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Abstract: Vibration analysis of rotating disks is one of the most important problems 
in turbomachines. In this study, a new method has been presented which analyzed 
the radial vibration of a turbo-pump rotating disk carrying two annular concentrated 
masses located on the disk and at its end. Natural frequencies have been calculated 
in different rotating speeds; then results have been compared with each other. The 
effects of concentrated masses position and intensity on natural frequencies have 
been investigated. The results show that concentrated masses always have been 
decreased the value of first natural frequency, but in the case of second and third 
natural frequencies, depending on the mass concentration magnitude and its 
position, the magnitude of natural frequency has been increased or decreased. The 
vibration of the rotating disk without considering the concentrated mass, was 
examined. Then the resulting solution was generalized for two connected disks in 
internal concentrated mass location. The effect of concentrated masses, one on the 
disk body and the other on the outside of the disk, is considered as boundary 
conditions in the two disk Equations. The results show that increasing in angular 
velocity of rotating disk reduces the natural frequency. Concentrated masses always 
reduce the first natural frequency. At the second and third natural frequencies, 
concentrated masses may increase or decrease the natural frequency, which depends 
on the value and position of concentrated mass. Concentrated mass has the most 
impact when it is in a position that has the most radial displacement. 

Keywords: Concentrated Masses, Free Vibrations, Rotating Disk, Turbo-pump 

Biographical notes: Behrooz Shahriari was born in Isfahan, Iran in 1975. He 
received the B.S. in Mechanical Engineering and MSc. and PhD degrees in 
Aerospace Engineering from Malek Ashtar University of Technology in 2002 and 
2012 and 2016, respectively. Mostafa Nazemizadeh received his PhD in 
Mechanical Engineering from Amirkabir University of Technology, in 2016. His 
current research interests are robotic nonlinear dynamics and optimal control, micro-
to-nano dynamics and nonlinear vibration. M. A. Shirvani received the B.Sc. in 
Aerospace Engineering from Malek Ashtar University of Technology in 2020. He is 
MSc. Student in Malek Ashtar University of Technology.  

https://creativecommons.org/licenses/by/4.0/
mailto:shahriari@mut-es.ac.ir
mailto:nazemi@mut-es.ac.ir


 Int.  J.   Advanced Design and Manufacturing Technology             46 

 

 

1 INTRODUCTION 

Rotating disks are one of the most important components 

of turbines and their structures design are very 

important. From decades ago, due to the importance of 

rotating disk vibration, this issue has been considered by 

engineers and scientists. Disks are used in very wide 

areas of technology such as, turbomachines and 

hydraulic and power generating machines, turbines, 

turbo pumps, turbo-super chargers, centrifugal pumps, 

centrifugal compressors, fans, molecular pumps, 

centrifuges, turbo-generators, turbo alternator, rotary 

dynamos, synchronous and asynchronous electric 

cables, different types of planes, propulsion units on 

turboprop, turbofan and turbojet aircrafts, rotary ships, 

turbine of tanker ships, anchor wheels, wind turbine 

spindles, flywheel extractors and expanders. Disks have 

different natural frequencies at each angular velocity. 

And angular velocities that are equal to the natural 

frequency are known as critical speed [1]. If critical 

speed is equal to the working speed, the rotary system 

will suffer from extreme vibrations or in other words, 

resonance will happen and may result in damages or 

even fracture in machine part or in entire system.  

Lamb and Southwell [2] investigated the axial vibrations 

of the spinning disk with a constant thickness and 

rotating speed. They mentioned that the vibration of a 

nonrotating disks was previously investigated by 

Kirchhoff. In order to disregard the bending forces, they 

assumed that the disk was sufficiently thin and had high 

rotating speed. The Southwell [3] investigated the free 

transverse vibrations of a uniform circular disk clamped 

at its center and the effects of rotation. His article is 

mainly divided into two parts:1) Free vibrations of a 

nonrotating disk which is clamped in the center of disk; 

he used the Kirchhoff and Riley Equation to ignore the 

inertial effects of shear deformation. 2) The effect of the 

rotation was considered and problem was solved again 

with neglecting the flexural hardness and the applying of 

bending and centrifugal stresses obtained from the 

results of a rotating disk article mentioned in [2]. Bhuta 

and Jones [4] examined the Symmetric planar vibrations 

of a rotating disk. These vibrations include radial and 

tangential vibration of a thin disk. They used an 

uncertain coordinate system. They also found out that 

there are two types of instability for the discs: Static 

resonances and classical instability. Dodson and 

Eversman [5] investigated free vibration of a centrally 

clamped spinning circular disk. They provided an exact 

solution for the transverse vibration of the rotating disk 

with considerable flexural hardness. Barasch and Chen 

[6], also investigated the vibration of a rotating disk. But 

they used the modified Adams numerical method to 

solve the governing differential Equations. Radcliffe and 

Mote [7] tried to identify and control the rotating disk 

vibration. They used the FFT method to identify the 

dominant mode of the disk in different conditions. 

