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Abstract 

A test is a tool for making quantified value judgments and/or comparisons, and a good test is a 

bias-free gauge that does its value judgments and quantifications with precision. This requires 

that the test be at least reliable. In applied linguistics in general, and in TESOL in specific, the 

question of test reliability has always been at the forefront of all test construction activities. As 

high-stakes gate-keeping tests gained more and more importance in a globalizing post-

industrial world, the statistical procedures used to estimate their reliability indices, too, became 

more and more complex and precise. Classical Test Theory (CTT) is no longer preached, and 

test developers and testing agencies have resorted to Generalizability Theory (G-Theory) and 

Item Response Theory (IRT) as their main dishes; more recently, they have decided to spice up 

their activities with Differential Item Functioning (DIF). This paper seeks to provide the less-

versed reader with a short and simple account of these topics. The aim of this paper is to turn 

the tumid prose describing  complex mathematical and statistical topics in psychometrics and 

measurement into readable English so that students less versed in the field can make sense of 

them, and university professors can use the paper as a simple and informative source in their 

teaching activities. 
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1. Introduction  

To be able to compare objects/events to other objects/events for purposes of decision 

making, you will have to know, and be able to quantify, the attributes of those 

objects/events—albeit with precision (Salmani Nodoushan, 2020, 2021b). The term 

‘object’ has been used in a loose sense here to include inanimate and animate entities, and 

it includes animals and human beings as well. The knowledge that enables you to quantify 

the attributes of an object/event can be called ‘measurement’, and the tools that you use for 

measuring those attributes are called gauges—tests, questionnaires, and scales included. 

That is, your gauges (e.g., a thermometer, a test, a questionnaire, etc.) can tell you which 

degree of the trait of interest the object/event being measured has achieved. The 

calculations that make your gauge—and whereby your quantifications—precise are called 

‘reliability estimates’. 

Since its advent, measurement has remained a mainstay of all teaching and 

educational practices, and “obtained scores on the measurements plays [sic] a critical role 

in decision making about individuals and groups” (Holmes Finch et al., 2016, p. 1). 

Whenever decision-making is at stake, we need to make sure that our judgments are 

warranted and that the scores we rely on to make our judgments provide us with the best 

possible picture of our students’ performance.  

This is where psychometrics enters the game. Psychometrics is a subspecialty within 

educational psychology that has dovetailed (a) educational psychology and (b) statistics to 

ensure that any attempt at the development and vetting of measures (i.e., measurement 

tools, scales, tests, gauges, etc.) is done with precision and reliability. In other words, 

psychometrics brings an arsenal of statistical analyses (a) to bear on the precision of 

measures of performance and (b) to provide the researcher with detailed information 

concerning the reliability, precision, validity, and performance of gauges.  

There are a good number of sources that describe psychometrics in detail, but it is 

cumbersome for most readers to read a huge number of sources to gain a modest 

knowledge of psychometrics. The huge amounts of redundancy and overlap that exist in 

and among these sources make it mandatory that a review article be written with the aim of 

cutting the long story of psychometrics short, and this is what the current paper has sought 

to achieve. This paper will review the main topics of psychometrics and describe their 

bearings on language testing and assessment.   
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2. Background 

Measurement has been defined as the process of comparing an unknown quantity to a 

known and/or standard quantity (Pedhazur & Pedhazur Schmelkin, 1991; Salmani 

Nodoushan, 2009; 2021a). Any successful act of measurement requires the use of a well-

constructed gauge put to its design-specific use/function in the right context. Gauges are 

scale-sensitive, and they cannot be put to use of one’s own free will; one will have to 

follow certain procedures when one decides to implement them. In educational settings, 

tests are to be viewed as function-sensitive gauges that should not be used extravagantly; 

rather, they should only be used when all of the assumptions of their appropriate use have 

been met (Salmani Nodoushan, 2021a). 

The term ‘measurement’ is frequently used in two different senses: (a) a general 

sense, and (b) a technical psychometric sense. In its general sense, measurement refers to 

the act of using a gauge to quantify a physical construct (e.g., length, height, weight, etc.) 

or an abstract trait (e.g., language proficiency, anxiety, motivation, etc.). In its technical 

psychometric sense, measurement refers to the idea of linking an observed value on a 

gauge to the unobserved construct/trait being measured. Perhaps it would be more precise 

if professionals had used two separate phrases to refer to these two senses of the term 

measurement: (a) internal measurement, and (b) external measurement. The former could 

be used to refer to all of the theoretical and statistical procedures that are followed in the 

process of developing a gauge, be it a test, a questionnaire, etc. The latter, by way of 

contrast, could be used to refer to the application of the already developed gauge for 

purposes of quantifying the trait for the measurement of which the gauge has been 

specifically devised. Perhaps the reason why this dichotomy has not been envisaged lies in 

the fact that internal measurement is a function of external measurement. In other words, a 

gauge (or scale) is first constructed based on certain theoretical assumptions, then it is put 

to pilot use to return some quantitative values (named quantitative data or scales), and then 

those values are statistically analyzed to show the internal properties of the gauge at hand 

(e.g., its validity, its reliability, its item difficulty and discrimination, etc.).    

This means that when a gauge is put to the test, it returns some values. For example, 

when you use a speedometer to measure the speed of a car, it will show a number (i.e., a 

numerical value) that indicates how fast the car is moving. That number is an observed 

value—let’s call it a datum, a quantification, or a scale. Note that the observed values on 
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any gauge are technically, and psychometrically, called the scales of the gauge—note that 

the term ‘scale’ is used in a general sense, too, to refer to a test, a questionnaire, or any 

other gauge that is used for measurement (Salmani Nodoushan, 2009). Psychometrically 

speaking, gauges (or ‘scales’ in the general sense) possess one of the four kinds of 

psychometric ‘scales’ (i.e., ‘scales’ in the psychometric sense): (a) nominal, (b) ordinal, (c) 

interval, and (d) ratio. These are differentiated from each other based on their properties 

(Bachman, 1990). Table 1 visualizes these scales and their properties. 

 

Table 1. 

Psychometric Scales and Their Properties 

  Types of Scales   

Properties of Scales Nominal Ordinal Interval Ratio 

Naming + + + + 

Ordering - + + + 

Equal distance - - + + 

Absolute Zero Point - - - + 

 

It was stated earlier that gauges are used to measure physical ‘constructs’ (e.g., 

speed, length, weight, heat, etc.) or psychological/behavioral ‘traits’ (e.g., competence, 

proficiency, self-esteem, tolerance for ambiguity, etc.). In acts of measurement in 

engineering and natural sciences, nominal properties of events and objects are not part of 

the measurement, but in soft sciences (e.g., education and psychology) and statistics, 

measures may include nominal scales as well (Pedhazur & Pedhazur Schmelkin, 1991). 

