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Abstract: The length values selection for a determined type of linkage to achieve 
the necessary task, dimensional synthesis, is classified into three classes based on 
the mechanism’s task: function generation, path generation, and motion generation. 
The case considered in this study, Function generation synthesis, aims to create a 
relation between the angular motions of the input and output links of the mechanism. 
For this problem, a semi-analytical method called the Newton-HCM is used for 
numerical solutions, which combines Newton’s method with the semi-analytical 
Homotopy Continuation Method (HCM). Function generation synthesis of a planar 
four-bar linkage for four and five precision points is the main challenge of the current 
study, which is highly nonlinear and complicated to solve. Numerical examples of 
the function generation problem for a four-bar linkage with four and five precision 
points are presented and authenticate the excellent performance of the proposed 
algorithm. 
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1 INTRODUCTION 

Various analytical and numerical methods are used to 

solve different engineering problems [1-2]. The 

solution's convergence and accuracy depend on the 

problem's type, its degree of non-linearity, and the 

utilized solution method. Dimensional synthesis of the 

planar four-bar linkage based on the function generation 

purpose is the main challenge of the current study. 

Determining the length values for a determined linkage 

type to achieve the necessary task is called dimensional 

synthesis. Dimensional synthesis can be classified into 

three classes based on the mechanism’s task: function 

generation, path generation, and motion generation [3]. 

The purpose of the function generator mechanism is to 

create a relation between the angular motions of the 

input and output links. The path generation mechanism 

moves a particular point of the mechanism along 

prescribed points. Motion generation is similar to path 

generation, except that the position and orientation of the 

rigid body are considered together. 

Chebyshev [4] and Freudenstein [5] presented beginning 

studies on this problem. Chebyshev solved this problem 

in 1854 for a straight-line path problem with a 

determined interval for the input link [4], also known as 

Chebyshev’s fundamental theorem. Moreover, 

Freudenstein presented a simple position Equation for 

the four-bar linkage in 1954 [5]. This simplification 

results in its broad application for finding solutions to 

several problems, including mechanism analysis and 

synthesis. Modern approaches in mechanism synthesis 

problems result from recent improvements in 

calculations, using powerful calculators, genetic and 

evolutionary algorithms, and artificial neural networks. 

Rao [6-7] has optimized a 4bar linkage using 

Freudenstein’s Equation for three precision points by 

minimizing the least-squares of error. Sun [8] has used 

the quadratic interpolation method to decrease the error 

of the designed four-bar linkage. Chen [9] has performed 

a study compared to Rao’s [7] by optimizing the 

function generation four-bar linkage using Mudguardt’s 

method and improving the error value. Guj et al. [10] 

proposed an optimization algorithm using the penalty 

function method to reduce the inertial force in the four-

bar mechanism to optimize the high-speed mechanisms. 

For spatial 4-link mechanisms, Soylemez and 

Freudenstein [11] have optimized the transmission force 

for the skew crank-and-rocker linkage and the skew 

slider-crank mechanism. Gosselin and Angeles [12] 

proposed an algorithm for minimizing the transmission 

defect in planar and spherical function generator 

mechanisms. Angeles et al. [13-14] optimized the 

coupler curve in the path generator and the motion 

generator four-bar linkage using the unconstrained 

nonlinear least square optimization. Shariati and 

Norouzi [15] used the SQP method to find the optimal 

mechanism for five precision point syntheses of the four-

bar linkages. Moreover, some researchers consider 

joints clearance in their design process [16-18]. Daniali 

et al. [16] proposed a new algorithm for simultaneous 

kinematic and dynamic optimization. Their method 

reduced the path generation error arising from joints 

clearance. The possibility, powerfully and simplicity of 

the evolutionary and genetic algorithms used for solving 

a wide range of problems, especially mechanism 

synthesis, are described in publications [18-22]. For 

instance, Sardashti et al. [18] synthesized the free defect 

four-bar linkage with clearance joints using the particle 

swarm optimization method. They considered branch 

and circuit defects in their design process and designed 

the mechanism without these defects. Moreover, 

Penunuri et al. [19] used the differential evaluation 

method for synthesizing the mechanisms with single and 

hybrid tasks. Shpli [20] used the GA method for 

synthesizing the path generator four-bar linkage with 

maximum mechanical advantage. Bustos et al. [21] used 

an algorithm with a combination of the finite element 

method and the genetic algorithm. Cabrera et al. [22] 