Tomioka et al. [8] studied the Analysis of free vibration 

of rotating disk–blade coupled systems by using 

artificial springs and orthogonal polynomials. They used 

the Ritz method to solve the problem and assumed that 

there is a hypothetical spring between the blades and the 

disk. Finally, some of the results were compared with 

results obtained from the finite element method. Parker 

and Sathe [9] calculated an exact solution for free and 

forced vibration of a rotating disk-spindle system. They 

provided a closed form solution to obtain Eigen values 

and assumed that the disk and shaft were completely in 

elastic field. Luo and Mote [10] studied the nonlinear 

vibration of rotating thin disks. They used Galerkin's 

approach to obtain an analytical solution. 

 In this paper, the vibrations of rotating disk carrying two 

peripheral concentrating masses are investigated. The 

purpose of this study is to investigate the effect of 

position and intensity of concentrated mass on the 

vibration of a rotating disk. These concentrated masses 

can be considered as balance ones on the disk body and 

blades on the outer end of the rotating disk in gas turbine, 

steam turbine and axial compressors. 

2 HOMOGENEOUS ROTATING DISKS WITHOUT 

CONCENTRATED MASS 

At the first, we investigate the mathematical Equations 

governing thin Homogeneous rotating disk without 

concentrated mass which is constrained at center of disk. 

Consider the element of a rotating disk shown in “Fig. 

1”. 

 

 
Fig. 1 Volume element of a rotating disk. 

 
By using Newton’s second law, we can write the 

following Equation for a given element in the radial 

direction: 
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(𝜎𝑟 + 𝑑𝜎𝑟)(𝑟 + 𝑑𝑟)(ℎ𝑑𝜃) − 𝜎𝑟𝑟ℎ 𝑑𝜃

− 2𝜎𝜃ℎ 𝑑𝑟 
𝑑𝜃

2
+ 𝑟2𝑑𝑟𝑑𝜃ℎ𝜌𝜔2

= 𝑟𝑑𝑟𝑑𝜃ℎ𝜌
𝑑2𝑢

𝑑𝑡2
 

(1) 

 

Where, u is radial displacement. Also, in accordance 

with the geometry of the element, the following Stresses 

are neglected. 

“Eq. (1)” can be rewritten in a summarized form below: 

 

(2) 𝜎𝑧 = 0    ,    𝜏𝑟𝜃 = 0 

(3) 
𝜕𝜎𝑟

𝜕𝑟
+

(𝜎𝑟 − 𝜎𝜃)

𝑟
+ 𝜌𝑟𝜔2 = 𝜌

𝜕2𝑢

𝜕𝑡2
 

 

According to hook’s law, the relationship between radial 

and tangential stresses with radial displacement is: 

 

(4) 
𝜎𝑟 =

𝐸

1 − 𝜈2
(
𝜕𝑢

𝜕𝑟
+ 𝜈

𝑢

𝑟
)

𝜎𝜃 =
𝐸

1 − 𝜈2
(𝑟

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
)

 

 

Substituting “Eq. (4)” into “Eq. (3)”, the Equation of 

motion as the following expression can be reached: 

 

(5) 
𝜕2𝑢

𝜕𝑟2
+

𝜕𝑢

𝑟𝜕𝑟
−

𝑢

𝑟2
+

(1 − 𝜈2)

𝐸
𝜌𝑟𝜔2 =

(1 − 𝜈2)

𝐸
𝜌�̈� 

 

Which the number of dots on u, indicates the number of 

derivatives relative to time. The parameters and new 

defined variables are expressed to simplify the Equation 

of motion: 

 

(6) 
1 𝑐2⁄ = [(1 − 𝜈2)𝜌] 𝐸⁄      
 𝒛 = 𝒓 𝑹⁄     ,   𝝉 = 𝝎𝒕 

 

Where, R is outer radius. Consequently, the Equation of 

motion will change into new form below: 

 

𝜕2𝑢

𝜕𝑧2
+

𝜕𝑢

𝑧𝜕𝑧
−

𝑢

𝑧2
= [

(𝑅2𝜔2)

𝑐2
] (𝑢″ − 𝑅𝑧) (7) 

 

Where the prime sign denotes the derivative of .  
The boundary conditions for this disk were considered 

as follows: 
-Disk is constrained clamped in inner radius and cannot 

move in radial direction. 