The academic discipline that pursues the production and dissemination of theoretical 

knowledge that has to do with the construction of gauges for the measurement of physical 

‘constructs’ is called metrology. Psychometrics is the counterpart of metrology in soft 

sciences. As such, metrology is the science of measuring constructs, but psychometrics is 

the science of measuring traits. Seen from this perspective, traits are abstract constructs 

and constructs are physical traits.  

All in all, psychometrics is the academic sub-discipline that pursues the production 

and dissemination of theoretical knowledge that pertains to the construction of gauges for 

the measurement of psychological/behavioral ‘traits’ (Salmani Nodoushan, 2009). Since its 

introduction to the field of language assessment, psychometrics has witnessed two major 
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paradigms: (a) Classical Test Theory (CTT), and (b) Item Response Theory (IRT). There is 

also a third camp—i.e., Generalizability Theory (GT or G-Theory)—which is mainly 

concerned with the validity of tests rather than their reliability (Bachman, 1990). I will 

return to these topics in the following sections. 

 

3. Psychometrics in Language Assessment 

In much the same way as a speedometer is a tool/gauge that measures the physical 

construct of ‘speed’, a test is a gauge that measures a psychological construct (i.e., a trait 

such as language proficiency, achievement, etc.). A trait is latent when it is concealed, 

abstract, and not open to direct perception. Examples of latent traits in language learning 

include proficiency, aptitude, etc. Since latent traits are not open to direct perception, they 

must be measured through the implementation of certain gauges. A language proficiency 

test, for instance, is a scale that is supposed to have been constructed in such a precise way as 

to show with maximum reliability and precision the size of the language knowledge that a 

test taker retains in his/her mind. In other words, the test is supposed to be a reliable measure 

of the trait it measures, and this suggests that it should be able to return the same observed 

value—with a tolerable amount of variation (or variances)—across repeated trials. Whenever 

the second, third or nth application of a measure returns a different observed value than its 

first application, the question that should be answered is if the observed variance has resulted 

from the improvement of the construct at hand (i.e., is a function of ‘impact’) or is due to 

measurement error (e.g., test takers’ lapses in concentration, scorers’ inconsistency, etc.). 

This is what reliability is all about—precision. When variations in observed values on a 

gauge across different trials are due to systemic changes (e.g., the improvement of the 

construct/trait the test measures), they are called systemic variances, but when they are due 

to random events (e.g., oversights, distractions, etc.), they are called unsystemic variances 

(Alderson et al., 1995)—please note that (un)systemic variances differ from (un)systematic 

variances to which I will return in my discussion of generalizability theory below. The more 

a test is able to measure systemic variance, the more reliable the test is. If a perfectly reliable 

test could be constructed, it would only measure systemic changes. This is possible in theory, 

but it has not been crystallized in practice yet.  

Nevertheless, any act of measurement is always threatened by the presence of some 

degree of unsystemic (or systematic) variance. As such, reliability is an ongoing process, 
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and test constructors keep trying to find new ways of detecting and eliminating the causes 

of unsystemic—as well as systematic—variation. Uniform test administration, consistent 

marking, clarity of test rubrics and instructions, precise construct definition, and so forth 

are just a few strategies that boost reliability. All of the strategies and attempts aimed at 

boosting the reliability (and also validity) of measures have resulted in the emergence of 

two major measurement paradigms: Classical Test Theory (CTT), and Item Response 

Theory (IRT). Other camps have also appeared which include Generalizability Theory (or 

G-Theory) and Differential Item Functioning (DIF).  

 

4. Classical Test Theory (CTT) 

Imagine that you give your class a grammar test and rely on the scores the students 

gain on the test to tell how much grammar they know. If your test is a well-designed 

gauge, the test takers’ scores should give you a trustworthy estimate of their knowledge of 

grammar. You also know that the scores are not free from error, and that there is always 

the possibility that some degree of error is present in any measurement. As such, the 

observed scores comprise both a true estimate of grammar knowledge and an estimate of 

measurement error. In other words, your observed variance comprises a true variance (also 

known as classical true score or CTS) and an error variance. You can therefore write the 

basic CTT equation X = T + E, where (a) X is the observed score (or the total variance) on 

the test for a given test taker, (b) T is his/her true score (i.e., systemic variance) on the trait 

being measured, and (c) E is random error (or unsystemic variance). This leads us to the 

basic assumption in CTT: Any observed score on a measure is a function of test takers’ 

true and stable knowledge (i.e., systemic variance) and a set of ephemeral unstable and 

random factors (Haertel, 2006; Pedhazur & Pedhazur Schmelkin, 1991; Salmani 

Nodoushan, 2009; 2021a).  

This suggests that it is assumed in CTT that T and E are uncorrelated. Feldt and 

Brennan (1989) argued that E in CTT belongs in one of the following four categories: (a) 

natural variation resulting from such factors as fatigue, hunger, mood, etc.; (b) 

environmental factors such as ambient noise, proctor’s behavior, room temperature, etc.; 

(c) sporadic variations and inconsistencies in scores; or (d) malfunctioning items in the test 

booklet. No matter which of these factors is responsible for random E, its randomness 

implies several interesting points. First, if a test could be given to an individual repeatedly 
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and over a very large number of times, provided that (s)he forgot each time that (s)he had 

taken the test before, the mean of the errors across all administrations would be 0. In other 

words, the population mean would be μE = 0. Second, the correlation between error 

variance E and true variance T would be 0. In other words, rT,E = 0. Finally, error variances 

across multiple forms of the same test would also be uncorrelated. In other words, rE1,E2 = 0 

(Holmes Finch et al., 2016). 