utilized the genetic algorithm for optimal synthesis of 

the mechanisms, too. Recently, advancements in 

numerical calculations and the mathematical theory of 

polynomials led to new solutions called continuation (or 

homotopy) methods. Wampler [23-25] used this method 

for kinematic analysis of the mechanisms. He extracted 

all solutions of a system of algebraic polynomial 

Equations using numerical continuation. After that, 

some researchers have used this approach in the 

mechanism design field [26-29]. Varedi et al. [26] used 

the homotopy continuation method (HCM) for solving 

the forward kinematics problem of the 3UPU parallel 

robot. Tari et al. [27] utilized HCM to exclude the 

unwanted solutions arising in kinematics problems. 

Moreover, he used this approach for kinetostatic 

synthesis of a compliant four-bar mechanism [28]. 

Furthermore, the HCM method is utilized for the 

kinematic analysis of the parallel robots, too [29-30]. 

The current study presents a combination of Newton's 

method and the HCM algorithm for the numerical 

solution of the nonlinear Equations arising in function 

generation synthesis of a planar four-bar linkage based 

on the four and five precision points. Based on the highly 

nonlinear nature of these problems, the numerical 

methods used before have some drawbacks, described 

before. It is the first time the Newton-HCM algorithm 

has been utilized for function generation synthesis 

problems.  

2 HOMOTOPY CONTINUATION METHOD (HCM) 

Proper initial guesses and convergence possibility are 

two troublesome points in most numerical methods, 
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including the Newton–Raphson. The Newton-HCM can 

eliminate these deficiencies [24]; consequently, several 

researchers have been used this method in the past 

decades [23-26]. In the Newton-HCM method, firstly, 

some new functions are written using auxiliary 

homotopy functions, and then the Newton-Raphson 

method is used for solving this system of nonlinear 

Equations.   

If a system of nonlinear Equations is considered as: 
 

𝐹(𝑋) = 0     i.e  

{
 
 

 
 
𝑎(𝑥, 𝑦, … , 𝑧) = 0,

𝑏(𝑥, 𝑦, … , 𝑧) = 0,
.
.
.
.

 (1) 

 

One can solve these Equations using the iterative 

algorithm of Newton’s method as: 

 

[
 
 
 
 
 
 
 
 
𝜕𝑎(𝑥𝑛, 𝑦𝑛 , … )

𝜕𝑥

𝜕𝑎(𝑥𝑛, 𝑦𝑛 , … )

𝜕𝑦
. . .

𝜕𝑏(𝑥𝑛, 𝑦𝑛 , … )

𝜕𝑥

𝜕𝑏(𝑥𝑛 , 𝑦𝑛 , … )

𝜕𝑦
. . .

. . .

. . .

. . . ]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
𝑥𝑛+1 − 𝑥𝑛

𝑦𝑛+1 − 𝑦𝑛

.

.

. ]
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
−𝑎(𝑥𝑛 , 𝑦𝑛, … )

−𝑏(𝑥𝑛, 𝑦𝑛 , … )

.

.

. ]
 
 
 
 
 
 
 
 

 (2) 

 

HCM approach converts this system of nonlinear 

Equations to new ones by eliminating some terms and 

adding auxiliary homotopy functions, which leads to 

solving these Equations more efficiently. Indeed, 

Newton’s method is used for solving the new system of 

Equations, which is easier, and its solutions are 

accessible. The converted system of Equations, called 

homotopy continuation functions, is as follows [23-25]: 
 

𝐻(𝑋, 𝑡) ≡ 𝑡 𝐹(𝑋) + (1 − 𝑡)𝐴(𝑋) = 0 (3) 
 

Where, 𝐴(𝑋) are new simple Equations for initializing 

the solution process or auxiliary homotopy functions 

that must be solved easily. Moreover, 𝑡 is an iteration 

setting parameter that changes from 0 to 1 and defines 

two boundary conditions [23-25]: 
 

𝐻(𝑋, 0) = 𝐴(𝑋),   𝐻(𝑋, 1) = 𝐹(𝑋) (4) 
 

The above Equation shows that HCM solves 𝐴(𝑋) = 0 

at the first iteration (when 𝑡 = 0), and solves 𝐹(𝑋) = 0 

at the final iteration (when 𝑡 = 1). All of these solutions 

in each iteration are using Newton’s method: 

 

[
 
 
 
 
 
 
 
 
𝜕𝐻1(𝑥𝑛, 𝑦𝑛, … )

𝜕𝑥

𝜕𝐻1(𝑥𝑛, 𝑦𝑛, … )

𝜕𝑦
. . .