-Disk is free in outer radius and there is no radial force. 

On the other words: 

(8) 

𝑢𝑧=0 = 0 

𝝈𝒓|𝒛=𝟏 = 𝟎 ⇒ [
𝝏𝒖

𝝏𝒛
+ 𝝂

𝒖

𝒛
]
𝒛=𝟏

= 𝟎 

 

“Eq. (7)” is a non-homogeneous second order 

differential Equation, which can be considered as a 

solution consisting of two functions as follows: 

 

(9) 𝒖(𝒛, 𝝉) = 𝒖𝟏(𝒛) + 𝒖𝟐(𝒛, 𝝉) 

 

Therefore, the differential Equation is divided into two 

separate differential Equations: 

 

(10) 
𝒅𝟐𝒖𝟏

𝒅𝒛𝟐
+

𝒅𝒖𝟏

𝒛𝒅𝒛
−

𝒖𝟏

𝒛𝟐
= −𝜶𝟐𝑹𝒛 

  

(11) 
𝝏𝟐𝒖𝟐

𝝏𝒛𝟐
+

𝝏𝒖𝟐

𝒛𝝏𝒛
−

𝒖𝟐

𝒛𝟐
= 𝜶𝟐𝒖″

𝟐 

 

Where: 

 

(12) 𝜶𝟐 = (𝑹𝟐𝝎𝟐) 𝒄𝟐⁄  

 

The physical interpretation of the “Eq. (9)” is that the 

overall radial displacement of a disk element consists of 

two parts, first the static elastic displacement due to 

centrifugal force and the other is oscillatory 

displacement due to vibrations. 

“Eq. (10)” is an ordinary differential Equation which 

general solution is considered as: 

 

(13) 𝒖𝟏𝒄 = 𝒛𝑳 

 

Substituting “Eq. (13)” into “Eq. (10)”, L can be 

obtained as follows: 

 

𝑧2𝐿(𝐿 − 1)𝑧𝐿−2 + 𝑧𝐿𝑧𝐿−1 − 𝑧𝐿 = 0 ⇒ 𝐿2

= 1 
(14) 

 

Therefore, the general solution of the “Eq. (10)” will be 

obtained as follows: 

 

(15) 𝒖𝟏𝒄 = 𝑪𝟏𝒛 + 𝑪𝟐

𝟏

𝒛
 

 

Where, C1 and C2 coefficients will be determined 

according to the boundary conditions. Also, the 

particular solution of the “Eq. (10)” will be considered 

as follows: 

(16) 𝒖𝟏𝒑 = 𝑨𝒛𝟑 



 Int.  J.   Advanced Design and Manufacturing Technology             48 

 

  

 

By substituting “Eq. (16)” into “Eq. (10)”, A will be 

obtained: 

 

(17) 
𝑧2𝐴6𝑧 + 𝑧𝐴3𝑧2 − 𝐴𝑧3 = −𝛼2𝑅𝑧3 ⇒ 𝐴

=
−𝛼2𝑅

8
 

 

And the complete solution of “Eq. (10)” will be as 

follows: 

 

𝑢1(𝑧) = 𝑢1𝑐 + 𝑢1𝑝 = 𝐶1𝑧 + 𝐶2

1

𝑧
+

−𝛼2𝑅

8
𝑧3 (18) 

 

By using the method of isolating variables to separate 

the position variable from time, the solution of “Eq. 