All in all, CTT relies on three variables: X, T, and E. It also assumes that X is a 

composite variable in that it comprises T + E. Any time a variable is a composite of some 

other variables (e.g., X = T + E), its variance is a function of the sum of the variances of its 

components plus the multiplication of the covariance between its components by two. As 

such, the variance for X would be: σ2X = σ2T + σ2E + 2cov(T , E). Also note that standard 

deviation (SD or σ) is the square root of variance. Given the fact CTT assumes that T and E 

are uncorrelated, the covariance between them will be 0. As such, the composite variance 

of X can be rewritten as: σ2X = σ2T + σ2E. This suggests that reliability is the ratio of the 

variance in T to the variance in X, and this can be represented in the following equation:  

𝜌𝑥𝑥  =  
𝜎2𝑇

𝜎2𝑇 + 𝜎2𝐸
 

Test reliability falls between 0 and 1, but no test can ever achieve complete 

reliability, so you would always expect a value smaller than 1 when you perform an 

estimation of test reliability (Harris, 1969). A test with a reliability index larger than 0.9 is 

excellent, but a range between 0.7 and 0.9 is also acceptable. CTT recommends that you 

compute the margin of error that you may want to accept in your measurements. This 

requires the computation of the standard error of measurement (SEM). Once you know the 

scores of a group of test takers, you can simply compute the group mean (M) and its 

standard deviation (SD or σ). To compute the mean, you can add up all scores (Xs) and 

divide the result by the total number of test takers or population size (N). To compute the 

SD (or σ), you can use the following equation:  

𝜎 =  √
𝛴(𝑥𝑖 −  𝜇)2

𝑁
 

In this equation, xi stands for each value from the population, Σ stands for sum total, 

μ stands for population mean, and N stands for population size. Also know that SD is the 

square root of variance (Harris, 1969). In other words, if you multiply SD by itself, the 
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result will be the test variance. Once you know the SD and the reliability of your test or 

measure, you can then use their values to compute the standard error of measurement (or 

SEM).  

𝑆𝐸𝑀 = 𝑆𝐷 √1 − 𝑟 

The importance of SEM lies in the fact that it gives you the margin of error that you 

can expect in test takers’ scores. As stated above, test reliability is never 100% complete, 

but you can compute the SEM and use it to make sure which score any test taker would 

gain on the test if (s)he took the same test many times (Harris, 1969). Psychometrically 

speaking, SEM shows the degree of confidence that a test taker’s true score falls within a 

particular band score. If the total score on a multiple-choice test is 100 and the SEM for 

that test is 4, then you would say with 95% confidence that a test taker who has scored 60 

on the test would score between 52 and 68 in 95% of his attempts if (s)he took the same 

test n times (e.g., 9500 times out of 10000 attempts). As such, band scores in CTT are 

±2SEMs from observed scores (Harris, 1969). The 95% confidence comes from ‘the ±2SDs 

from the M formula’ based on the area under the normal probability curve. Figure 1 

visualizes the concept of normal distribution. 

 

 

Figure 1. Areas Under the Curve in Normal Distribution (Adopted from Harris, 1969) 

 

Nevertheless, reliability is just one of the qualities of a good test. CTT holds that the 

most important quality of a test is its usefulness (i.e., the use for which it is intended or its 

function). Test usefulness is a function of test reliability, test validity, and test practicality 

(Bachman, 1990). Together, they have been referred to as the ‘sine qua non’ of a test 

(Salmani Nodoushan, 2020). To guarantee the usefulness of a test, CTT resorts to several 

important concepts including among other things (a) the Guttman’s lower bounds to 
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reliability, (b) the reliability index, (c) the correction for attenuation, (d) the Kuder-

Richardson formulas, and (e) the Spearman-Brown formula (Salmani Nodoushan, 2009). 

Anyway, the forces that went hand in hand in the early 20th century to bring about 

CTT were threefold: (a) acceptance of the presence of error in any measurement also 

known as random latent variable, (b) acceptance of its random nature, and (c) a conception 

of correlation and how to index it (Salmani Nodoushan, 2009). Some would argue that 

CTT began in 1910 when Spearman (1910) proposed the concept of correction for 

attenuation (Bachman, 1990). As already noted, CTT was connected to two concepts in the 

previous paragraphs: (a) reliability, and (b) SEM. In fact, these two concepts are the main 

offshoots of CTT (Salmani Nodoushan, 2009). 

CTT has its original roots in the ideas of Galileo, the Italian scientists of the 17th 

century, who believed that errors in scientific observations (a) were inevitable, (b) were 

distributed symmetrically, and (c) tended to cluster around their true values (Salmani 

Nodoushan, 2009). It was not until the beginning of the 19th century when scientists mainly 

astronomers—began to emphasize the importance of studying errors. As a result of the upsurge 

of interest in the study of errors, Carl Friedrich Gauss proposed the concept of normal 

distribution (Figure 1), and around the turn of the 20th century, measurement specialists had 

already accepted the idea of measurement error. It was around this time when measurement 

specialists, and specifically Charles Spearman, proposed the notion of correction of a 

correlation for attenuation—also known as correlation disattenuation or the disattenuation of 

correlation (Osborne, 2003). Spearman, for example, realized that the absolute value of the 

correlation coefficient between the different measurements “for any pair of variables must be 

smaller when the measurements for either or both variables are influenced by accidental 

variation than it would otherwise be” (Salmani Nodoushan, 2009, p. 2). 

Out of these considerations came the idea of test/measure reliability. Reliability is 

defined in terms of the consistency and precision of measurement. A reliable test score is 

one that remains consistent across different characteristics of the testing situation 

(Bachman, 1990; Brown & Salmani Nodoushan, 2015). Validity, another quality of a good 

test, has to do with the idea of test function. Some would argue that validity is obtained 

when reliability is squared, but the picture is not that simple; not all instances of common 

variance can be taken as estimations of validity (Salmani Nodoushan, 2009). To be valid, a 

test is supposed to measure the trait it has been constructed to measure. Otherwise, it 
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would be invalid. Nevertheless, reliability and validity work in tandem in that a test cannot 

be valid unless it is first and foremost reliable (Bachman, 1990; Harris, 1969). It is 

noteworthy that all estimations of reliability are done with the aim of maximizing true 

variance (i.e., classical true score or CTS) and minimizing error variance. As Harris (1969) 

and Bachman (1990), among many others, have ardently argued, investigations of 

reliability might be based on (a) logical analyses done with the aim of identifying error 

sources, or (b) empirical studies aiming at estimating the magnitude of the impact of errors 

on test performance. CTS is essentially the offspring of these assumptions (Salmani 

Nodoushan, 2009). In addition to envisaging two uncorrelated sources of variance (i.e., 

true variance and random error variance), CTS also holds that true score variations are a 

function of disparities in testees’ ability levels (Salmani Nodoushan, 2009).   