𝜕𝐻2(𝑥𝑛, 𝑦𝑛, … )

𝜕𝑥

𝜕𝐻2(𝑥𝑛, 𝑦𝑛, … )

𝜕𝑦
. . .

. . .

. . .

. . . ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑥𝑛+1 − 𝑥𝑛

𝑦𝑛+1 − 𝑦𝑛

.

.

. ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
−𝐻1(𝑥𝑛, 𝑦𝑛, … )

−𝐻2(𝑥𝑛, 𝑦𝑛, … )

.

.

. ]
 
 
 
 
 
 
 
 

 (5) 

 

 

Indeed, the HCM iterative algorithm transforms the 

converted system’s solution into the numerical results of 

the basic system of Equations. The HCM’s purpose is to 

solve the 𝐻(𝑋, 𝑡) = 0 instead of 𝐹(𝑋) = 0 by changing 

the parameter t from 0 to 1. This algorithm leads to 

avoiding divergence in the numerical solution of the 

system of nonlinear Equations. 

3 PLANAR FOUR-BAR MECHANISM 

The simplest closed-loop mechanism is the four-bar 

linkage, which has four rigid links and four revolute 

joints. A typical planar four-bar linkage is shown in 

Fig.1. In this figure, the lengths of the links 𝐴0𝐵0, 𝐴0𝐴, 

𝐴𝐵 and 𝐵0𝐵 are denoted by the angles 𝑙1, 𝑙2, 𝑙3 and 𝑙4, 

respectively. 𝐴0𝐵0 is fixed while the two links 𝐴0𝐴 and 

𝐵0𝐵 can only rotate about their respective fixed axes 𝐴0 

and 𝐵0. Moreover, their position angles are indicated 

respectively by 𝜓 and 𝜑. The link connected to the 

actuator or driving motor is called the input link (𝐴0𝐴) 

and 𝐵0𝐵 is known as the output link. In “Fig. 1”, if the 

vector x is along the ground, the vectors of 𝐴0𝐴, 𝐴0𝐵0 

and 𝐵0𝐵 are: 

𝐴0𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [
𝑙2 cos𝜓
𝑙2 sin𝜓

], 𝐴0𝐵0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = [
𝑙1
0
], 𝐵0𝐵⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

[
𝑙4 cos 𝜑
𝑙4 sin𝜑

] 
(6) 
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Therefore, the vector of the coupler link can be obtained 

as: 

 

𝐴𝐵⃗⃗⃗⃗  ⃗ = 𝐴0𝐵0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝐵0𝐵⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴0𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

=[
𝑙1 + 𝑙4 cos 𝜑 − 𝑙2 cos𝜓
𝑙4 sin𝜑 − 𝑙2 sin𝜓

] 
(7) 

 

 

 
Fig. 1 Planar four-bar mechanism. 

 
 

The length of the coupler link is designated as l_3. Thus, 

one can write: 

 

𝑙3
2 = (𝑙1 + 𝑙4 cos𝜑 − 𝑙2 cos 𝜓)

2

+ (𝑙4 sin𝜑 − 𝑙2 sin𝜓)
2 

(8) 

 

Simplifying “Eq. (8)”, Freudenstein obtained a simple 

scalar Equation [5]: 

 

𝑘1 + 𝑘2 cos𝜑 − 𝑘3 cos𝜓 = cos(𝜓 − 𝜑) (9) 

 

Where: 

 

𝑘1 =
𝑙1
2 + 𝑙2

2 + 𝑙4
2 − 𝑙3

2

2𝑙2𝑙4
 

𝑘2 =
𝑙1
𝑙2

 

𝑘3 =
𝑙1
𝑙4

 

(10) 

 

Equation (9) is known as the Freudenstein Equation and 

is readily applicable to the kinematics analysis of planar 

four-bar linkage. However, in a planar four-bar 

mechanism, the functional relationship 𝜑 = 𝜑(𝜓) 
between output and input angles depends on three 

independent parameters (𝑘1, 𝑘2, 𝑘3). 