(11)” can be considered as follows: 

 

(19)  𝒖𝟐(𝒛, 𝝉) = 𝑼(𝒛)𝒈(𝝉) 

 

By substituting “Eq. (19)” into “Eq. (11)”, we will have: 

 

𝑑2𝑈

𝑑𝑧2
𝑔(𝜏) +

𝑑𝑈

𝑧𝑑𝑧
𝑔(𝜏) −

𝑈

𝑧2
𝑔(𝜏)

= 𝛼2𝑈
𝑑2𝑔(𝜏)

𝑑𝜏2
 

(20) 

 

And as a result: 

 

(21) 
𝑑2𝑈
𝑑𝑧2 +

𝑑𝑈
𝑧𝑑𝑧

−
𝑈
𝑧2

𝑈𝛼2
=

𝑑2𝑔(𝜏)
𝑑𝜏2

𝑔(𝜏)
= 𝑐𝑡𝑒 

 

Where, the “Eq. (21)” is a constant value. In order to 

make the system response to be oscillatory and 

intermittent, this constant value should be a negative 

value, so we will have it: 

 

(22) 
𝒅𝟐𝒈(𝝉)

𝒅𝒕𝟐

𝒈(𝝉)
= −𝒑𝟐 ⇒ 𝒈(𝝉) = 𝒆𝒙𝒑(𝒊𝒑𝝉) 

 

And: 

 
𝒅𝟐𝑼

𝒅𝒛𝟐 +
𝒅𝑼

𝒛𝒅𝒛
−

𝑼

𝒛𝟐 = −𝜶𝟐𝒑𝟐𝑼  

𝑧2
𝑑2𝑈

𝑑𝑧2
+ 𝑧

𝑑𝑈

𝑑𝑧
+ (𝑧2𝛼2𝑝2 − 1)𝑈 = 0 

(23) 

 

Therefore, the part related to the time of 2u  is specified 

and also by solving “Eq. (23)”, the part related to 

position will be calculated. The “Eq. (23)” is a Bessel 

differential Equation and also, the solution will be 

Bessel function. With a variable change, this Equation 

can be converted into Bessel Equation. 

 

(24)  𝒌𝒛 = 𝜼 

 

By substituting “Eq. (24)” into “Eq. (23)”, the suitable 

value of k for converting an “Eq. (23)” to a first type of 

Bessel Equation will be obtained: 

 

𝜂2𝑈″ + 𝜂𝑈′ + (
𝜂2

𝑘2
𝛼2𝑝2 − 1)𝑈 = 0 ⇒ 𝑘2

= 𝛼2𝑝2 ⇒ 𝑘1 = 𝛼𝑝 , 𝑘2

= −𝛼𝑝  
⇒ 𝜂2𝑈″ + 𝜂𝑈′ + (𝜂2 − 1)𝑈 = 0 

 

(25) 

 

Given that the negative value of k can be considered in 

the positive value of k, therefore we only consider the 

positive values. The general solution of this 

homogeneous Equation will be:  

 
(26) 𝑼(𝜼) = 𝑪𝟑𝑱𝟏(𝒌𝟏𝒛) + 𝑪𝟒𝒀𝟏(𝒌𝟏𝒛) 

 

Where, J1 and Y1 respectively, are the first and second 

types of Bessel function. In order to calculate the natural 

frequencies, we apply boundary conditions in “Eq. (26)” 

which will be considered as follows: 

 

(27) 

𝑢2(𝑧𝑖𝑛 , 𝜏) = 0 
⇒ 𝐶3𝐽1(𝑘1𝑧) + 𝐶4𝑌1(𝑘1𝑧)|𝑧=𝑧𝑖𝑛

= 0 

𝜎𝑟|𝑧=1 = 0 ⇒ [
𝜕𝑢2

𝜕𝑧
+ 𝜈

𝑢2

𝑧
]
𝑧=1

= 0 

⇒ 𝐶3 [𝐽′
1
(𝑘1𝑧) +

𝜈𝐽1(𝑘1𝑧)

𝑧
]
𝑧=1

+  

𝑪𝟒 [𝒀′
𝟏(𝒌𝟏𝒛) +

𝝂𝒀𝟏(𝒌𝟏𝒛)

𝒛
]
𝒛=𝟏

= 𝟎 

 

Where 𝑍𝑖𝑛 is dimensionless internal radius of disk. This 

Equation is simplified in following matrix form: 

 

[

𝑱𝟏(𝒌𝟏𝒛𝒊𝒏) 𝒀𝟏(𝒌𝟏𝒛𝒊𝒏)

𝑱′
𝟏
(𝒌𝟏) +

𝝂𝑱𝟏(𝒌𝟏)

𝒛
𝒀′

𝟏(𝒌𝟏) +
𝝂𝒀𝟏(𝒌𝟏)

𝒛

] [
𝑪𝟑

𝑪𝟒
]

= [
𝟎
𝟎
] 

(28) 

 

In order to obtain non-binary solutions, the square 

matrix determinants stated in “Eq. (28)” must be zero. 