As for reliability, CTS has envisaged three reliability models: (a) estimates of 

internal consistency or item-total correlations, (b) estimates of through-time stability, and 

(c) estimates of equivalence among the parallel forms of the same measure. Estimates of 

internal consistency reveal if test takers have performed consistently on different parts of a 

measure or test. Estimates of through-time stability determine if a test taker’s T remains 

stable over repeated administrations of the same test. Finally, estimates of equivalence 

among the parallel forms of the same measure reveal if different forms of a test that are 

highly correlated return the same CTS for any given test taker (Harris, 1969; Salmani 

Nodoushan, 2009). The basic assumption behind the development of highly correlated 

parallel forms of a measure is that the error as well as the true variances of one form will 

equal those of any the other form. Metaphorically speaking, this is similar to the idea that 

different speedometers manufactured by different factories will inevitably show the same 

value for the speed of a car once they are installed in that car. 

The three reliability models just described (i.e., equivalence, through-time stability, 

and internal consistency) have turned up into several procedures for the estimation of 

reliability in CTT. As for the ‘estimates of internal consistency’ model, seven types of 

reliability estimation have been documented in the existing literature: (a) split-half 

reliability, (b) Spearman-Brown split-half estimate, (c) the Guttman split-half estimate, (d) 

Kuder-Richardson reliability coefficients, (e) coefficient alpha, (f) intra-rater reliability 

also known as ‘regrounding’, and (g) inter-rater reliability (cf., Salmani Nodoushan, 2009). 

The last two procedures may also be collectively called ‘rater consistency’. It should be 
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noted that in split-half reliability, a single test is broken into two halves through (a) the 

odd-even, (b) the first-half-second-half, or (3) the random-halves method—with the 

assumption that the two halves are both locally independent and totally equivalent—and 

then the correlations between the two halves is computed (Harris, 1969).  

Nevertheless, splitting a measure into two halves reduces the total test length, 

therefore the test specialist must make up for this (a) either through the Spearman-Brown 

prophecy formula, which assumes the two halves to be equivalent and also experimentally 

independent, or (b) through Guttman split-half estimate, which does not make such an 

assumption (Salmani Nodoushan, 2009). Since it does not assume that the two halves are 

equivalent and experimentally independent, the Guttman’s formula may be used to 

estimate the reliability of the whole measure directly. It should be noted that the 

application of the Spearman-Brown prophecy formula to two unequal halves turns up into 

an underestimation of reliability, and also that its application to experimentally dependent 

halves returns an overestimation of reliability. Perhaps a better strategy for the scorer 

would be to take these consecutive steps: (a) engage all of the splitting methods, (b) 

estimate the reliability coefficient for any of them, and (c) find the average of these 

coefficients (Salmani Nodoushan, 2009). Nevertheless, it is often advised that scorers use 

the Kuder-Richardson formulas to avoid the potential errors that lie within the split-half 

method. 

Split-half reliability may be a suitable method for multiple choice tests where there 

are enough items to assign to two halves, but there are also tests that do not lend 

themselves readily to split-half reliability estimation—often because their different 

sections are not locally independent. In such cases, ‘test-retest reliability’ might be a better 

option, but it is not free from complications in that a short interval between the two 

administrations might expose the measure to practice effect—also known as carry-over or 

history effect—and a long interval might expose it to the effect of ability change (Salmani 

Nodoushan, 2009); hence, the test-retest reliability dilemma. In fact, this dilemma has 

motivated the use of equivalent or parallel test reliability estimates. All in all, CTS 

reliability estimates are always prone to error because (a) there may be some kind of 

interaction among the different sources of error, (b) some error sources might not be 

controllable, (c) the estimation of error sources might be relative, (d) errors are treated in a 

homogeneous way while they might not be genuinely homogeneous, and (e) errors are 
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taken to be random, but not systematic (Salmani Nodoushan, 2009). 

Unlike reliability which has to do with the size of variation in scores resulting from 

(a) test method facets and (b) systematic and random measurement errors, validity has to 

do with the relationship between test performance and performance in non-test contexts. 

CTT approaches test validity from three perspectives: (a) content validity, (b) criterion 

related validity, and (c) construct validity. Content validity evaluates the correspondence 

between the content of a test and the content of the corpus the test claims to measure; in 

other words, it correlates test specifications and test content, guarantees measure accuracy, 

and prunes out any potentially harmful backwash (Salmani Nodoushan, 2021b). Criterion 

related validity, on the other hand, correlates two different tests that claim to measure the 

same trait (e.g., the TOEFL and the IELTS). Criterion related validity has two 

manifestations in CTT: (a) concurrent validity, and (b) predictive validity. When the test 

and the criterion to be correlated are administered at about the same time, concurrent 

validity is at stake, but in predictive validity, which concerns the degree to which a test can 

predicate candidates’ future performance, the test and the criterion are subsequent to each 

other (Valette, 1977). Finally, construct validity inspects the underlying structure of a test 

to see if it measures the predefined ability it claims to measure (Harris, 1969); the test, its 

parts, and the testing technique are said to possess construct validity only when the test 

gauges what it has been specifically devised to gauge. It should be noted that the term 

‘construct’ refers to the latent trait of interest (e.g., language aptitude, language 

proficiency, etc.) that the test claims to measure.  

In addition to content validity, criterion related validity, and construct validity, CTT 

also talks about ‘face’ validity, which concerns the appearance of a test. A test has face 

validity if it appears to be testing what it claims to be testing. Although face validity is 

hardly a strictly scientific concept, it is very important. Any test that lacks face validity is 

not taken seriously by test users (i.e., testees, instructors, educators, and so forth). As such, 

the notion of face validity tacitly implies that new testing techniques, especially indirect 

ones, may fail to convince test users. 

 

5. Generalizability Theory (G-Theory) 

As stated above, CTT is based on a true variance (or CTS) and a random error. It also 

relies heavily on coefficients of correlation. Nevertheless, later developments in 
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psychometrics showed that CTS might itself be overestimated because of the presence of 

what has come to be known as non-random or systematic error. As such, a new perspective 

on evaluating reliability which is linked more intimately to the fundamental equation in 

CTT (i.e., X = T + E) has been proposed and has come to be known as generalizability 

theory (GT). It was stated above that in CTT, reliability is defined in terms of the ratio of 

true score variance (σ2T) to observed score variance (σ2X). CTT assumed a linear and 

reverse relationship between reliability and error variance, “such that greater measurement 

error would be associated with lower reliability” (Holmes Finch et al., 2016, p. 76).  

