is one of 

the most important reasons in decreasing the critical dimensionless axial loads in high temperatures. 
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Table 3 

Variation of critical dimensionless static axial load for type I and type II sandwich cylinders with different T and N 

( 0300, / 10, 2c

R L
h h

H R
   ). 

 310crN   

 T K  
Type I Type II 

N=0 N=1 N=2 N=3 N=0 N=1 N=2 N=3 

300 2.143 1.991 1.897 1.983 1.692 1.563 1.495 1.547 

ABAQUS 2.098 1.861 1.803 2.052 1.675 1.552 1.368 1.419 

Discrepancy (%) 2.14 6.98 5.21 3.36 1.01 0.708 9.283 9.02 

400 2.012 1.890 1.798 1.860 1.547 1.465 1.423 1.460 

ABAQUS 1.896 1.711 1.624 1.692 1.479 1.321 1.278 1.326 

Discrepancy (%) 6.11 10.46 10.71 9.92 4.59 10.9 11.34 10.10 

500 1.887 1.784 1.703 1.771 1.465 1.390 1.323 1.381 

ABAQUS 1.802 1.705 1.616 1.677 1.413 1.310 1.198 1.302 

Discrepancy (%) 4.71 4.63 5.38 5.60 3.68 6.10 10.43 6.06 

 

 

Table 4 

Effect of temperature variation on the Young modulus in metal and ceramics. 

Zirconium dioxide Silicon Nitride T 

168.06 (GPa) 322.27 (GPa) 300 K 

105.68 (GPa) 252.14 (Gpa) 1500 K 

37.11% 21.76% Change 

 

Critical dimensionless axial loads in Table 5, are calculated in different core thickness-to-face sheet thickness 

ratio 
0/ch h  for different property distributions of the FG face sheets and also for two types of sandwich cylinders, 

type I and type II. In various indices, "N", raising the core thickness-to-face sheet thickness ratio causes the critical 

dimensionless axial loads decrease. Because, with increasing 
0/ch h   ratio, the thickness of the core will be bigger 

and so the structure will be weaker.  

 
Table 5 

Variation of critical dimensionless static axial load for type I and type II sandwich cylinders with different 
0/ch h  and  N 

( 300, 2
R L

H R
  ). 

 310crN   

0/ch h  Type I Type II 

N=0 N=1 N=2 N=3  N=0 N=1 N=2 N=3 

5 2.579 2.245 2.037 2.153  1.796 1.610 1.513 1.593 

ABAQUS 2.412 2.073 1.814 2.017  1.726 1.565 1.486 1.552 

10 2.317 2.055 2.001 2.069  1.735 1.551 1.507 1.548 

ABAQUS 2.226 1.955 1.758 1.901  1.675 1.492 1.478 1.522 

15 2.125 1.957 1.935 1.980  1.689 1.505 1.491 1.504 

ABAQUS 1.984 1.860 1.749 1.841  1.633 1.468 1.456 1.486 

 

Tables 3 and 5 indicate with changing the property distribution of the FG face sheets from linear to quadratic; the 

critical dimensionless axial load 
crN  is decreased, because, more percent of the face sheets materials changes to 

metal and stiffness structure is lower and so the critical dimensionless axial load is decreased. But, 
crN  is increased 

with changing the property distribution of the FG face sheets from quadratic to cubic distribution. Because, more 

percent of the face sheet materials changes to ceramic and stiffness structure is higher and so the critical 

dimensionless axial load is increased. 

Also, the constituents of type I is stronger than type II and their young modulus are bigger than type II so the 

critical dimensionless axial loads of type I sandwich cylinder are generally bigger than the critical dimensionless 

axial loads of type II. 

In Table 6., variation of critical dimensionless static axial load for type I and type II sandwich cylinders with 

different compositional profiles N and different ratio /R H  are presented. They are calculated numerically (by 
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ABAQUS) and analytically (by present formulation). When the ratio /R H  is increased, the value of the critical 

dimensionless static axial load is decreased. Furthermore, Tables 3, 4 and 6 indicate that the numerical results and 

the analytical results are in a good agreement. 

In order to simulating the structure in Abaqus software, the thickness of the FG face sheets is divided into 20 

layers. Then, isotropic mechanical properties are assumed for each layer which is gradually change from pure metal 

on one surface to the pure ceramic on the other surface according to the FG power law distribution.  

 
Table 6 

Variation of critical dimensionless static axial load for type I and type II sandwich cylinders with different 
R

H
 and N 

( 0/ 10, 2c

L
h h

R
  ). 