So, given that p or in other words natural frequencies is 

the only unknown parameters of determinant inside the 

𝑘1, so the natural frequencies are calculated by using this 

fact. In other words, roots of the determinant Equation 

are natural frequencies of desire rotating disk, and is:  

 



49                                  Behrooz Shahriari et al. 

  

𝑱𝟏(𝒌𝟏𝒛𝒊𝒏) [𝒀′
𝟏(𝒌𝟏) +

𝝂𝒀𝟏(𝒌𝟏)

𝟏
] −

𝒀𝟏(𝒌𝟏𝒛𝒊𝒏) [𝑱′
𝟏
(𝒌𝟏) +

𝝂𝑱𝟏(𝒌𝟏)

𝟏
] = 𝟎

 (29) 

 

The graph of the frequency Equation is shown in “Fig. 

2”. As previously stated, the root of this graph are the 

natural frequencies. 

 

 
Fig. 2 Distribution of natural frequencies. 

 
After determining the natural frequencies, we have to 

calculate the mode shapes. To obtain that, we use the 

“Eq. (26) and Eq. (28)”. Since the natural frequencies 

are determined, so the value of 𝑘1 is also known. By 

matrix multiplication in “Eq. (28)” and using the first 

Equation, the ratio of unknown coefficients is obtained: 

 

𝐶3
𝑖𝐽1(𝐾1

𝑖𝑧𝑖𝑛) + 𝐶4
𝑖𝑌1(𝐾1

𝑖𝑧𝑖𝑛) = 0 

⇒
𝑪𝟑

𝒊

𝑪𝟒
𝒊

= −
𝒀𝟏(𝑲𝟏

𝒊 𝒛𝒊𝒏)

𝑱𝟏(𝑲𝟏
𝒊 𝒛𝒊𝒏)

 
(30) 

 

The i  upshot represents 𝑖𝑡ℎ coefficient of 𝑘1 

corresponding to the 𝑖𝑡ℎ natural frequencies. Because 

only the available ratio of these coefficients was derived 

from the boundary conditions, the value of 4C is 

considered to be 1. By applying these coefficients in 

“Eq. (26)”, the mode shape Equation will be obtained for 

each natural frequency. 

 

𝑼𝒊(𝒛) = −
𝒀𝟏(𝑲𝟏

𝒊 𝒛𝒊𝒏)

𝑱𝟏(𝑲𝟏
𝒊 𝒛𝒊𝒏)

𝑱𝟏(𝑲𝟏
𝒊 𝒛𝒊𝒏)

+ 𝒀𝟏(𝑲𝟏
𝒊 𝒛𝒊𝒏) 

(31) 

3 ROTATING DISKS CARRYING TWO 

CONCENTRIC ANNULAR MASSES 

Rotating disk carrying two concentric annular masses is 

shown in “Fig. 3”. As shown in Fig.3, one of the masses 

located at the end of disk and the other is on the disk 

body. 

 

 
Fig. 3 Rotating disk carrying two concentric peripheral 

masses. 

 
Using the Equations obtained for annular rotating disk 

in section 2.1, we assume that disk shown in “Fig. 3” 

consists of two separate disks connected to each other in 

𝑧1 or internal concentrated mass position. 
The value of radial stress produced by the concentrated 

masses can be divided in two parts. First, which is due 

to centrifugal force that apply from disk on concentrated 

mass that have effect on 𝑢1 and the second part which is 

due to the mass inertia and is concentrated on the radial 

direction of the disk which have effect on 2u . To study 

radial vibrations, its only effect on 𝑢2 was studied. 

 

𝝈𝒓 =
𝑭

𝑨
=

𝒅𝒎 �̈�

𝒓𝒅𝜽𝒉
=

𝝆′

𝒓
�̈� (32) 

 

r is radial position of concentrated mass, 𝜌′ is the density 

of concentrated mass defined as 𝑚 = 𝜌′2𝜋ℎ  and its unit 

is 𝑘𝑔/𝑚, also, �̈� is acceleration in radius direction. The 

ratio of concentrated mass to disk mass can also be 

obtained by using “Eq. (33)”: 

 

(33) 𝒏 =
𝒎

𝑴
=

𝟐𝝆′

(𝒓𝒐
𝟐 − 𝒓𝒊

𝟐)𝝆
 

As mentioned earlier, a rotating disk with two concentric 

masses was considered as two disconnected disks 
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connected to each other in a dimensionless radius of 𝑧1 

or the same internal concentrated mass position. 