In spite of its being totally based on the conception of measurement error, CTT did 

not make any modest and tangible attempt to quantify measurement error. By way of 

contrast, GT addresses measurement error directly and seeks to estimate its magnitude. It 

then dovetails (a) the estimated error magnitude and (b) the information about the observed 

score to compute its own g coefficient—which is an estimation of reliability (Holmes 

Finch et al., 2016). GT does not see X as a function of only T and random E, but argues 

that T itself may be contaminated in that it may also comprise some form of systematic 

error variance which is hidden due to its non-random and systematic nature. As such, T is 

inspected and the systematic error hidden in it is found and eliminated (Holmes Finch et 

al., 2016; Shavelson & Webb, 1981; Shavelson et al., 1989). GT considers the universe 

score to be a function of (a) systemic T, (b) systematic E, and (c) residue or random E 

(Cronbach et al., 1972). As such, “a given measure or score is a sample from a hypothetical 

universe of possible measures,” and “a score is a multi-factorial concept” (Salmani 

Nodoushan, 2009, p. 6).  

GT, just like CTT, has its own set of professional nomenclatures developed for 

purposes of the precise description of its practices. GT assumes that an observed score 

obtained from the administration of a measure comes from a ‘universe’ of possible scores 

for the same testee on a given test. As such, a test used to measure a trait is just one of the 

many possible instruments that could have been used to measure the trait. All of the 

imaginable variables that might play a role in the measurement are called ‘facets’ (or 

objects of measurement); the number of items, the test rubrics, the temperature of the 

testing room, the test takers’ moods and other physical and mental characteristics, the 

proctors’ physical and behavioral characteristics, topastic or guessing error, raters (e.g., 

judges, teachers), psychological task set, measurement occasion (or testing time), the 
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instrument type (e.g., portfolios, writing samples, multiple-choice tests), cultural content, 

and so forth are all ‘facets’, and a ‘universe’ score is a function of multiple facets (Holmes 

Finch et al., 2016). The basic assumption in GT is that each of the many facets that can be 

pinpointed has a unique share of the observed variance, and GT aspires to estimate the 

exact share of each and every facet (Shavelson & Webb, 1981). GT does this—i.e., the 

estimation of the relative contribution of each facet to the total score—in what has been 

called a ‘G-study’ (or generalizability study). In other words, a G-study isolates the unique 

share of each and every facet through a ‘variance components analysis’ (i.e., through 

decomposing the observed score into its constituents) and explains its contribution to the 

observed score (i.e., total variance) in the form of explained variance (Holmes Finch et al., 

2016). Once facet-specific variances are calculated, they are used in a ‘D-study’ (or a 

decision study) which aspires to generalize the obtained results to the ‘universe’ of 

interest—also known as the ‘universe of generalization’. A D-study also makes it possible 

for the researcher to estimate the “relative reliability of the measure under different 

conditions with respect to the facets” (Holmes Finch et al., 2016, p. 77). 

Perhaps Ebel (1951) had the greatest impact on the development of GT. In his article 

on the reliability of ratings, Ebel (1951) identified two sources of errors: (a) rater main 

effects included, and (b) rater main effects excluded. He grappled with this issue until GT 

was fully formulated, and only then could he distinguish between ‘relative’ and ‘absolute’ 

errors in various factorial designs (cf., Kane & Brennan, 1980). Later, Lord (1957) 

suggested a ‘binomial error model’ which has since been an integral part of GT. In lay 

terms, GT has upcycled the notion of SEM from CTT to estimate ‘conditional’ standard 

errors of measurement (CSEMs).   

It was stated earlier that in GT “a given measure or score is a sample from a 

hypothetical universe of possible measures,” and “a score is a multi-factorial concept” 

(Salmani Nodoushan, 2009, p. 6). This suggests that generalizations from a single measure 

can be made to a universe of measures. This implies that reliability is in essence a matter of 

Generalizability. Nevertheless, making generalizations requires that we define our universe 

of measures with precision. All in all, GT (a) specifies all of the objects of measurement, (b) 

measures their magnitudes, and (c) generalizes from there to the universe of generalization. 

In other words, GT brings one measure from a universe of measures to make its own 

calculations, and then implements those calculations to test interpretation and use.  
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Needless to say, this is a ‘validation’ issue. Each facet within the universe of 

generalization has (a) its own unique characteristics and (b) varying conditions (Salmani 

Nodoushan, 2009). These, in turn, contribute to the overall variance obtained from a 

measure such that the generalizability coefficient computed is dependent on them. As such, 

the generalizability coefficient is “the proportion of observed score variance that is 

universe score variance” (Salmani Nodoushan, 2009, p. 6). It was stated earlier that the 

objects of measurement in GT include (a) universe score variance, (b) systematic variance, 

and (c) random or residual variance. Since GT identifies two sources of error (i.e., 

systematic and random), it is not surprising that a generalizability coefficient is often 

smaller than its CTT counterpart (i.e., reliability coefficient). Nevertheless, a 

generalizability coefficient is always more precise than a reliability coefficient in that the 

former is the end product of a process that has located systematic variance and eliminated 

it (Brennan, 1984; Cronbach, 1951, 1984; Fisher, 1925; Lindquist, 1953; Salmani 

Nodoushan, 2009). It should also be noted that GT adopts different approaches to 

reliability in criterion referenced (or domain referenced) versus norm-referenced 

measurements. 

Very often it is claimed that GT has blurred the distinction between validity and 

reliability. However, the reality is that only a small portion of the GT literature directly 

relates to validation. Perhaps the first attempt at linking GT to validity was made by 

Kane (1982), who proposed the ‘sampling model for validity’ as a seminal contribution 

to GT. Kane’s model links GT to key issues that were subsumed under validity in CTT 

(Salmani Nodoushan, 2009). Unlike CTT, GT does not view validity as a three-

dimensional concept; rather, it takes validity to be a unitary concept at the heart of 

which lies the notion of construct validation (cf., Messick, 1988; Salmani Nodoushan, 

2020). Construct validation viewed through the GT lens engulfs (a) convergent and (b) 

discriminate types of evidence that work in tandem. This unitary concept of validity 

comprises the following components: (a) the content aspect, (b) the substantive aspect, 

(c) the structural aspect, (d) the generalizability aspect, (e) the external aspect, and (f) 

the consequential aspect (Salmani Nodoushan, 2009). Table 2 illustrates these validity 

components. 
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Table 2. 

Facets of Validity Envisaged by Samuel Messick (1988) 

 Test Interpretation Test Use 

Evidential Basis Construct Validity Construct Validity + Relevance/utility 

Consequential Basis Value Implications Social Consequences 

 

As indicated by Table 2, Messick’s (1988) four-way framework of validity stands on 

a two-fold pedestal: (a) an evidential basis, and (b) a consequential basis. Together, these 

bases justify how a measure should be used and/or interpreted. This framework is based on 

the assumption that (a) relevance, (b) utility, and (c) construct validity should work in 

unison, and on an evidential basis, in the process of test use (Salmani Nodoushan, 2009). 