If the lengths of the links (𝑙1, 𝑙2, 𝑙3 and 𝑙4) are known, 

one can obtain parameters (𝑘1, 𝑘2, 𝑘3) from “Eq. (11)”, 

and therefore, the output angle φ can be determined in 

any input angle 𝜓. This is done utilizing tan-half-angle 

identities: 

 

𝑇 = tan (
𝜑

2
) 

sin𝜑 =
2𝑇

1 + 𝑇2
 

cos 𝜑 =
1 − 𝑇2

1 + 𝑇2
 

(11) 

 

Substituting of the preceding Equation into “Eq. (9)”, a 

quadratic Equation in T is achieved: 

 

𝐴(𝜓)𝑇2 + 𝐵(𝜓)𝑇 + 𝐶(𝜓) = 0 (12) 

 

Where: 

 

𝐴(𝜓) = (𝑘1 − 𝑘2) + (1 − 𝑘3) cos𝜓 

𝐵(𝜓) = −2 sin𝜓 

𝐶(𝜓) = (𝑘1 + 𝑘2) − (1 + 𝑘3) cos𝜓 

(13) 

 

Considering “Eq. (12)”, the solution can be found by 

utilizing the well-known method for the roots of the 

quadratic Equation.   

On the other hand, if the parameters (𝑘1, 𝑘2, 𝑘3) are 

known and supposing 𝑙1 = 1, one can find the length of 

the link as: 

 

𝑙2 =
1

𝑘2
 

𝑙4 =
1

𝑘3
 

𝑙3 = √1 + 𝑙2
2 + 𝑙4

2 −
2𝑘1
𝑘2𝑘3

 

(14) 

4 FUNCTION GENERATION SYNTHESIS 

Function generation synthesis is the problem of 

obtaining link’s lengths, 𝑙1, 𝑙2, 𝑙3 and 𝑙4, for a 

determined set of input and output angles values, 𝜓𝑖  and 

𝜑𝑖. For function generation synthesis based on three 

precision points, “Eq. (9)” can be utilized directly. Given 

three pairs of the input and output angles (𝜓𝑖 , 𝜑𝑖), 
i=1,2,3, one can use these angle pairs in “Eq. (9)” to get 

three linear Equations in 𝑘1, 𝑘2, and 𝑘3: 

 

𝑘1 + 𝑘2 cos𝜑𝑖 − 𝑘3 cos𝜓𝑖
= cos(𝜓𝑖 − 𝜑𝑖)  , 𝑖 = 1. .3 

(15) 

 

“Eq. (16)” shows this system of linear Equations in 

matrix form. 

 

[

1 cos 𝜑1   −cos𝜓1
1 cos𝜑2   −cos𝜓2
1 cos𝜑3   −cos𝜓3

] {

𝑘1
𝑘2
𝑘3

} = [

cos(𝜓1 − 𝜑1)

cos(𝜓2 − 𝜑2)

cos(𝜓3 − 𝜑3)
] (16) 
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Once 𝑘1, 𝑘2, and 𝑘3 are resulting from the solution of the 

linear system of Equations (“Eq. (16)”), the link’s 

lengths can be obtained easily using “Eq. (14)”. 

It has shown that the function generation synthesis 

problem for three precision points is easy and 

straightforward because the system of Equations is 

linear. However, if precision points are more than three, 

the system of Equations becomes nonlinear, and 

therefore, one must use other analytical or numerical 

solutions for them. For designs with a higher number of 

precision points, two new variables (𝜓0 and 𝜑0) 

indicating the rotation angles from undefined and 

arbitrary starting points are proposed by Freudenstein. 

4.1. Four-Precision Points (4PP) 

There are four angle pairs in the 4PP problem, and 

utilizing “Eq. (9)” for these pairs leads to four Equations. 

Thus, in this case, 𝜓0 is considered as the fourth 

unknown parameter. Indeed, the input angle 𝜓, is 

considered as the sum of two angles, the reference angle 

𝜓0, and the variable angle ∆𝜓𝑖: 
 

𝜓𝑖 = 𝜓0 + ∆𝜓𝑖 ,    𝑖 = 1. .4 (17) 

 

Substituting “Eq. (17)” in “Eq. (9)” for four angle pairs 

are as follows: 

 

𝑘1 + 𝑘2 cos𝜑𝑖 − 𝑘3 cos(𝜓𝑖 +𝜓0)
= cos(𝜓𝑖 + 𝜓0 − 𝜑𝑖)  , 𝑖
= 1. .4 

(18) 

 

Therefore, The Equations in “Eq. (18)” are a set of four 

nonlinear Equations with four unknowns: 𝑘1, 𝑘2, 𝑘3 and 

𝜓0. This system of nonlinear Equations can be solved 

using the Newton-HCM. 