Therefore, the following boundary conditions can be 

expressed for a rotating disk. 
 The radial displacement in inner radius is zero 

(because of being constrained) 

 External radial displacement of the internal disk is 

equal to the internal radius of the external disk. 

 Radial stress in the internal radius of the external 

disk is equal to the radial stress in the external 

radius of the internal disk plus the stress caused by 

the concentrated mass. 

 The radial stress generated in the external radius of 

the external disk is equal to the stress created by the 

concentrated mass. 

Which the mathematical form of these four conditions 

were considered as follows: 

 

𝑢2𝑖(𝑧𝑖𝑛 , 𝜏) = 0 ⇒ 
 𝑪𝟑𝑱𝟏(𝒌𝟏𝒛) + 𝑪𝟒𝒀𝟏(𝒌𝟏𝒛)|𝒛=𝒛𝒊𝒏

= 𝟎 
(34) 

  
𝑢2𝑖(𝑧𝑙 , 𝜏) = 𝑢2𝑜(𝑧𝑙 , 𝜏) 
⇒ 𝐶3𝐽1(𝑘1𝑧) + 𝐶4𝑌1(𝑘1𝑧)|𝑧=𝑧𝑙

 

= 𝑪𝟓𝑱𝟏(𝒌𝟏𝒛) + 𝑪𝟔𝒀𝟏(𝒌𝟏𝒛)|𝒛=𝒛𝒍
 

(35) 

  
𝜎𝑟𝑜|𝑧=𝑧𝑙

= 𝜎𝑟𝑖|𝑧=𝑧𝑙
+ 𝜎𝑟𝑐𝑚1 ⇒ 

𝐶5 [𝐽′
1
(𝑘1𝑧) +

𝜈𝐽1(𝑘1𝑧)

𝑧
]
𝑧=𝑙

+ 

𝐶6 [𝑌′
1(𝑘1𝑧) +

𝜈𝑌1(𝑘1𝑧)

𝑧
]
𝑧=𝑙

= 

𝐶3 [𝐽′
1
(𝑘1𝑧) +

𝜈𝐽1(𝑘1𝑧)

𝑧
]
𝑧=𝑙

+ 

𝐶4 [𝑌′
1(𝑘1𝑧) +

𝜈𝑌1(𝑘1𝑧)

𝑧
]
𝑧=𝑙

+ 

𝜌′
𝑖

𝑧
(−𝑝2)

(1 − 𝜈2)

𝐸
[𝐶3𝐽1(𝑘1𝑧)

+ 𝐶4𝑌1(𝑘1𝑧)]|
𝑧=𝑧𝑙

 

 

(36) 

  
𝜎𝑟𝑜|𝑧=𝑧𝑜𝑢𝑡

= 𝜎𝑟𝑐𝑚2 ⇒ 

 C5 [J′
1
(k1z) +

νJ1(k1z)

z
]
z=1

+ 

𝐶6 [𝑌′
1(𝑘1𝑧) +

𝜈𝑌1(𝑘1𝑧)

𝑧
]
𝑧=1

=

=
𝜌′

𝑜

𝑧
(−𝑝2)

(1 − 𝜈2)

𝐸
[𝐶5𝐽1(𝑘1𝑧)

+ 𝐶6𝑌1(𝑘1𝑧)]|
𝑧=1

 

(37) 

 

Where, the i and o indexes and 𝐶1 , 𝐶2 , 𝐶3 𝑎𝑛𝑑 𝐶4 

coefficients are respectively related to the internal and 

external disks. Also 𝑐𝑚1 and 𝑐𝑚2 indexes are 

respectively related to internal and external concentrated 

masses. Like “Eq. (27) and Eq. (28)”, we rewrite the 

above Equations in the following matrix form: 

 

𝑠  [

𝐶3

𝐶4

𝐶5

𝐶6

] = [

0
0
0
0

] 

𝑘𝑘 = (−𝑝2)
(1 − 𝜈2)

