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It has already been shown that in rate-constrained broadcast channels, under the assumption of independent Rayleigh fading
channels for different receivers, the user capacity (i.e. the maximum number of users that can be activated simultaneously)
scales with ln(P lnn)/Rmin where P is transmit power, Rmin represents the minimum rate required for each receiver to
be activated, and n denotes the total number of receivers in the system. However, to achieve the aforementioned result, it
is assumed that channel state information (CSI) is perfectly known to the receivers. In practical situations, the receivers do
not have access to the true CSI and they only know estimated channels. In this paper, the effects of channel estimation is
analyzed on the user capacity of rate-constrained broadcast channels. In particular, the Minimum Mean Square Error (MMSE)
channel estimation scheme is considered and the effects of this estimation method on the user capacity is investigated. Under
the assumption of independent Rayleigh fading channels for different receivers, it is shown that the user capacity scales with
ln(σ̂2P lnn)/Rmin where σ̂2 denotes the variance of estimated channels and is determined by the MMSE channel estimation
algorithm. As the received signal model is linear with respect to the fading channels, it is shown that the user capacity scaling
law is unchanged and the difference is only a constant factor depending on the channel estimation scheme.

Active users, channel estimation, scaling laws, broadcast channels, fading channels, minimum-rate constraint, power allocation.

I. INTRODUCTION

In a dynamic environment, the channel states are time-
varying. In the theoretical analysis of wireless communication
systems, it is usually assumed that receivers perfectly know
the CSI; however, in reality, only estimated channels are
available to receivers and transmitters. Depending on the
channel estimator used in a communication system, statistical
properties of the estimated channels will change compared
to the true channels. Some statistical distributions being
commonly used to model fading in wireless communication
systems are Rayleigh, Rician, and Nakagami distributions [1,
Sec. 5.1]. In many applications, it is of interest to analyze
the effect of channel estimation on performance of a wireless
communication system.

The basic idea is to adapt power allocation to the variations
of the channel states. The transmission rate for a receiver is
increased when its channel state becomes better; therefore,
higher rates can be achieved using less power. This raises the
issue of the trade-off between ergodic capacity and outage
capacity, for which, extensive studies have been given in
[2]–[4] in the context of broadcast channels.In this paper,
a rate-constrained broadcast channel is considered and an

opportunistic power allocation scheme with a minimum rate
constraint Rmin > 0 is utilized. Since for a fixed Rmin,
in a time-varying fading environment, it may not be always
possible for all receivers to achieve this minimum rate simul-
taneously, a scheme has been proposed in [5] to maximize
the number of active receivers, for each of which, such a
minimum rate can be supported, while allocating no power
to the other inactive receivers. As the number of supportable
active receivers depends on the specific channel states, the
asymptotic behavior should be analyzed when the total number
of receivers n is large. In [5], under the assumption of indepen-
dent Rayleigh fading channels for different receivers with unit
noise variance, it is shown that the maximum number of active
receivers is very close to ln(P lnn)/Rmin with probability
approaching 1, and Rmin is in the unit of nats. In this paper,
the effects of channel estimation is analyzed on the user
capacity of rate-constrained broadcast channels. In particular,
the Minimum Mean Square Error (MMSE) channel estimation
scheme is considered and the effects of this estimation method
on the user capacity is investigated. Under the assumption of
independent Rayleigh fading channels for different receivers, it
is shown that the user capacity scales with ln(σ̂2P lnn)/Rmin
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where σ̂2 denotes the variance of estimated channels and is
determined by the MMSE channel estimation algorithm.

II. CHANNEL MODEL

Consider a broadcast channel with one transmitter and n
receivers with the following channel model in the time block
t = 1, 2, . . . , T :

Yi(t) = giX(t) + Zi(t), i = 1, 2, . . . , n, (1)

where X(t) ∈ C is the signal sent by the transmitter, and
Yi(t) ∈ C is the signal received by receiver i. The noise
Zi(t) ∈ C, i = 1, . . . , n, t = 1, . . . , T are assumed to be
i.i.d. complex Gaussian distributed according to CN (0, 1). The
channel gains gi ∈ C, i = 1, . . . , n are assumed to be constant
during this time block.

Equivalently, the model (1) can be written as

Y ′
i (t) = X(t) + Zi(t)/gi, i = 1, 2, . . . , n (2)

where the noise Zi(t)/gi is still complex Gaussian distributed,
but with variance 1/|gi|2.

