
Int  J   Advanced Design and Manufacturing Technology, Vol. 15/ No. 2/ June – 2022                                            97 

 

Research paper                                                                                                                         © 2022 IAU, Majlesi Branch 
 

Analysis and Control of Chaos 

in Nonlinear Gear System using 

Predictive Sliding Mode 

Control 

Nima Valadbeigi 
Department of Mechanical Engineering, 

Industrial and Mechanics Faculty, 

Qazvin Islamic Azad University, Iran 

E-mail: n.valadbeigi@qiau.ac.ir 

Seyed Mahdi Abtahi* 
Department of Mechanical Engineering, 

Industrial and Mechanics Faculty, 

Qazvin Islamic Azad University, Iran 

E-mail: m.abtahi@qiau.ac.ir 

*Corresponding author 

Received: 13 January 2022, Revised: 9 April 2022, Accepted: 15 April 2022 

Abstract: This paper presents a control system for elimination of chaotic behaviors 
in spur gear system. To this end, at first different aspects of chaos are investigated 
by means of numerical tools including time series response, phase plane trajectories, 
bifurcation diagram, Poincare’ section, Lyapunov exponent and power spectrum 
density. The nonlinear dynamic model encompasses constant mesh stiffness and 
damping along the line of action, static transmission error and backlash. In order to 
suppress the chaotic oscillations, a novel controller on the basis of the Predictive 
Sliding Mode Control (PSMC) is proposed in which the sliding surface is predicted 
by the use of model predictive control theory and the control input is obtained. 
Consequently, the control system takes advantage of the both approaches in 
developing a robust controller. The simulation results of the feedback system depict 
the effectiveness of the controller in elimination of the chaotic vibrations along with 
reduction of settling time, overshoots, and energy consumption. Furthermore, 
stability and robustness of the system are guaranteed. 
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1 INTRODUCTION 

Gearbox systems play an important role in disparate 

applications. Thus, developing an optimal gear 

transmission system, necessitates a proper understanding 

about the main characteristics and nonlinear phenomena 

that affect the system. One of the most important 

phenomena that occurs in gear spur systems is chaos that 

culminates in harmful vibrations. The chaotic behavior of 

gearbox systems was studied by Hongler and Streit in 

1988. [1] aimed to discuss the origin of chaos from a 

theoretical point of view. According to this research, 

Melnikov method could be applied to calculate the values 

of the parameters which lead to chaos. Moreover, Fokker-

Planck description of the system dynamics could be a 

valuable approach to apply on actual systems. By 

analytical integration of the Equations of motion, some 

dynamical behaviors were observed in [2].  

The research aimed to describe some nonlinear features 

which were not explored in previous works such as 

Pfeiffer. De Souza tried to investigate the dynamical 

effects of noise in gear-rattling model [3]. Effects of flash 

temperature of tooth surface on the dynamics of the spur 

gear system considering backlash, bearing clearance and 

time-varying stiffness were studied in [4]. Consequently, 

complicated phenomena such as periodic bifurcation and 

chaos were observed. Optimization of gearbox geometric 

design parameters such as module, axial clearance and 

backlash is presented in [5] to reduce gear rattle noise. 

The optimization culminated in reducing the vibrations 

and noise levels. The Melnikov analysis was extended in 

[6] to develop a practical model in order to control the 

chaotic behavior of gearbox system in the presence of 

backlash, static transmission error and time-varying 

stiffness. Consequently, the non-feedback control 

method was used by applying an additional control 

excitation.  

In [7], After investigating the chaotic behavior of gearbox 

system, the adaptive terminal sliding mode control 

approach was presented. In 2003, a controller was 

presented in [8] such that by combination of Model 

Predictive Control (MPC) and Sliding Mode Control 

(SMC), future control of movement for the sliding 

surface became possible. This led to precise prediction 

and process control with dead time. In [9] a constrained 

finite-time optimal controller was designed and 

feasibility and closed loop stability were discussed.  

An overview of some hierarchical control schemes was 

presented in [10] based on the realization of considered 

SMC. Disturbances which affect the plant were rejected 

and both continuous and discrete time solutions were 

discussed. A MPC-SMC method for nonlinear systems 

was presented in [11] which was resulted from a new 

sliding manifold definition. The dynamics of the system 

could be conducted to sliding surface faster by using this 

controller. [12] aimed to present an extended MPC-SMC 

controller. Using an increasing number of voltage vectors 

for prediction and cost function minimization led to great 

computation delay.  