Likewise, construct validation and value implications are part and parcel of the process of 

test interpretation. Similarly, the consequential perspective on test use integrates (a) test 

relevance, (b) its construct validity, (c) its utility, and (d) its social consequences. All in all, 

such a unitary approach to test validation holds that validity is a function of evidential and 

consequential bases, and that these bases, in turn, are sensitive to (a) content relevance, (b) 

criterion relatedness, and (c) construct meaningfulness (Salmani Nodoushan, 2009). 

Validity, seen from this perspective, is an integrated evaluative judgment about the degree 

to which “empirical evidence and theoretical rationales support the adequacy and 

appropriateness of inferences and attitudes based on test scores or other modes of 

assessment” (Messick, 1988, p. 13); it relates to the available evidence that can support test 

interpretation and the potential consequences of its use (Salmani Nodoushan, 2009). 

All in all, GT capacitates researchers to cope with measurement error directly, and to 

compute its magnitude. They can then bring their estimations to bear on estimations of 

reliability. A clear advantage of GT over other estimations of reliability—such as alpha—

is its capacity to isolate and quantify multiple sources of error.  

 

6. Item Response Theory (IRT) 

Perhaps the main difference between Item Response Theory (or aka IRT) and CTT is 

that the focus of the former is at the item level whereas the focus of the latter is at the 

whole test (or scale) level (van der Linden & Hambleton, 1997; Yen & Fitzpatrick, 2006). 

The suite of IRT tools contains a set of statistical models that aim to detect measurement 

error at item level. In essence, IRT focuses on the relationship among (a) the testee, (b) the 
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test items, and (c) the probability of the testee providing a given response (e.g., incorrect or 

correct) to the item (Holmes Finch et al., 2016). Models of IRT have been developed to 

tackle (a) dichotomous and (b) polytomous items. Dichotomous items have two possible 

answers (correct or incorrect shown in 0s and 1s). Polytomous items have more than two 

responses (e.g., Likert type items). IRT models are based in the logistic framework and are 

differentiated in terms of the amount of information they contain about test items (Holmes 

Finch et al., 2016).  

Item Response Theory is also known as ‘aka IRT’ or latent trait theory. The true 

score in IRT is defined on the latent trait at hand rather than on the test (Salmani 

Nodoushan, 2009). IRT is quite often engaged in different activities including (a) item bias 

analysis, (b) equating, and (c) tailored testing—among other applications. Item bias 

analysis reveals if a test item is functioning without bias (i.e., DIF or systematic error) 

across testee groups (e.g., males versus females, blacks versus whites, etc.). Equating is 

very much similar to what GT aspires to do—generalizing from an observed score to the 

universe; in other words, the score on one test can be used as the basis for predicting the 

equivalent score on another test—which is roughly similar to the CTT notion of 

expectancy tables. Finally, tailored testing dispenses with the idea of giving different 

testees the same test for purposes of ranking them; no matter which combinations of 

different test items are given to different testees, IRT capacitates the test maker to place 

test takers on the same scale (Salmani Nodoushan, 2009). This can boost test security 

because each individual can receive a different set of items, but still be comparable to other 

individuals (Bachman, 1990).   

The basic one-parameter IRT model—also known as the 1-parameter logistic (1PL) 

model—is based on the works of Rasch (1980)—note that Rasch is just a special case of 

1PL—and assumes that a testee’s performance on a test item is a function of the difficulty of 

the item and the testee’s ability level. By way of contrast, many-facet IRT models allow 

parameters other than item difficulty and testee’s ability level (e.g., rater severity) to be 

included as assessment variables in estimating the testee’s underlying ability (Salmani 

Nodoushan, 2009). IRT models are essentially tailored to the estimation of test reliability, but 

they are also sometimes used for the estimation of validity. This latter use has been criticized 

by some measurement experts who believe that IRT assumptions (e.g., unidimensionality) do 

not allow IRT models to be engaged in validity estimations (cf., Alderson et al., 1995).   
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IRT is based on probability theory. As such, in cases where the difficulty level of an 

item is the same as a testee’s ability level, the testee will have a 50/50 chance of getting 

that item right. Theoretically speaking, this allows students’ scores and item totals to be 

transformed on to one scale in such a way as to make them related to each other (Salmani 

Nodoushan, 2009). This theoretical relationship between testees’ actual item performance 

and the abilities that underlie item performance is visually described in what has come to 

be known as an Item Characteristics Curve (ICC)—also known as an item trace. It is a 

common tool implemented to examine the properties of individual test items. An ICC 

“relates the latent trait being measured (on the X axis), with the probability of a correct 

response (in the case of dichotomous items) based on the particular model selected on the 

Y axis” (Holmes Finch et al., 2016, p. 6).  

 

 

Figure 2. The Appearance of a Typical ICC for a Hypothetic Test Item 

 

In much the same was as a physician can develop an idea of how a patient's heart is 

functioning just by looking at an electrocardiogram (ECG), an IRT expert can look at an 

item trace to develop an idea of how a testee has performed on a test item (van der Linden 

& Hambleton, 1997; Yen & Fitzpatrick, 2006). In the case of an ECG, the functioning of 

the patient’s heart is a function of his or her level of health. Likewise, in the case of an 

ICC, the testee’s item performance is a function of his or her level of logit scale ability 

symbolized as theta (θ)—also known as latent trait (Yen & Fitzpatrick, 2006). It has been 
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agreed by convention that the θ scale should be set by assuming a mean of zero and a SD 

of one for the population—which is analogous to the normal probability curve values or 

traditional z-scores in CTT (Salmani Nodoushan, 2009). As such, the values on the ability 

scale in the ICC in Figure 2 are tantamount to SDs from the mean of 0. The probability 

scale in the ICC indicates the probability of getting the item right. Figure 2 displays the 

overall appearance of a typical ICC for a hypothetic test item. 

ICCs are the stepping stones of all IRT models. ICCs yield three basic parameters for 

test items: (a) the discrimination parameter or item discrimination symbolized by a, (b) the 

item difficulty/facility parameter symbolized by b, and (c) the topastic or guessing effect 

symbolized by c. IRT also takes the X axis to be the ability scale (symbolized by θ, and the 

Y axis to be the probability scale symbolized by μ or p. The slope of the curve tangent at b 

is the a parameter. This can be computed very easily. If you draw a line parallel to the X 

axis at the inflection point and another line flush with the curve at the inflection point, their 

intercept will form an acute angle the tangent of which you can compute using simple 

math. There is also a constant value equal to 02.71 and symbolized by e. Once the values 

for these parameters are known, they can be fed into the following equation: 

𝜇 = 𝑐 + (1 − 𝑐)
1

1 +  𝑒−1.7𝑎(𝜃 − 𝑏)
 

The most important parameter in IRT is the b parameter which shows item difficulty. 