III. MMSE CHANNEL ESTIMATION

Coherent demodulation requires the complex channel tap
gi = |gi|ejθi ; i = 1, . . . , n, to be available via perfect channel
estimation. In practice, gi is estimated from pilot symbols
extracted from the pilot tone transmitting simultaneously
with the signal (IS-95). The pilot symbol (i.e. sp) is known
but noisy and hence one wishes to have the best estimate.
The time between the pilot symbols is much smaller than the
channel coherence time Tc to reduce channel estimation error
(slow fading). In this case the channel taps can be considered
constant during a symbol, that is, gi(t) = gi, t ≤ Ts.

It is well-known that the MMSE estimated channel is given
by [6, Sec. 10.3]

ĝ = a∗Y (3)

a =
E
{
|g|2
}
sp

E {|g|2} |sp|2 + σ2
Z

(4)

or equivalently, with respect to the Signal-to-Noise Ratio
(SNR), we have

a =
SNRp

SNRp + 1

(
sp

|sp|2

)
(5)

where σ2
Z is the noise variance and SNRp = |sp|2/σ2

Z is
the SNR of the pilot symbol transmitted. The estimate gets
more accurate as the SNR increases. Hence, it can be seen
that the distribution of ĝ is complex Gaussian with zero mean
and variance σ̂2 = |a|2(σ2

h|sp|2 + 1) . where σ2
h denotes to

actual channel gain variance. That is,

ĝ ∼ CN
(
0, σ̂2

)
(6)

Note that because of linearity of the observation model,
other classical estimators such as Maximum Likelihood (ML)
estimators result in complex Gaussian random variable.

IV. POWER ALLOCATION

Let Ni = 1/|ĝi|2. Without loss of generality, assume that
N1 ≤ N2 ≤ · · · ≤ Nn. It is well known [7, Sec.14.6] that
the broadcast channel (2) is stochastically degraded, and the
capacity region is given by

Ri < ln

(
1 +

Pi∑i−1
j=1 Pj +Ni

)
, i = 1, . . . , n (7)

where Ri is the achievable rate for receiver i, to which, the
power Pi ≥ 0 is allocated by the transmitter under the total
transmit power constraint:

∑n
i=1 Pi = P .

Different rates can be achieved by different power allo-
cations in (7). As shown by Lemma 2.1 in [5], in order to
maximize the total throughput, all power should be allocated
to receiver 1, which has the maximum channel gain |ĝ1|, or the
minimum equivalent noise variance N1. Hence, the following
power allocation scheme is proposed in [5]

max{m} (8)

ln

(
1 +

P1

N1

)
≥ Rmin (9)

ln

(
1 +

Pi∑i−1
j=1 Pj +Ni

)
= Rmin; 2 ≤ i ≤ m (10)

m∑
i=1

Pi = P (11)

where Rmin > 0 (in nats) is a minimum rate constraint
for all active receivers. In [5], a simple recursive algorithm
is also proposed to solve the aforementioned optimization
problem (8)-(11). Obviously, with fixed P and Rmin, the
maximum number of active receivers completely depends on
the equivalent noise variance Ni = 1/|ĝi|2, . When the
estimated channel gains ĝi obey some statistical distribution,
asymptotic behavior of the maximum m can be determined
when the total number of receivers n becomes large. It is of
interest to analyze how the user capacity of broadcast channels
obtained asymptotically by Theorem 2.1 in [5] changes as
the estimated channel gains are substituted for the true gains.
The following Theorem shows the effect of MMSE channel
estimation on the user capacity scaling law.

Theorem 4.1: Assume the estimated channel gains are dis-
tributed by (6) for different receivers in a broadcast channel.
For any arbitrary ϵ > 0, the maximum number of active
receivers m determined by (8)-(11) is bounded as

P(⌊ν(n)− ϵ⌋ ≤ m ≤ ν(n) + ϵ) → 1, as n → ∞, (12)

where, ⌊x⌋ denotes the maximum integer no greater than x,
n is the total number of receivers, and

ν(n) = ln(σ̂2P lnn)/Rmin. (13)

Proof: Consider the broadcast channel (1), with the
independent gains ĝi ∼ CN

(
0, σ̂2

)
for i = 1, . . . , n. Then,

|ĝi| ∼ Rayleigh
(√

σ̂2/2
)

and |ĝi|2 ∼ Γ
(
1, σ̂2

)
for i =

1, . . . , n. The Gamma cumulative distribution function is given
by

F(x; k, θ) =
γ(k, x/θ)