A table-based implementation process was used to reduce 

the whole execution time. Tube model predictive control 

with a SMC as an auxiliary controller was studied in [13]. 

Spasic used a nominal tube MPC to highlight the 

robustness improvement. To adaptively tune the 

switching gain of an SMC, a linear MPC scheme based 

on the closed loop system dynamics was presented [14]. 

In this paper, a generalized nonlinear dynamic for spur 

gear system is formulated such that takes constant mesh 

stiffness and damping along the line of action, static 

transmission error and backlash into account. In order to 

study different aspects of chaos, the system is 

investigated by the use of time series response, phase 

plane trajectories, bifurcation diagram, Poincare section, 

Lyapunov exponent and power spectrum density 

methods. After chaos analysis, a novel controller based 

on the Predictive Sliding Mode Control is presented such 

that with prediction of the sliding surface, the control law 

is obtained.  

The results obtained from the novel feed-back control 

system are compared with a conventional model 

predictive controller (MPC) to show superiority of the 

PSMC controller in elimination of chaotic vibrations, 

reduction of settling time and energy consumption. The 

results can be compared with open-loop system too, in 

which chaos occurred. The results illustrate the 

effectiveness of the controller in terms of robustness and 

stability due to taking advantage of the both control 

approaches. The paper is organized as follow: in section 

2 dynamic model of the system is described. In section 3 

by means of analytical tools, chaotic behavior of the 

nonlinear system is investigated. In section 4, predictive 

sliding mode control is explored in details and in section 

5 simulation results of feedback system are presented. 

2 DESCRIPTION OF THE MODEL 

The dynamic model of a spur gear system is considered 

in this paper. The generalized model is shown in “Fig. 1”.  

 

Fig. 1 A spur gear pair model. 



Int  J   Advanced Design and Manufacturing Technology, Vol. 15/ No. 2/ June – 2022                                          99 

 

© 2022 IAU, Majlesi Branch 
 

The gear mesh is modeled as a pair of rigid disks which 

are considered to be connected by a set of spring and 

damper with a constant damping C along the line of 

action. ra and rb represent the radius of the base circles of 

the gears while Ia and Ib are the mass inertia moment of 

the gears, km is mesh stiffness, and the external torques 

acting on gears are Ta and Tb, respectively. In order to 

represent the gear clearances, the backlash fh is used. 

Internal excitation e(t) is used to represent the static 

transmission error. It is worth to mention that the static 

transmission error is applied to represent any 

manufacturing errors and teeth deformations from the 

perfect involute form [6]. Considering the mentioned 

parameters, the Equation of torsional motion is: 

 

2
ˆ ˆ( ) ( )

2

d x dx
m c kf x F F tm ehdtdt

                       (1) 
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Where, 𝑥̃ is the difference between the dynamic and static 

transmission errors and is written as:  

𝑥̃ = 𝑟𝑎𝜃𝑎 − 𝑟𝑏𝜃𝑏. 𝜃𝑎 and 𝜃𝑏 represent the torsional 

displacements of the gears [6]. Static transmission error 

is a function of mesh frequency as a harmonic function in 

the form of 𝑒(𝑡) = 𝑒(𝑡 + 2𝜋/𝜔𝑒) = 𝑒𝑐𝑜𝑠(𝜔𝑒 + 𝜑𝑒). 

By defining: 

𝑥 =
𝑥̃

𝑏
, 𝜔𝑛 = √

𝑘𝑚

𝑚
, 𝜏 = 𝜔𝑛𝑡,

Ω𝑘 =
𝜔𝑘

𝜔𝑛
 

Ω𝑒 =
𝜔𝑒

𝜔𝑛
, 𝜇̃ =

𝑐

2𝑚𝜔𝑛
, 𝑘̃𝑝 =

𝑘𝑝

𝑚𝜔𝑛
2 

𝐹̃𝑚 =
𝐹̂𝑚

𝑏𝑘𝑚
, 𝐹̃𝑒 = 𝑒/𝑏  

 

 

 

 

So, the dimensionless form of Equation 1 is: 

 
𝑑2𝑥

𝑑𝜏2 + 2𝜇̃
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𝑑𝜏
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And: 

 

