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 ABSTRACT 

 A general model of the equations of generalized thermoelasticity   for an 

infinite space weakened by a finite linear opening Mode-I crack is 

solving. The material is   homogeneous and has isotropic properties of 

elastic half space. The crack is subjected to prescribed temperature and 

stress distribution. The formulation is applied to generalized 

thermoelasticity theories, the Lord-Şhulman and Green-Lindsay theories, 

as well as the classical dynamical-coupled theory. The normal mode 

analysis is used to obtain the exact expressions for the displacement 

components, force stresses, temperature, couple stresses and micro-stress 

distribution. The variations of the considered variables through the 

horizontal distance are illustrated graphically. Comparisons are made 

with the results between the three theories.   

                                       © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords : Mode-I crack; (L-S) theory; (G-L) theory; Thermoelasticity.  

1    INTRODUCTION 

 URING the second half of the twentieth century, non-isothermal problems in the theory of elasticity have 

become increasingly important due to their many applications in widely diverse fields. The high velocities of 

modern aircraft give rise to aerodynamic heating, which produces intense thermal stresses, reducing the strength of 

aircraft structure. In the technology of modern propulsive system, such as jet and rocket engines, the high 

temperatures associated with combustion processes are the origins of severe thermal stresses. Similar phenomena are 

encountered in the technologies of space vehicles and missiles in mechanics of large steam turbines and even in 

shipbuilding, where, strangely enough, ship factories are often attributed to thermal stresses of moderate intensities 

[1], [2]. The classical uncoupled theory of thermoelasticity predicts two phenomena not compatible with physical 

observation. First, the equation of heat conduction of this theory does not contain any elastic terms contrary to the 

fact that elastic changes produce heat effects. Secondly, the heat equation is parabolic type predicting infinite speeds 

of propagation for heat waves. Biot [3] introduced the theory of coupled thermoelasticity to overcome the first 

shortcoming. The governing equations for this theory are coupled, eliminating the first paradox of the classical 

theory. However, both theories share the second shortcoming since heat equation for the coupled theory is also 

parabolic. Two generalizations to the coupled theory were introduced. The first is due to Lord and Shulman [4], who 

obtained a wave-type heat equation by postulating a new law of heat conduction to replace the classical Fourier’s 
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law. This new law contains the heat flux vector as well as its time derivative. It also contains a new constant that 

acts as a relaxation time. Since the heat equation of this theory is of the wave type, it automatically ensures finite 

speeds of propagation for heat and elastic waves. The remaining governing equations for this theory, namely, the 

equations of motions and constitutive relations, remain the same as those for the coupled and the uncoupled theories. 

This theory was extended by Dhaliwal and Sherief [5] to generalize an isotropic media in the presence of heat 

sources. Sherief and Dhaliwal [6] solved a thermal shock problem. These problems are valid for short times. 

Othman [7] studied the dependence of the modulus of elasticity on the reference temperature in a two dimensional 

generalized thermo-elasticity with one relaxation time. The second generalization to the coupled theory of thermo-

elasticity is what is known as the theory of thermo-elasticity with two relaxation times or the theory of temperature-

rate-dependent thermo-elasticity. Müller [8], in review of the thermo-dynamics of thermoelastic solids, proposed an 

entropy production inequality, with the help of which he considered restrictions on a class of constitutive equations. 

A generalization of this inequality was proposed by Green and Laws [9]. The theory of couple thermo-elasticity was 

extended by Lord and Shulman [10] and Green and Lindsay [11] by including the thermal relaxation time in 

constitutive relations. These theories eliminate the paradox of infinite velocity of heat propagation and are termed 

generalized theories of thermoelasticity. This exist in the following differences between the two theories. 

1. The Lord-Şhulman theory (L-S) involves one relaxation time of thermoelastic process (
0
 ). The Green and 

Lindsay (G-L) involves two relaxation times (
0 0
,v ).  

2. The (L-S) energy equation involves first and second time derivatives of strain, whereas the corresponding 

equation in (G-L) theory needs only the first time derivative of strain. 

3. In the linearized case according to the approach of (G-L) theory the heat cannot propagate with finite speed 

unless the stresses depend on the temperature velocity, whereas according to (L-S) theory the heat can 

propagate with finite speed even though the stresses there are independent of the temperature velocity.   