Γ(k)
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Fig. 1. The histogram of the number of active receivers for Rmin = 25Kbps, SNR= 40 dB, and (a) n = 50, νold(n) = 42.29, ν(n) = 41.40 and (b)
n = 1000, νold(n) = 44.57, ν(n) = 43.67.

where γ(., .) is the lower incomplete gamma function. Hence,
for any y > 0,

F(y) = P(Ni < y) = P(1/|ĝi|2 < y) = P
(
|ĝi|2 > 1/y

)
= e

− 1
σ̂2y (14)

It can be seen that MMSE channel estimation slightly
changes the distribution function of |gi|2; i = 1, . . . , n, from
Exp(1) in [5] to Γ

(
1, σ̂2

)
in this paper. The rest of the proof

is basically similar to the proof of Theorem 2.1 in [5] with
some modifications due to the Gamma distribution function.

For any fixed N0 > 0, we can characterize the number of
“good” channels with the equivalent noise variance Ni less
than N0 as the following. Let p0 = F(N0) = e

− 1
σ̂2N0 . Then,

with probability p0, a channel is good. Consider a Bernoulli
sequence:

xi =

{
1, with probability p0
0, with probability 1− p0

for i = 1, 2, . . . , n. Then, the number of good channels has
the same distribution as X =

∑n
i=1 xi, which satisfies the

binomial distribution B(n, p0).
For any integer m ≥ 1, obviously,

P(X ≤ m− 1) =
m−1∑
j=0

(
n

j

)
pj0(1− p0)

n−j

which, however, is not easy to analyze. If m − 1 ≤ np0, we
can use the Chernoff inequality [8, page 70]:

P(X ≤ m− 1) ≤ exp

(
− 1

2p0

(np0 −m+ 1)2

n

)
.

Hence,

P(X ≥ m) ≥ 1− exp

(
− 1

2p0

(np0 −m+ 1)2

n

)
. (15)

Now, consider the following power allocations for the m
best receivers:

Pi =
c

αm−i
, for i = 1, . . . ,m,

where α = eRmin > 1, and c = (1 − 1/α)P . It is easy to
check that the total power constraint is satisfied.

m∑
i=1

c

αm−i
= c

1− (1/α)m

1− 1/α
≤ c

1

1− 1/α
= P.

If max1≤i≤m Ni ≤ P/αm, the following lower bound is
achieved for the SINR’s at all these m receivers. That is, for
i = 1,

P1

N1
≥ c/αm−1

P/αm
= α− 1,

and for any i = 2, . . . ,m,

Pi∑i−1
j=1 Pj +Ni

≥ c/αm−i∑i−1
j=1 c/α

m−j + P/αm

=
1/αm−i

(1/α)m−i+1−(1/α)m

1−1/α + (1/α)m

1−1/α

= α− 1.

Then, obviously, the minimum rate constraint is satisfied for
all these m receivers, since

ln (1 + (α− 1)) = lnα = Rmin.

Next, we show that for any ϵ > 0, if m ≤ ν(n) − ϵ,
max1≤i≤m Ni ≤ P/αm holds with probability approaching
one as n tends to infinity. Let N0 = P/αm. Then,

p0 = F(N0) = exp

(
− αm

σ̂2P

)
≥ exp

(
−αν(n)−ϵ

σ̂2P

)
= exp

(
−α−ϵ lnn

)
= n−λ,

where λ = α−ϵ < 1. Then it is obvious that as n → ∞,

1

2p0

(np0 −m+ 1)2

n
∼ n2p20

2np0
=

np0
2

≥ n1−λ

2
→ ∞. (16)

Hence, by (15), the probability of max1≤i≤m Ni ≤ αmP
approaches 1 as n → ∞.

Therefore, we proved that as n → ∞, with probability
approaching 1, there are at least m = ⌊ν(n)−ϵ⌋ good channels
with Ni ≤ P/αm, for which the minimum rate constraint is
satisfied.
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Next, we prove the upper bound, i.e., m ≤ ν(n) + ϵ holds
with probability approaching 1. First, we show that for any
δ > 0, for sufficiently large m, the best receiver should have
the equivalent noise variance N1 ≤ Pδ/α

m, with Pδ := P +
δ. Otherwise, if min1≤i≤n Ni > Pδ/α

m, according to the
minimum rate constraint,

Pi∑i−1
j=1 Pj +Ni

≥ α− 1. fori = 1, 2, . . . ,m,

Hence, we have

P1 ≥ (α− 1)N1 > (α− 1)Pδ/α
m,

and inductively, for i = 2, . . . ,m,

Pi ≥ (α− 1)
(∑i−1

j=1 Pj +Ni

)
> (α− 1)

(∑i−1
j=1(α− 1)Pδ/α

m−j+1 + Pδ/α
m
)

= (α− 1)Pδ/α
m−i+1,

which violates the total power constraint since
m∑
i=1

Pi >

m∑
i=1

(α− 1)Pδ/α
m−i+1 = (1− 1/αm)Pδ > P

for sufficiently large m.
Therefore, to show that

P(m ≤ ν(n) + ϵ) → 1,

or
P(m > ν(n) + ϵ) → 0,

we only need to show that

P(N1 ≤ Pδ/α
ν(n)+ϵ) → 0.