Based on “Eq. (18)”, the homotopy continuation 

functions can be written as follows: 

 

(𝑘1 + 𝑘2 cos 𝜑1 − 𝑘3 cos(𝜓1 + 𝜓0)
− cos(𝜓1 +𝜓0 − 𝜑1)) × 𝑡
+ (1 − 𝑡) × 𝐺1 = 0 

(𝑘1 + 𝑘2 cos 𝜑2 − 𝑘3 cos(𝜓2 +𝜓0)
− cos(𝜓2 +𝜓0 − 𝜑2)) × 𝑡
+ (1 − 𝑡) × 𝐺2 = 0 

(𝑘1 + 𝑘2 cos 𝜑3 − 𝑘3 cos(𝜓3 +𝜓0)
− cos(𝜓3 +𝜓0 − 𝜑3)) × 𝑡
+ (1 − 𝑡) × 𝐺3 = 0 

(𝑘1 + 𝑘2 cos 𝜑4 − 𝑘3 cos(𝜓4 + 𝜓0)
− cos(𝜓4 + 𝜓0 − 𝜑4)) × 𝑡
+ (1 − 𝑡) × 𝐺4 = 0 

(19) 

 

The solution of these Equations can be obtained by 

changing the auxiliary homotopy functions (𝐺𝑖) and 

solved by the Newton-Raphson method. 

 

 

4.2. Five-Precision Points (5PP) 

For the 5PP problem, one can add the other reference 

angle 𝜑0 to the Equations (𝜑𝑖 = 𝜑0 + ∆𝜑𝑖). Therefore, 

“Eq. (18)” changes to: 

 

𝑘1 + 𝑘2 cos(𝜑𝑖 + 𝜑0) − 𝑘3 cos(𝜓𝑖 + 𝜓0)
= cos(𝜓𝑖 + 𝜓0 − (𝜑𝑖
+ 𝜑0))  , 𝑖 = 1. .5 

(20) 

 

Following the previous section, we have five unknowns: 

𝑘1, 𝑘2, 𝑘3, 𝜓0 and  𝜑0. As a result, “Eq. (20)” is a set of 

five nonlinear Equations with five unknowns. Therefore, 

homotopy continuation functions are as follows: 

 

(𝑘1 + 𝑘2 cos 𝜑1 − 𝑘3 cos(𝜓1 + 𝜓0)
− cos(𝜓1 +𝜓0 − 𝜑1)) × 𝑡
+ (1 − 𝑡) × 𝐺1 = 0 

(𝑘1 + 𝑘2 cos 𝜑2 − 𝑘3 cos(𝜓2 +𝜓0)
− cos(𝜓2 +𝜓0 − 𝜑2)) × 𝑡
+ (1 − 𝑡) × 𝐺2 = 0 

(𝑘1 + 𝑘2 cos 𝜑3 − 𝑘3 cos(𝜓3 +𝜓0)
− cos(𝜓3 +𝜓0 − 𝜑3)) × 𝑡
+ (1 − 𝑡) × 𝐺3 = 0 

(𝑘1 + 𝑘2 cos 𝜑4 − 𝑘3 cos(𝜓4 + 𝜓0)
− cos(𝜓4 + 𝜓0 − 𝜑4)) × 𝑡
+ (1 − 𝑡) × 𝐺4 = 0 

(𝑘1 + 𝑘2 cos 𝜑5 − 𝑘3 cos(𝜓5 +𝜓0)
− cos(𝜓5 +𝜓0 − 𝜑5)) × 𝑡
+ (1 − 𝑡) × 𝐺5 = 0 

(21) 

 

It is worth noting that the solution of the above nonlinear 

Equations (“Eqs. (19) and (21)”) has many answers; 

however, we choose one of the answers, which satisfies 

some constraints, including Grashof criteria, free 

defects, etc. 