𝐹̃𝑚 = 𝜀𝑓𝑚, 𝐹̃𝑒 = 𝜀𝑓𝑒, 𝜇̃ = 𝜀𝜇, 0 < 𝜀 < 1  

 

A 3-order approximation polynomial was suggested by 

[6] to express the backlash function. Therefore, by 

defining 𝑓ℎ(𝑥) = −0.1667𝑥 + 0.1667𝑥3 the Equation 

of motion is given by: 

 

𝑑2𝑥

𝑑𝜏2
+ 2𝜇̃

𝑑𝑥

𝑑𝜏
+ (−0.1667𝑥 + 0.1667𝑥3)

= 𝐹̃𝑚 + 𝐹̃𝑒Ω𝑒
2cos (Ω𝑒𝑡 + 𝜙𝑒) 

 (3) 

 

The state-space could be given as:  

 

1 2

3

2 2 1 1

2

2 (0.1667 0.1667 )

( cos( ))m e e e e

x x

x x x

f f t



 




   


    

 (4) 

3 NONLINEAR ANALYSIS OF THE GEAR SYSTEM 

The nonlinear dynamics of the system is investigated by 

using time series response, phase plane trajectories, 

Poincaresection, Bifurcation diagram, Lyapunov 

exponent and power spectrum. According to “Figs. 2 and 

3” in which time series response of the system for 300 

seconds are presented, the behavior of the system is 

neither periodic nor quasi periodic. Figure 4 suggests that 

basin of attraction the system is obvious. Furthermore, 

the dynamics of the system is analyzed using the 

Poincare section. The section is a hyper-surface in the 

state space, transverse to the flow of the considered 

system.  
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Fig. 2 Time series response of the x1. 

 

 
Fig. 3 Time series response of the x2. 

 

 
Fig. 4 Trajectory of the system. 

 

Poincare section for the system is shown on “Fig. 5”. 

Return points form a fractal structure comprise many 

irregularly-distributed points. The bifurcation diagram of 

the nonlinear system is generated using 𝑓𝑒 as the control 

parameter. The bifurcation control parameter is varied 

from 10 to 40 with a constant step. According to “Fig. 6”, 

for values 𝑓𝑒 > 25 chaos occurs.  

 

 
Fig. 5 Poincare section. 

 

 
Fig. 6 Bifurcation diagram. 

 

Beside the above-mentioned numerical methods, 

Lyapunov exponent can prove the chaotic behavior in the 

trajectory space of the system. Lyapunov exponent of a 

dynamic system is defined by: 

  

( )1
lim log

0

tj
j t

t







                                                 (5) 

 
Where, 𝜆𝑗 denotes the divergence of the nearby 

trajectories [15]. Lyapunov exponent of the system is 

calculated and plotted in “Fig. 7”. Positive value of the 

maximum Lyapunov exponent in “Fig. 7” could be taken 

as an indication of chaotic behavior. The spectrum 

components of the system are analyzed using Welch 

algorithm. Wide range of frequencies in the power 

spectrum density diagrams is clear. Based on the results 

achieved from the analytical tools, chaotic behavior of 

the gear system is validated (“Figs. 8-9”). 

 

 
Fig. 7 Lyapunov exponent. 

 

 
Fig. 8 Power spectrum density for x1. 

 

 
Fig. 9 power spectrum density for x2. 
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4 CHAOS CONTROL SYSTEM 

4.1. MPC-SMC Algorithm 

Consider the nonlinear system: 

 
( )

( , ) ( , )
n

f x t g x t u x                                        (6) 

 

Where, 
nRx  is the output of interest and 

mx R  

is the state vector and  𝑢𝜖𝑅𝑚 is the control input vector. 

f(x) is considered to be the given function vector and g(x) 

is control gain matrix [16]. SMC design entails two 

phases. The first phase in Sliding mode control is the 

sliding surface design. Let 𝑥̃ = 𝑥 − 𝑥𝑑 be the tracking 

error, a surface in the state-space could be defined as: 

 

1
( , ) ( )

nd
s x t x

dt



                                              (7) 

 

Where, 𝜆 is a strictly positive constant. For the considered 

system in this paper n=2. Thus, the sliding surface can 

be: 

 

𝑠 = 𝑥̃ . + 𝜆𝑥̃                                                             (8) 

 

Defining: 

 

𝑧 = 𝜆𝑥̃ .                                                                     (9) 

 

Differentiating the sliding surface results in: 

 