𝐸
 

𝑠𝑠 = [

𝑠𝑠11 𝑠𝑠12
𝑠𝑠13 𝑠𝑠14

𝑠𝑠21

𝑠𝑠31

𝑠𝑠41

𝑠𝑠22

𝑠𝑠32

𝑠𝑠42

𝑠𝑠23

𝑠𝑠33

𝑠𝑠43

𝑠𝑠24

𝑠𝑠34

𝑠𝑠44

] 

𝑠𝑠11 = 𝐽1(𝑘1𝑧𝑖𝑛) ,  𝑠𝑠12 = 𝑌1(𝑘1𝑧𝑖𝑛) 
𝑠𝑠21 = 𝐽1(𝑘1𝑧𝑙) ,  𝑠𝑠22 = 𝑌1(𝑘1𝑧𝑙) 
𝑠𝑠23 = −𝐽1(𝑘1𝑧𝑙),  𝑠𝑠24 = −𝑌1(𝑘1𝑧𝑙)  

𝑠𝑠31 =

[
 
 
 𝐽′

1
(𝑘1𝑧) +

𝜈𝐽1(𝑘1𝑧)

𝑧
+

𝜌′
𝑖

𝑧
𝑘𝑘 𝐽1(𝑘1𝑧) ]

 
 
 

𝑧=𝑙

 

𝑠𝑠32 =

[
 
 
 𝑌′

1(𝑘1𝑧) +
𝜈𝑌1(𝑘1𝑧)

𝑧
+

𝜌′
𝑖

𝑧
𝑘𝑘 𝑌1(𝑘1𝑧) ]

 
 
 

𝑧=𝑙

 

𝑠𝑠33 = − [𝐽′
1
(𝑘1𝑧) +

𝜈𝐽1(𝑘1𝑧)

𝑧
]
𝑧=𝑙

 

𝑠𝑠34 = [𝑌′
1(𝑘1𝑧) +

𝜈𝑌1(𝑘1𝑧)

𝑧
]
𝑧=𝑙

 

𝑠𝑠43 =

[
 
 
 𝐽′

1
(𝑘1𝑧) +

𝜈𝐽1(𝑘1𝑧)

𝑧
−

𝜌′
𝑜

𝑧
𝑘𝑘 𝐽1(𝑘1𝑧) ]

 
 
 

𝑧=1

 

𝑠𝑠44 =

[
 
 
 𝑌′

1(𝑘1𝑧) +
𝜈𝑌1(𝑘1𝑧)

𝑧
−

𝜌′
𝑜

𝑧
𝑘𝑘 𝑌1(𝑘1𝑧) ]

 
 
 

𝑧=1

 

𝑠𝑠13 = 𝑠𝑠14 = 𝑠𝑠41 = 𝑠𝑠42 = 0 

(38) 

 

The deterministic matrix of coefficients in “Eq. (38)” is 

desire frequency Equation and the graph results will be 

like “Fig. 2”. 

4 NUMERICAL RESULTS 

Consider an annular rotating disk with the following 

specifications: 

 

(39) 𝐸 = 2 × 1011(𝑝𝑎)  , 𝜌 = 7800 (
𝑘𝑔

𝑚3
) 
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𝜈 = 0.3 , 𝑅𝑜𝑢𝑡 = 0.2(𝑚) , 𝑅𝑖𝑛 = 0.05 
(𝑚)   

 

At the first, we assume a disk without concentrated 

mass. Also, the angular velocity is 𝜔 = 100 𝑟𝑎𝑑/𝑠𝑒𝑐. 

The three first mode shapes and corresponding natural 

frequencies are respectively shown in “Fig. 4” and 

“Table 1”. 

 

 
Fig. 4 Three first mode shape of rotating disk. 

 
Table 1 Three first natural frequency 𝜔 = 100 𝑟𝑎𝑑 /𝑠𝑒𝑐 

3 2 1 
Frequency 

number 

2808 1709 608 p (rad/sec) 

 

By repeating above solution for a same disk at a speed 

of 𝜔 = 300 𝑟𝑎𝑑/𝑠𝑒𝑐, the results were calculated again 

and shown in “Table 2”. 