4. The Lord-Şhulman theory (L-S) can not be obtained from Green and Lindsay (G-L) theory. 

These equations were also obtained independently by Şuhubi [12]. The theory contains two constants that act as 

relaxation times and modifies all the equations of the coupled theory, not only the heat equation. The classical 

Fourier’s law of heat conduction is not violated if the medium under consideration has a center of symmetry. 

Ignaczak [13] and [14] studied a strong discontinuity wave and obtained a decomposition theorem of this theory. 

Dhaliwal and Rokne [15] solved a thermal shock problem in generalized thermo-elasticity. Lotfy et al. [16] studied 

two-dimensional problem of generalized magneto-thermoelasticity under the effect of temperature dependent 

properties. Othman et al. [17] studied transient disturbance in a half-space under generalized magneto-

thermoelasticity with moving internal heat source. Lotfy [18] studied the plane waves in generalized 

thermoelasticity elastic half-space by using a general model of the equations of generalized Photothermal theory for 

a homogeneous isotropic elastic half space. Lotfy et al. [19] studied the generalized thermo-microstretch elastic 

medium with temperature dependent properties for different theories.  

In the recent years, considerable efforts have been devoted the study of failure and cracks in solids. This is due to 

the application of the latter generally in industry and particularly in the fabrication of electronic components. Most 

of the studies of dynamical crack problem are done using the equations of coupled or even uncoupled theories of 

thermoelasticity [20-26]. This is suitable for most situations where long time effects are sought. However, when 

short time are important, as in many practical situations, the full system of generalized thermoelastic equations must 

be used [4].  

In this paper, we shall use the normal mode analysis to the problem of generalized thermoelasticity for an infinite 

space weakened by a finite linear opening Mode-I crack is solving based on the dynamical coupling theory, the 

Lord-Shulman theory and the Green- Lindsay theory. In addition, the effects of different times are discussed 

numerically and illustrated graphically. 

2    FORMULATION OF THE PROBLEM  

Consider a linear, infinite homogeneous and isotropic thermoelastic continuum occupying the region G given by 

 G  (x, y, z) | ,  x  y      , with a crack on the x-axis, x a , 0y   is considered. The crack 

surface is subjected to a known temperature and normal stresses distributions. There are many types of crack and 

this study will be devoted to Mode-I, shown in Fig. 1.  
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Fig.1 

Displacement of an external Mode-I crack. 

 

when all body forces are neglected the governing equations are  

Strain-displacement relations 
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Heat conduction equation 
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Stress displacement relation 
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The state of plane strain parallel to the xy-plane is defined by  

 

2
( , , )u u x y t  , 

2
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3
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The partial derivative with the field Eqs. (1)-(4) reduce to 
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The constants ̂  depend on mechanical as well as the thermal properties of the body and the dot denotes the 

partial derivative with respect to time. Eqs. (6)-(8) are the field equations of the generalized linear thermoelasticity, 

applicable to the coupled theory and two generalizations, as follows: 

The equations of the coupled thermoelasticity CD theory, when 

 

   0 0, 1.
0 0 0 1

v , n n    (10) 

 

Eqs. (6)-(8) has the form 
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The constitutive relation can be written as: 
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Lord and Shulman’s (L-S) theory, when 
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Eqs. (6) and (7) is the same as Eqs. (11) and (12) and Eq. (8) has the form: 
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Green and Lindsay’s theory (G-L), when 
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For convenience, the following non-dimensional variables are used: 
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By using Eqs. (22), Eqs. (6)-(8) become (dropping the dashed for convenience) 
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Assuming the scalar potential functions ( , , )x y t and ( , , )x y t  defined by the relations in the non-dimensional 

form: 
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By using (26) in Eqs. (23)- (25), we obtain. 
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The solution of the considered physical variables can be decomposed in terms of normal mode as the following 

form: 
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where * * *[ , ,T ] (x)   are the amplitude of the functions,   is a complex and a is the wave number in the y-

direction and using Eq. (31), then Eqs. (27) – (29) become respectively 
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Eliminating * *,T   between Eqs. (32) and (34), we get the following fourth order ordinary differential equation 

satisfied by *T and *  (coupled ) 
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3    APPLICATION  