 310crN   

R

H
 

Type I Type II 

N=0 N=1 N=2 N=3  N=0 N=1 N=2 N=3 

200 2.721 2.553 2.467 2.596  2.423 1.914 1.337 1.910 

ABAQUS 2.486 2.219 2.100 2.189  2.202 1.663 1.164 1.658 

400 1.425 1.273 1.231 1.270  1.321 0.962 0.928 0.957 

ABAQUS 1.254 1.146 1.002 1.078  1.032 0.899 0.805 0.825 

600 0.935 0.850 0.819 0.844  7.312 0.639 0.618 0.641 

ABAQUS 0.895 0.781 0.753 0.756  6.985 0.556 0.551 0.531 

 

In Figs. 3(a) and 4(a), the variations of the critical dimensionless axial loads are depicted with length to radius 

ratios for type I and type II, respectively. Furthermore, in Figs.3 (b) and 4(b), the variations of the critical 

dimensionless axial loads are depicted with wave number changing for type I and type II, respectively. All these 

figures are plotted for four values of power law indices, N=0, 0.2, 1, 2. In Figs. 3 and 4, with increasing the length to 

radius ratios and with increasing the wave number, the critical dimensionless axial loads are decreased. In addition, 

Figs. 3 and 4 depict that in a constant temperature, the critical dimensionless axial loads are decreased with 

increasing the power law index from N=0 to N=2. Because, with increasing the power-law index from N=0 to N=2, 

the properties of the FG face sheets are near to metal properties and the strength of the structure is decreased. 

 

 

 
(a) 

 
(b) 

 

Fig.3 

a) Variation of critical dimensionless axial load via L/R for various power law indices (Type I). b) Variation of critical 

dimensionless axial load via wave numbers for various power law indices (Type I). 

 

 

 

 



Temperature-Dependent Buckling Analysis of….                                 13 

 

© 2020 IAU, Arak Branch 

 
(a) 

 
(b) 

 

Fig.4 

a) Variation of critical dimensionless axial load via L/R for various power law indices (Type II). b) Variation of critical 

dimensionless axial load via wave numbers for various power law indices (Type II). 

7    CONCLUSION 

The buckling of sandwich cylinders with functionally graded face sheets subjected to axial compressive load is 

studied. The temperature dependent material properties of FG face sheets are varied by power-law distribution along 

the thickness. The results show the critical dimensionless static axial loads are affected by the configurations of the 

constituent materials, compositional profile variations, temperature and the variation of the sandwich geometry. 

Based on the results obtained, the important results are as follows. When the ratio /R H  is increased, the critical 

dimensionless static axial loads are decreased. In addition, for all cases, when the property distribution changes 

linearly and cubic, the values of critical dimensionless static axial load are nearly the same. When temperature T and 

core thickness-to-face sheet thickness ratio 
0/ch h  are increased, the value of critical dimensionless axial load is 

decreased. With increasing the L/R ratio, value of critical dimensionless axial load is decreased. And finally, by 

increasing the wave number, the critical dimensionless axial loads are decreased. 

APPENDIX A 

   0 , iN w N w  and  cN w  are defined as follows:  

 

  ,. , ( , , )j

j ss j ssN w N rw j o i c   (A.1) 

And    0ˆ ˆ, i

ss ssN N  and ˆ c

sR   are the parts of total external load, 0N̂  which are exerted to the outer face sheet, inner face 

sheet and the core along s direction, respectively. 

 

0
ˆo i c

ss ss sN N R N     (A.2) 

In this analysis, uniform state of strain for the face sheets and the core is assumed. With this assumption and a 

little simplification, we can write: 

 
o i c

ss ss s

o o i i c c

N N R

h E h E h E
   

 

(A.3) 

 

where cE  is the elasticity modulus of the core; and oE  and iE  are the equilibrium elasticity modulus in the outer 

and inner face sheet, respectively, that are defined as: 
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   
2 2

2 2
,

o i

o i

h h

o o o i i i

h h

o i

o i

E z dz E z dz

E E
h h

 
 

 
 

 

 

(A.4) 

 

Hence, with use of Eqs. (A.2) and (A.3), the external in-plane loads exerted to the face sheets and the core along 

s direction can be calculated as: 

 

0

ˆ

o

ss o o

i

ss i i

o o i i c cc
c cs

N h E
N

N h E
h E h E h E

h ER

   
    

   
    

  

 

 

 

(A.5) 
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