 
Table 2 Three first natural frequency 𝜔 = 300 𝑟𝑎𝑑/𝑠𝑒𝑐 

3 2 1 
Frequency 

number 

936 570 203 p (rad/sec) 

 

Comparison between “Tables 1 and 2” shows that, 

increasing the angular velocity leads to decrease in 

natural frequencies. 
Figure 5 shows the first natural frequency of the rotating 

disk at different angular velocities. Also, the ratio of 

concentrated mass to disk mass is considered in different 

quantities. As shown in this Figure, the first natural 

frequency decreases by increasing the angular velocity. 

With the increase in the amount of concentrated mass, 

the first natural frequency is also decreased. 

 

 
Fig. 5 The first natural frequency of rotating disk carrying 

concentrated masses in term of angular velocity and for 

different values of concentrated masses (𝒛𝒍 = 𝟎. 𝟓𝟓). 

 

As shown in “Fig. 5”, “Fig. 6” shows the second 

frequency of the rotating disk. With an increase in 

angular velocity, the value of the second natural 

frequency has been decreased. However, by increasing 

the value of concentrated mass, the second natural 

frequency does not show a steady behavior. The second 

natural frequency increases first and then remains 

approximately constant. 

 

 
Fig. 6 The second natural frequency of rotating disk 

carrying concentrated masses in term of angular velocity and 

for different values of concentrated masses (𝒛𝒍 = 𝟎. 𝟓𝟓). 

 

Fig. 7 shows the third natural frequency of the desired 

rotating disk. Like the first and second frequencies, the 

third natural frequency also decreases with increasing 

the angular velocity. As with the second natural 

frequency, by increasing the concentrated mass, the third 

natural frequency does not have a stable behavior. The 

third natural frequency increases first and then decrease. 
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Fig. 7 The third natural frequency of rotating disk 

carrying concentrated masses in term of angular velocity and 

for different values of concentrated masses (𝒛𝒍 = 𝟎. 𝟓𝟓). 

 
Fig. 8 shows the first natural frequency of the rotating 

disk, which it’s internal concentrated mass located in 

different positions.  

 

 
Fig. 8 The first natural frequency of rotating disk carrying 

concentrated masses in term of internal concentrated mass 

location and for different values of concentrated masses (𝝎 =
𝟏𝟎𝟎 𝒓𝒂𝒅 /𝒔𝒆𝒄). 

 

In fact, this graph shows the effect of concentrated mass 

location on the first natural frequency. As shown in this 

figure and by comparison with “Fig. 4”, when the mass 

is in the position of first mode shape, which has a higher 

displacement, the frequency reduction is also higher. It 

also reduces the natural frequency by increasing the 

concentrated mass. 
Fig. 9 and Fig. 10, like “Fig. 8”, show the second and 

third natural frequencies of the disk, respectively. It is 

clear that the location of concentrated mass in some 

places increases the natural frequency and, in some 

places, decreases the natural frequency. It is also 

increasing the concentrated mass impact by placing the 

mass in locations where more radial displacements 

occur. 

 

 
Fig. 9 The second natural frequency of rotating disk 

carrying concentrated masses in term of internal concentrated 

mass location and for different values of concentrated masses 

(𝝎 = 𝟏𝟎𝟎 𝒓𝒂𝒅 /𝒔𝒆𝒄). 

 

 
Fig. 10 The third natural frequency of rotating disk 

carrying concentrated masses in term of internal concentrated 

mass location and for different values of concentrated masses 

(𝝎 = 𝟏𝟎𝟎 𝒓𝒂𝒅 /𝒔𝒆𝒄). 

5 CONCLUSIONS 

In this research, a free radial vibration analysis for an 

annular thin homogeneous rotating disk with two 

concentrating masses in turbo-pump system is 

presented. At the first, the vibration of the rotating disk 

was examined without considering the concentrated 

mass. Then, the resulting solution was generalized for 

two connected disks in internal concentrated mass 

location. Also, the effect of concentrated masses, one on 

the disk body and the other on the outside of the disk, is 
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considered as boundary conditions in the two disk 

Equations. The results show that increasing in angular 

velocity of rotating disk reduces the natural frequency. 

Also concentrated masses always reduce the first natural 

frequency. In the case of second and third natural 

frequencies, concentrated masses may increase or 

decrease the natural frequency, which depends on the 

value and position of concentrated mass. At the end, 

concentrated mass has the most impact when it is in a 

position that has the most radial displacement. The 

results of this research can be used in the preliminary 

design of rotor structures in turbomachines. 
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