3.1 Instantaneous mechanical source acting on the surface  

The plane boundary is subjected to an instantaneous normal point force and the boundary surface is heat conduction 

problem, the boundary conditions at the vertical plan 0y   and in the beginning of the crack at 0x   are 
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Using (22), (26) and (27)-(29) with the non-dimensional boundary conditions and using (45), (46) and (48), we 

obtain the expressions of displacement components, force stress, coupled stress and temperature distribution for the 

medium as follows: 
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(58) 

 

Applying the boundary conditions (50-52) at the surface  0x  of the plate, we obtain a system of three 

equations. After applying the inverse of matrix method, we obtain the values of the three constants 1,2,3
j

M , j . 

Hence, we obtain the expressions of displacements, force stress, coupled stress and temperature distribution for 

generalized thermoelastic medium. 
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4    NUMERICAL RESULTS AND DISCUSSIONS   

In order to illustrate our theoretical results obtained in preceding section and to compare these in the context of 

various theories of thermoelasticity, we now present some numerical results. In the calculation process, we take the 

case of copper crystal as material subjected to mechanical and thermal disturbances for numerical calculations 

consider the material medium as that of copper. Since,   is the complex constant then we take
0

i    . The 

other constants of the problem are taken as
0

2   ; 1  ; the physical constants used are:  

 

kgm N m T K1 10 2

0
8954 , 7.76 10 / , 293 ,       N m a10 23.86 10 / , 1,      

t
K5 11.78 10    ,  

E
K cal cm C C J kg K2 1 10.6 10 / sec , 383.1 .      

 

 

 

The results are shown in Figs. 2-7. The graph shows the three curves predicted by different theories of 

thermoelasticity. In these figures, the solid lines represent the solution in the Coupled theory, the dotted lines 

represent the solution in the generalized Lord and Shulman theory and dashed lines represent the solution derived 

using the Green and Lindsay theory. We notice that the results for the temperature, the displacement and stresses 

distribution when the relaxation time is including in the heat equation are distinctly different from those when the 

relaxation time is not mentioned in heat equation, because the thermal waves in the Fourier's theory of heat equation 

travel with an infinite speed of propagation as opposed to finite speed in the non-Fourier case. This demonstrates 

clearly the difference between the coupled and the generalized theories of thermoelasticity. For the value of y, 

namely y = 0.1, were substituted in performing the computation. It should be noted (Fig.2) that in this problem, the 

crack's size, x, is  taken to be the length in this problem so that x y0 2, 0   ,  represents the plane of the crack 

that is symmetric with respect to the y-plane. It is clear from the graph that T has maximum value at the beginning of 

the crack ( x 0 ), it begins to fall just near the crack edge ( x 2 ), where it experiences sharp decreases (with 

maximum negative gradient at the crack's end). The value of temperature quantity converges to zero with increasing 

the distance x.  

Fig. 3, the horizontal displacement, u, begins with a line decrease then a parabolic increases again to reach its 

maximum magnitude just at the crack end. Beyond it u falls again to try to retain zero at infinity. Fig. 4, the vertical 

displacement v, we see that the displacement component v always starts from the zero value and terminates at the 

zero value. Also, at the crack end to reach maximum value, beyond reaching zero at the double of the crack size 

(state of particles equilibrium). The displacements u and v show different behaviors, because of the elasticity of the 

solid tends to resist vertical displacements in the problem under investigation. Both of the components show 

different behaviors, the former tends to increase to maximum just before the end of the crack. Then it falls to a 

minimum with a highly negative gradient. Afterwards it rises again to a maximum beyond about the crack end.  