Let p1 = F(Pδ/α
ν(n)+ϵ). Then, (1−p1)

n is the probability
that all the receivers have equivalent noise variance greater
than Pδ/α

ν(n)+ϵ. Hence,

P(N1 ≤ Pδ/α
ν(n)+ϵ) = 1− (1− p1)

n, (17)

which tends to 0 if and only if(
1− exp

(
−αν(n)+ϵ

σ̂2Pδ

))n

→ 1. (18)

Since (
1− exp

(
−αν(n)+ϵ

σ̂2Pδ

))exp
(

αν(n)+ϵ

σ̂2Pδ

)
→ e−1,

(18) holds if

n · exp
(
−αν(n)+ϵ

σ̂2Pδ

)
= n · exp

(
−Pαϵ lnn

P + δ

)
→ 0, (19)

which holds by choosing δ < (αϵ − 1)P .
Remark 4.1: Theorem 4.1 states that the number of active

receivers is close to ν(n) with high probability. Comparing
ν(n) obtained by Theorem 4.1 and the one presented in [5],
it can be seen that the difference is only a constant factor
depending on the channel estimation algorithm. Indeed, as
the signal model in (1) is linear, the distribution of estimated
channels given by (6) is still Gaussian and only the variance
has been changed.
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Fig. 2. The optimal number of active receivers versus the total number of
users for Rmin = 25, 50 Kbps and Linearly increasing transmit power (i.e.
P = n). (a) experimental and theoretical results with σ̂2 = 0.8 and (b)
theoretical bounds σ̂2 = 0.8, 1.

V. SIMULATIONS

Consider the broadcast channel model in (1) with bandwidth
of B = 100 KHz. Figure 1 indicates the histogram of the
number of active users for Rmin = 25 Kbps and SNR = 40
dB. In Figure 1.a, the total number of receivers equals 50
and in Figure 1.b, the total number of users equals 1000. The
number of active users given by Theorem 4.1 (i.e. ν(n)) and
Theorem 2.1 in [5] (i.e. νold(n)) are also shown in Figure 1
for different values of σ̂2. Note that the purple color shows
overlapping of two histograms. It can clearly be seen that
ν(n) presented by Theorem 4.1 provides better estimates
of the number of active users that νold(n) obtained in [5].
Hence, considering the channel estimation effect results in
more accurate scaling laws.

Figure 2 shows the optimal number of active users versus
the total number of users for Rmin = 25, 50 Kbps and linearly
increasing transmit power P = n. The value of ν(n) given by
(13) is also indicated in Figure 2. As shown in Figure 2, the
number of active users is almost doubled as Rmin is halved.
In Figure 2.a, both numerical results and the theoretical bound
given by (13) are shown for σ̂2 = 0.8. Note that the curves

Majlesi Journal of Telecommunication Devices Vol. 2, No. 2, June 2013

196



drawn in Figure 2.a is a single realization, not the Monte-
Carlo average. Figure 2.b only indicates the theoretical bound
for σ̂2 = 0.8, 1 and illustrates the effect of σ̂2 and Rmin on
the scaling law.

VI. CONCLUSION

In [5], under the assumption of independent Rayleigh fading
channels for different receivers with unit noise variance, it
is shown that the maximum number of active receivers is
very close to ln(P lnn)/Rmin with probability approaching
1, and Rmin is in the unit of nats. In this paper, the effects
of channel estimation is analyzed on the user capacity of
rate-constrained broadcast channels. In particular, the MMSE
channel estimation scheme is considered and the effects of this
estimation method on the user capacity is investigated. Under
the assumption of independent Rayleigh fading channels for
different receivers, it is shown that the user capacity scales
with ln(σ̂2P lnn)/Rmin .It can clearly be seen that ν(n)
presented by Theorem 4.1 provides better estimates of the
number of active users that νold(n) obtained in [5]. Hence,
considering the channel estimation effect results in more
accurate scaling laws.
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