It is this parameter that sets the location of the inflection point of the ICC. If you drop a 

vertical line from the inflection point to the X axis, your b value will be found. The c 

parameter is the tangent of the point at which the ICC intercepts the Y axis. In ICCs where 

the c parameter is equal to zero (i.e., there is no topastic effect), the inflection point on the 

curve will be at μ = 0.50 (Salmani Nodoushan, 2009). The one-parameter IRT model (also 

known as the 1PL model) is sensitive to only the b parameter and only lets this parameter 

vary.  

As stated above, the steepness of the ICC at its steepest point marks the a parameter, 

which shows item discrimination defined in terms of the relationship between items and 

individuals’ ability levels. Remember that the a parameter is found by taking the slope of 

the line tangent to the ICC at b (Salmani Nodoushan, 2009). The closest relative of the a 

parameter in CTT is item total correlation. The steepness of the curve has a direct 

relationship to item discrimination such that the steeper the curve, the more discriminating 

the item and the larger the a parameter. In other words, the more the a parameter 
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decreases, the flatter the curve gets and the less discriminating the item will be (Salmani 

Nodoushan, 2009). Just like CTT where items with an item discrimination smaller than 0.3 

or larger than 0.9 were discarded from the test (Harris, 1969), items with very low or very 

high a parameter values in IRT are not useful. Perhaps it would not be wrong to claim that 

IRT is essentially an item-level approach to the computation of item discrimination indices 

whereas CTT used a scale-level approach to the computation of those indices. Remember 

from Harris (1969) that, in CTT, you would (a) rank the total scores of your testees from 

high to low, (b) separate 27% from each end and label them H and L, and (c) use the 

following equation to compute item discrimination indices: 

𝐼𝐷 =  
𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐻 − 𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐿 

𝑁 𝑜𝑓 𝑒𝑖𝑡ℎ𝑒𝑟 𝐻 𝑜𝑟 𝐿
  

Unlike the one-parameter IRT model which is (a) sensitive to only the b parameter 

and (b) only lets the b parameter vary, the two-parameter IRT model allows both a and b 

parameters to vary; that is, the 2PL model engages both a and b in its descriptions of scale 

items. 

In three-parameter models, a third parameter enters the computations. It is the c 

parameter, which is essentially an index for guessing or topastic effect—also known as 

pseudo-chance; hence, the guessing parameter. Using the professional terminology of 

projective geometry, we can say that the c parameter is a lower asymptote—i.e., a line 

which is tangent to the ICC at a point at infinity (Nunemacher, 1999). In lay terms, the c 

parameter is “the low point of the curve as it moves to negative infinity on the horizontal 

axis” (Salmani Nodoushan, 2009, p. 10). The c parameter quantifies the possibility for a 

low-ability examinee (say a chicken) to provide the correct answer to an item. As such, it 

might be used to model topastic effect in multiple-choice test items.  

All in all, each and every item has its own item-specific ICC in IRT. Depending on 

which IRT model you use to plot your ICCs, you will gain access to different types of 

information about your test items. If you use the 1PL model, you will only gain 

information about item facility. Note that the 1PL model assumes that all test items have 

equal values for item discrimination—which equals 1 in the case of the Rasch model, 

which is a special case of the 1PL, à la Embretson and Reise (2000) and de Ayala (2009); 

this assumption is what differentiates 1PL from 2PL and 3PL models (Holmes Finch et al., 

2016). If you use the two-parameter model, your ICCs will afford information about both 

item facility and item discrimination. Finally, ICCs from a three-parameter model will tell 
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you a lot about item facility, item discrimination, and guessing. ICCs are plotted on the 

basis of two scales: (a) the X axis or ability scale, and (b) the Y axis or the probability scale 

(Hambleton & Swaminathan, 1985). In sum, you can use the best-fitting IRT model for 

two purposes: (a) to assign estimates to test items, and (b) to assign scores to test takers. 

The scores you assign to test takers through the implementation of the best-fitting IRT 

model can be called ‘ability’ scores. 

When items are polytomous, they do not have a binary response (i.e., 

incorrect/correct or 0/1). Unlike dichotomous items, polytomous test items are not scored 

dichotomously; rather, their responses are gradable on a cline (e.g., on a Likert scale). In 

other words, polytomous items with graded responses may include several categories (e.g., 

poor, fair, good, and excellent). In such cases, the IRT models described above cannot be 

used to model item responses (Holmes Finch et al., 2016). As such, new more complex 

models have been developed in measurement and psychology that can handle polytomous 

test items (e.g., the generalized partial credit model, or GPCM) a discussion of which is 

beyond the scope of the current paper. For more on polytomous IRT models, please see 

Muraki (1992). 

It has been claimed in the literature on IRT that ability scores are precise measures of 

examinee’s real abilities (Hambleton & Swaminathan, 1985). In other words, IRT claims 

to guarantee the precision of measurement. Nevertheless, CTT and GT have both been 

criticized on the assumption that their estimations of reliability, generalizability, and SEM 

are not precise due to the fact that these estimations are sample-dependent. When tests are 

sample-dependent, they find different reliabilities when different sample groups take them. 

Another criticism leveled against both CTT and GT is their treatment of error variance as 

homogeneous across individuals. This approach to error variance is in itself a source of 

measurement imprecision. IRT claims to have eliminated both of these sources of 

imprecision (Salmani Nodoushan, 2009). 

Anyway, ICCs in IRT yield different types of information. Each item is therefore 

said to have an information function which can technically be called Item Information 

Function (IIF), which is based on two pillars: (a) ICC slope, and (b) variation at each 

ability level. An IFF comprises the amount of information the item affords for the 

estimation of any test taker’s level of ability. Once you have the IFFs for all items in a test, 

you can sum up all of them to arrive at the Test Information Function (TIF), which is an 
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estimate of how much information your test yields at different ability levels. As such, the 

SEM for each ability level will be the reverse of TIF for that ability level. This quality of 

TIF in IRT (a) makes IRT measures sample-independent, and (b) results in measurement 

precision and reliable reliability (Salmani Nodoushan, 2009). 