All horizontal stresses, 
xx

  reach coincidence with zero values (Fig. 5) and satisfy the boundary condition at 

x 0  and converges to zero with increasing the distance x. However 
yy

  (Fig.6) had a same behavior as it retains 

its maximum strength until reaching the crack end when it falls to a minima then increases again just beyond the 

crack edge to coincide with other vertical stresses to reach zero after their relaxations at infinity. These trends obey 

elastic and thermoelastic properties of the solid under investigation. Fig. 7, shows that the stress component yx  

satisfy the boundary condition at x 0 . It increases in the start and start decreases (maximum) in the context of the 

three theories at the end of crack.  
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Fig.2 

Variation of temperature distribution T with the different 

theories. 
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Fig.3 

Variation of horizontal displacement distribution u with the 

different theories. 
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Fig.4 

Variation of vertical displacement distribution v with the 

different theories. 
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Fig.5 

Variation of horizontal stress distribution xx  with the 

different theories. 
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Fig.6 

Variation of vertical stress distribution yy  with the 

different theories. 
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Fig.7 

Variation of stress component distribution xy  with the 

different theories. 
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Figs. 8-11 show the comparison between the temperature T, displacement components u, v and  the force stress 

component yy , in the case of different three  values of y, (namely y = 0.1, y = 0.2 and  y = 0.3) under GL theory.  

It should be noted (Fig. 8) that in this problem. It is clear from the graph that zero has maximum value at the 

beginning of the crack ( x 0 ), it begins to fall just near the crack edge ( x 2 ), where it experiences sharp 

decreases (with maximum negative gradient at the crack's end). Graph lines for both values of y show different 

slopes at crack ends according to y-values.  In other words, the temperature line for y = 0.1 has the highest gradient 

when compared with that of y = 0.2 and y = 0.3 at the edge of the crack. In addition, all lines begin to coincide when 

the horizontal distance x is beyond the double of the crack size to reach the reference temperature of the solid. These 

results obey physical reality for the behavior of copper as a polycrystalline solid.  

Fig. 9, the horizontal displacement u, despite the peaks (for different vertical distances y = 0.1, y = 0.2 and y = 

0.3) occur at equal value of x, the magnitude of the maximum displacement peak strongly depends on the vertical 

distance y. it is also clear that the rate of change of u increases with increasing y as we go farther apart from the 

crack. On the other hand, Fig. 10 shows atonable increase of the vertical displacement, v, near the crack end to reach 

maximum value beyond x = a = 2 reaching zero at the double of the crack size (state of particles equilibrium).  

Fig.11, the vertical stresses 
yy

  graph lines for both values of y show different slopes at crack ends according to 

y-values. In other words, the 
yy

  component line for y = 0.1 has the highest gradient when compared with that of y = 

0.2 and y = 0.3 at the edge of the crack. In addition, all lines begin to coincide when the horizontal distance x is 

beyond the double of the crack size to reach zero after their relaxations at infinity. Variation of y has a serious effect 

on both magnitudes of mechanical stresses (Fig.11). These trends obey elastic and thermoelastic properties of the 

solid under investigation. 
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Fig.8 

Variation of temperature distribution T with the different 

depths under G-L theory. 
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Fig.9 

Variation of horizontal displacement distribution u with the 

different depths under G-L theory. 
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Fig.10 

Variation of vertical displacement distribution v with the 

different depths under G-L theory. 
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Fig.11 

Variation of vertical stress distribution 
yy

 with the 

different depths under G-L theory. 

5    CONCLUSIONS 

1. The curves in the context of the (CD), (L-S) and (G-L) theories decrease exponentially with increasing x, 

this indicate that the thermoelastic waves are attenuated and non-dispersive, where purely thermoelastic 

waves undergo both attenuation and dispersion. 

2. The curves of the physical quantities with (L-S) theory in most of figures are lower in comparison with 

those under (G-L) theory, due to the relaxation times. 

3. Analytical solutions based upon normal mode analysis for thermoelastic problem in solids have been 

developed and utilized.  

4. A linear opening mode-I crack has been investigated and studied for copper solid.  

5. Temperature, radial and axial distributions were estimated at different distances from the crack edge.  

6. Horizontal and vertical stress distributions were evaluated as functions of the distance from the crack edge.  

7. Crack dimensions are significant to elucidate the mechanical structure of the solid.  

8. Cracks are stationary and external stress is demanded to propagate such cracks.  

9. It can be concluded that a change of volume is attended by a change of the temperature while the effect of 

the deformation upon the temperature distribution is the subject of the theory of thermoelasticity. 

10. The value of all the physical quantities converges to zero with an increase in distance y and all functions are 

continuous. 
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