𝑠̇(𝑡) = 𝑥̈ − 𝑥̈𝑑 + 𝑧                                                (9) 

 

Within the moving time frame, the sliding surface 

ˆ( )S t T  at the time T is predicted by [17]: 

 

𝑠̂(𝑡 + 𝑇) = 𝑠(𝑡) + 𝑇𝑠̇(𝑡)                                  (11) 

 

According to the predictive control approach, a cost 

function is defined. Consequently, the control signal is 

obtained by optimizing the cost function within a time 

domain called control horizon [18]. Optimization is 

repeated in every time step. In order to derivate the 

control law, the cost function at time T is given by: 

 

1
ˆ ˆ( , , ) ( ) ( )

2

T
J x u t s t T s t T                            (12) 

 

In the second phase of sliding mode control, control input 

is derived as follows. The requisite condition for the 

optimal control to minimize (12) with respect to u is 

given by: 

0
J

u





                                                                     (13) 

 

By substituting (11) in (12) and solving (13), the 

predictive sliding mode control law would be: 

 

ˆˆ[ ( )] /u u Ksign s g                                          (14) 

 

Where; 

 

ˆ( ) ( 1)K F G G u                                        (15) 

 

In which F and G are approximations of f and g and: 

 

2 22
ˆˆ ( )d du x x f x                                     (16) 

 

Where, 𝑓 and 𝑔̂ are bounds for uncertainties and gain 

matrices respectively. 

 

4.2. Control of the Gearbox Transmission System via 

the MPC-SMC Algorithm 

In Equation (6), n=2. According to Equation (4) we have: 

 
2

22 ( cos( ))m e e e ef x f f                 (17) 

 

And: 

 
3

1 10.1667 0.1667g x x                                         (18) 

 

To find the upper bounds for uncertainties and gain 

matrix we may write: 

 
2

2
ˆ 2 ( cos( )m e e e ef x f f                  (19) 

 

And: 

 
3

1 1
ˆ 0.1667( )g x x                                              (20) 

 

Sliding surface is: 

 

2 12 1( ) ( )d ds x x x x                                  (21) 

 

Predicted sliding surface could be defined as: 

 

𝑠̂ = (𝑥2 − 𝑥𝑑2
) + 𝜆(𝑥1 − 𝑥𝑑1

) + 

𝑇(−2𝜀𝜇𝑥2 + 0.1667(𝑥1 − 𝑥1
3) + 

𝜀(𝑓𝑚 + 𝑓𝑒Ω𝑒
2 cos(Ω𝑒𝑡 + 𝜙𝑒) − 𝑥̇𝑑2

+ 𝑧)                  (22) 
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Defining: 

ˆ0.8F f                                                                  (23) 

 

And: 

ˆ0.8G g                                                                 (24) 

 

Finally control signal is obtained as: 

 

ˆˆ[ ( )] /u u Ksign s g                                          (25) 

5 SIMULATION OF THE FEEDBACK SYSTEM 

In order to assess performance of the control system, 

simulation studies are conducted. The system is 

simulated based on values of parameters listed in “Table 

1”. Also, the parameters of the controller are considered 

as “Table 2”. 

  
Table 1 Values of parameters 

e          µ            Ω𝑒 𝑓𝑒        𝑓𝑚 𝜑𝑒 (0)2x        (0)1x 
0.01       9 0.5          30  1           0 -2                1 

 

Table 2 Parameters of the controller 

𝜆 η    d2x    d1x Prediction horizon Control horizon 
2    5 -3       0 10 2 

 

 

 
a 

 
b 

Fig. 10 Closed loop response for the state 1x : (a): Response 
for 15 seconds, and (b): response for 5 seconds in more details. 

 
Simulation is done for 15 seconds. Time series responses 

of the states 𝑥1 and 𝑥2 are presented in “Figs. 10 and 11”, 

respectively. The figures illustrate the results for PSMC 

controller and conventional MPC controller to assess 

performance of the suggested feed-back system. It is 

noteworthy that the results can be compared with 

uncontrolled responses which are plotted in “Figs. 2 and 

3”. Figures 10-11 clearly depict faster response and less 

overshoot for the PSMC controller in comparison with 

MPC controller. Furthermore, comparing closed-loop 

system results with open-loop system results, shows that 

suggested controller succeeded to remove chaotic 

vibrations adequately. Fast convergence for the predicted 

sliding surface is obvious in Fig. 12. Finally, from Fig. 13 

less energy consumption for PSMC controller is clear 

compared with SMC controller.  