Nevertheless, IRT models have also their downsides, and they have indeed been 

criticized on the ground that they are not that much applicable when it comes to the 

estimation of validity indices (Salmani Nodoushan, 2009). Furthermore, the basic 

assumption of IRT models—the fact that they envisage a single latent trait (or their 

unidimensional assumption)—is also a bone of contention. As such, the unsatisfactory 

theoretical assumptions of IRT models have made their application to the estimation of 

validity invalid. As stated above, the qualities of a good test include validity as well as 

reliability; if IRT models are invalid for the estimation of validity, IRT cannot be 

considered as a comprehensive and exhaustive theory of measurement. As such, 

measurement specialists will need to work on this aspect of IRT. 

  

7. Differential Item Functioning (DIF) 

It was stated above that IRT (a) might be used for item bias analysis and (b) has been 

criticized for its lack of attention to validity. Models of differential item functioning (DIF) 

have come about to make up for this (Karami, 2018; Karami & Salmani Nodoushan, 

2011). DIF holds (a) that test score use across different populations (e.g., students, 

patients) and diverse settings (e.g., educational, vocational) has different implications, and 

(b) that this makes the correct measurement of the intended trait vital (Holmes Finch et al., 

2016). In other words, test scores must be valid for the target use for which they were 

designed in the first place (Linn, 2009). As such, DIF analysis—which is a more recent 

development of IRT—addresses the question of whether test items are fair and appropriate 

(i.e., valid) for assessing the traits of all test takers regardless of their subgroup 

membership. In essence, DIF analysis aims (a) at eliminating potential unfairness—i.e., 

potential presence of DIF in test items—in score-based decision making (Wu et al., 2007; 

Zumbo, 1999) and (b) at ensuring the “equivalent meaning of test scores across diverse 

groups” (Holmes Finch et al., 2016, p. 196). 

The basic assumption in IRT is that all test takers who have been matched on the 

latent trait of interest should have the same probability of getting the test items right, but 
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where DIF is present in test items, this basic assumption is violated (Camilli & Shepard, 

1994). In the literature on DIF, it has been claimed that group specifications (e.g., gender, 

language spoken in the home, race/ethnicity, opportunity to learn, other testee 

demographics, or their intercepts) may be responsible for bias in test items, so DIF analysis 

is vital for the detection and elimination of item bias.  

Where DIF is present in an item, it may be either (a) uniform or (b) nonuniform. The 

former has to do with cases in which “the probability of a correct item response between 

two matched groups differs consistently across the entire range of ability” or the ability 

axis (Holmes Finch et al., 2016, p. 196, italics mine). By way of contrast, nonuniform DIF 

is present in cases where “the probability of a correct item response differs according to the 

groups’ standing on the latent trait” (Holmes Finch et al., 2016, p. 197). Figure 3 is a visual 

representation of uniform and nonuniform DIF. 

 

  

Figure 3. Visual Representation of Uniform and Nonuniform DIF (adopted from Holmes 

Finch et al., 2016, p. 197, pp. 197, 198) 

 

DIF is inevitable when different groups of test takers with the same latent trait (the 

same level of ability/skill) have diverse probabilities of giving a certain response to an 

item. As such, DIF is technically described as differences in item response probabilities 

(Salmani Nodoushan, 2009). Raju (1988) has argued that DIF is a difference in the 

parameters of the IRT model between the groups being tested (cf., Holmes Finch et al., 

2016). Since different IRT models for dichotomous items discussed above include different 
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item properties (i.e., a, b, and c parameters), Raju’s argument suggests that, depending on 

the IRT model chosen for plotting ICCs, dichotomous items may show a-DIF, b-DIF, c-

DIF, or a combination of these (cf., Finch & French, 2011).   

A point of caution is that ‘impact’ and ‘DIF’ are distinct and should not be mistaken. 

Impact, just like DIF, is a difference in item performance between groups of testees, but 

this difference, unlike in DIF, is a function of a ‘desired’ disparity in the size of the latent 

trait that the item measures (Clauser & Mazor, 1998). In true experimental designs, for 

instance, we expect a disparity between the experimental and control groups, and we call it 

impact. DIF, on the other hand, is undesirable in that it is a function of some intervening 

variable that we have not been able to eliminate from our measurements. In lay terms, 

impact is roughly similar to ‘systemic’ variance in GT, but DIF is roughly similar to 

‘systematic’ variance in GT. As such, item impact and DIF can be differentiated in terms 

of the matching of individual test takers on the latent trait of interest (Holmes Finch et al., 

2016). In other words, before any DIF analysis, you must match your test takers on the 

latent trait, and this is by no means a trivial matter. 

Once you have matched the test takers on the latent trait, you can use certain DIF 

analysis procedures to detect the presence of DIF in your test items. The most popular 

method for small populations (and mainly for dichotomous items) is the Mantel–Haenszel 

chi-square test (Camilli & Sheperd, 1994; Holland & Thayer, 1988; Mantel & Haenszel, 

1959). For larger populations (and mainly for polytomous items), the Logistic Regression 

method is preferred to the Mantel–Haenszel chi-square test. A discussion of these methods 

is beyond the scope of this paper, but the interested reader is invited to see Agresti (2002), 

Clauser et al.  (1993), Cohen (1992), Donoghue and Allen (1993), Jodoin and Gierl (2001), 

Karami (2018), Karami and Salmani Nodoushan (2011), Michaelides (2008), Narayanan 

and Swaminathan (1996), Rogers and Swaminathan (1993), Roussos and Stout (1996), 

Swaminathan and Rogers (1990), Thomas and Zumbo (1996), and Zwick (2012). All in all, 

DIF analysis is in essence on a par with GT in that it, just like GT, seeks to detect sources 

of systematic variance that are latent-trait irrelevant.   

 

8. Conclusion 

The field of language testing, as we saw in this paper, has been informed by 

developments in educational psychology which, in turn, has been informed by statistics, 
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projective geometry, and mathematics. The marriage between educational psychology and 

statistics has resulted in the emergence of psychometrics, which has flourished since its 

advent in 1910 to embrace a rich repertoire of professional terms and analytical methods. 

Reliability and validity are the main goals of psychometric analysis, and four different 

perspectives have to date been adopted in psychometrics to perform reliability and validity 

analyses: CTT, IRT, DIF, and GT. 

Nevertheless, what was presented in this paper is not the sole property of language 

assessment and testing. No matter where a testing or measurement practice is performed, it 

can benefit from what has been presented above—be it in language and linguistics, 

psychology, behavioral sciences, or elsewhere. All in all, testing and assessment need to be 

precise, and guaranteeing precision needs complicated analytical methods. This paper tried 

to shed light on some of these analytical methods in measurement, but what was presented 

above is just a primer, and the interested reader is invited to read the sources that have been 

listed in the list of references below.  
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