5 NUMERICAL EXAMPLES 

Consider a planar four-bar linkage to produce the 

precision points of “Table 1”. (For the 4PP problem: 

i=1...4 and for the 5PP problem: i=1...5). Fixed 

variations for the homotopy parameter t and the initial 

guesses for the unknown parameters are considered as 

∆t = 0.0001  and [𝑘1,0, 𝑘2,0, 𝑘3,0, 𝜓0,0, 𝜑0,0] =
[1,1,1,1,1], respectively. The auxiliary homotopy 

functions along with the results of the solution of the two 

problems are given in “Table 2”. 

 
Table 1 Desired values for the input and output angles 

 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 

𝜓𝑖 (deg) 100 123 141 158 188 

𝜑𝑖 (deg) 38.5 61 77 90.5 108 
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Using “Eq. (14)”, one can obtain lengths of the link as 

“Table 3”. Moreover, we show the reference angles 𝜓0 

and 𝜑0 (in degree) in this table. These values must be 

added to the values of “Table 1”. The reason is, here, the 

designed mechanisms show these new values in their 

input and output angles. These new values are shown in 

“Table 4”. 

 
Table 2 The auxiliary homotopy functions and their results 

Problem auxiliary homotopy functions (𝐺𝑖) Results 

 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝑘1 𝑘2 𝑘3 𝜓0 𝜑0 

4PP 𝑘1 − 𝑘2 
−𝑘3
− 1 

cos𝜓0 --- 1.0797 −0.5083 −0.4497 5.3558 --- 

5PP −𝑘1 − 𝑘2 −𝑘3 −sin𝜓0 −cos𝜓0 1.1697 0.9165 0.8222 2.4188 3.3032 

 

Table 3 Link’s lengths of the designed mechanisms 

Problem 𝑙1 𝑙2 𝑙3 𝑙4 𝜓0 (deg) 𝜑0(deg) 

4PP  1 −1.9673 0.6072 −2.2236 306.86° --- 

5PP 1 1.0911 0.7518 1.2162 138.58° 189.26° 

 

Table 4 New values for input and output angles of the two problems 

Problem Angles 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 

4PP 
𝜓𝑖 (deg) 46.86 69.86 87.86 104.86 --- 

𝜑𝑖 (deg) 38.50 61.00 77.00 90.50 --- 

5PP 
𝜓𝑖 (deg) 238.58 261.58 279.58 296.58 326.58 

𝜑𝑖 (deg) 227.76 250.26 266.26 279.76 297.26 

 
Figure 2a shows the mechanism designed for the first 

problem in four positions. Moreover, one can plot the 

diagram of 𝜃4 (or 𝜑) with respect to 𝜃2 (or 𝜓) for this 

mechanism (“Fig. 2b”). These figures show that the 

designed mechanism precisely covers the values of 

“Table 4”. Furthermore, for a better comparison, “Fig. 

3” shows these precision points separately.  

Similarly, these figures can be plotted for the second 

problem. Figure 4 shows the mechanism designed for 

the five-precision point problem. One can find the best 

matching between “Fig. 4a and Fig. 4b”. Moreover, 

detailed angles for these five precision points are shown 

in “Fig. 5”. 

 

  
(a) (b) 

Fig. 2 The designed mechanism for the 4PP problem. 
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Fig. 3 Four precision points of the designed mechanism for the 4PP problem. 

 

  
(a) (b) 

Fig. 4 The designed mechanism for the 5PP problem 
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Fig. 5 Five precision points of the designed mechanism for the 5PP problem. 

 

If the number of precision points is more than five, then 

the problem does not have any precise solution; this is 

because the number of the Equation is more than the 

unknowns (the maximum number of unknowns for this 

problem is five). Therefore, one must search for 

solutions with the minimum error by using the 

optimization algorithms. 

6 CONCLUSIONS 

This research uses a powerful approach to solve the 

nonlinear Equations arising in the function generation 

synthesis of the planar four-bar mechanism. The 

problem has been considered in two cases: with four and 

five precision points. The solution procedure is based on 

the Newton-HCM, combining numerical and semi-

analytical methods.  

The Equations reveal that the synthesis problem leads to 

a system of nonlinear Equations by four Equations and 

four unknown parameters for the 4PP problem and a 

system of nonlinear Equations by five Equations and 

five unknown parameters for the 5PP problem. Both 

cases have been solved and using the Numerical 

examples show that the considered algorithm is capable 

and highly accurate for the mechanism synthesis 

problem, and the designed mechanisms precisely cover 

the desired values. 
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