 

 
a 

 
b 

Fig. 11 Closed loop response for the state 2x : (a): Response 

for 15 seconds, and (b): response for 5 seconds in more details. 

 

 
Fig. 12 Sliding surface. 

 

 
Fig. 13 Control input. 
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6 CLOSED-LOOP STABILITY ANALYSIS 

6.1 Lyapunov Stability 

In this section closed-loop stability of the system is 

investigated by means of Lyapunov linearization method. 

linearization theorem: If the linearized system is stable, 

which means ( ) 0 1,..., ,
i

A for i n    then the nonlinear 

system is locally asymptotically stable [20]. Where
i
  are 

the eigenvalues of the linearized system. On the contrary, 

if for some , ( ) 0,
i

i A   the nonlinear system is not 

locally asymptotically stable. the operating point for the 

system is (1.195,0)
e

x  thus the linearized system 

regarding to the operating point is obtained. Eigen values 

of the linearized system are:  

 

1

2

0.0231

23.1068





 

 
 

 

Since the eigenvalues are negative, closed-loop stability 

is proved according to Lyapunov stability theory. 

6.2 Popov Criterion Based on Development of Nyquist 

Stability Theorem 

The nonlinear system is presented in “Fig. 14”, which 

includes a static part, (N), and the plant, (G). 

 

 
Fig. 14 System with nonlinearity. 

 
Popov criterion: The system is absolutely stable if for 

1 , [0, ]
i i

i p N k     and there exists a constant 0,
i
   

with (1 ) 0
k i
   for every eigenvalue ,

k
of A such that

1
(1 ) ( )s G s

k
   is strictly positive real. Thus if 

1
(1 ) ( )s G s

k
   is strictly positive real and G(s) is 

Hurwitz:  

 

1
Re[ ( ) Im[ ( )] 0, [0, )

1
lim Re[ ( ) Im[ ( )] 0

G j G j
k

if

G j G j
k

   

  



     

 
   





             (26) 

 

We also need [21]: 

 

2 1
lim Re[ ( ) Im[ ( )] 0

1
Re[ ( ) Im[ ( )] 0, [0, )

G j G j
k

G j G j
k

   



   

 
   





     

          (27) 

 

The Popov diagram of the system is: 

According to “Fig. 15”, regarding to the Popov criterion, 

the system is stable. 

 

 
Fig. 15 Popov diagram. 

7 ROBUSTNESS ANALYSIS 

In order to evaluate robustness of the control system, in 

case of parametric uncertainties, value of some of the 

system parameters are changed by 10 to 20%. For 

instance, meshing stiffness,
m

k , from a constant value 

turned into a harmonic parameter as 1 sin
m

k k t  . 

Eventually no change in performance of the controller is 

observed and analogous results like the ones achieved in 

section 5 were observed. Thus, the controller is robust 

against the nonlinear parametric uncertainties, although 

the open-loop is chaotic and inherently sensitive to any 

simple change in parameters.   

8 CONCLUSIONS 

The dynamics of a spur gear system and the chaotic 

behavior of the system is investigated in this paper by the 

use of numerical tools including time series response, 

phase plane trajectories, bifurcation diagram, Poincare 

section, Lyapunov exponent, and power spectrum 

density. According to the results of open loop simulation, 

chaotic behavior of the system is quite obvious and 

different aspects of chaos are studied. In order to control 

the chaotic behavior, a chaos controller based on the 

predictive sliding mode control is implemented such that 

the sliding surface is predicted and the control law is 

obtained.  
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The simulation results of the closed-loop system suggest 

that the PSMC controller improves the settling time for 

x1 by 67% and for x2 by 81% in comparison with the MPC 

controller. On the other hand, PSMC controller declined 

the overshoot for x1 by 80% and for x2 by 88%. These 

results achieved while the energy consumption is 

declined by 10%. Moreover, PSMC controller shows 

better results and performance for x1, x2 and input signal 

in terms of eliminating chaotic vibrations, reducing the 

settling time and overshoot compared to [19].  

Finally, fast convergence to the sliding surface is counted 

as another good attribute of PSMC controller in 

comparison with [19]. Thus, well performance of the 

PSMC controller in eliminating the chaotic behavior and 

stabilizing the system is adequately verified. 
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