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Abstract: Sheet metal assemblies are widely used in the automobile, aerospace, and 
shipbuilding industries. Sheet metals deform during the manufacturing and assembly 
process due to their high flexibility. Traditional tolerance analysis approaches were 
developed for rigid assemblies; however, new approaches of tolerance analysis and 
variation simulations have been proposed for flexible (compliant) assemblies using 
FEM. In this paper, a new method called Interactive Worst Case (IWC) is introduced 
for tolerance analysis of flexible assemblies, which demands a few FEM simulations 
and is based on traditional Worst Case (WC) method. IWC method guarantees that 
all the parts will assemble accurately and have proper function. The case study of 
this paper is two flexible sheets in the form of quarter cylinders, joined together by 
six spot welding to form a half-cylinder assembly. The accuracy of IWC is verified 
by comparing the results to uniform MIC. The results of MIC are also compared to 
the results of the Monte-Carlo simulation (MCS).  
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1 INTRODUCTION 

A mechanical assembly consists of various parts 

produced with different methods, materials, and 

geometric properties. Sheet metals, widely used in the 

automobile and aerospace industries, are highly flexible 

and deform under their own weight, the interaction 

between sheets and external forces such as clamping 

forces, welding forces, as well as internal forces. In 

addition, after releasing the clamps, the springs back will 

occur in the assembly because of the former 

deformations. Therefore, the designer should choose the 

appropriate tolerances for each part based on these 

factors. Using the tolerance analysis could help 

determine which parameters have the largest impact on 

the assembly specifications. On the other hand, the 

assembly performance is controlled by these parameters 

[1-2].  

The flexibility of the parts is ignored in the classic 

tolerance analysis, such as the worst-case method and 

statistical method, and it is assumed that components are 

rigid. However, new approaches gradually started to 

consider the flexibility of parts, which created a new 

branch in tolerance analysis called compliant tolerance 

analysis [3-4]. Liu and Hu [5-7] are the pioneers in the 

compliant tolerance analysis study. They presented 

Monte-Carlo Simulation (MCS) and Invented Method of 

Influence Coefficients (MIC) for variation analysis of 

sheet metal assembly. In these methods, the deviations 

and deformations of the parts are calculated by the finite 

element method (FEM).  

In 1996, Merkley and chase [3] presented a model based 

on the stiffness matrix of parts inspired by equations of 

spring deformation, which could predict tolerances of 1-

D blocks. The assembly was simulated with 

MSC/NASTRAN software. In 2003, Camelio and Hu 

[8] extended the MIC method for multi-station 

compliant sheet metal assemblies using homogeneous 

transformation. In 2007, Dahlstrom and Lindkvist [9] 

improved MIC by adding elastic contact algorithm to the 

classic MIC. This algorithm could also be used in 3-D 

contact surfaces without needing to match meshes. Non-

linear variation analysis of sheet metal assembly with 

elastic contact was presented by Liao and Wang [10] 

using Ansys software. Xie et al. [11], instead of the 

MCS, used eDRM to estimate the statistical response of 

the system. The total number of the FEM simulation for 

eDRM in their problem was 17, which significantly 

reduces the computing time compared to the MCS 

method. However, the accuracy and number of required 

simulations of this approach are unclear for more 

complicated models. In 2015, Cho and Chung [12] 

simulated a sheet metal assembly with MIC, assuming 

distortion during the welding process in shipbuilding.  

In 2018, Tao Liu et al. [13] presented a model based on 

the Timoshenko beam theory and virtual work to 

calculate the deviation of flexible beam assemblies. 

They extended the approach to composite curved sheet 

assembly in 2019 [14], by which the complexity is 

highly reduced. 

Although curved sheet metals are usually used in the 

industry, they have received less attention in the 

research. Therefore, the case study of this paper is the 

geometrical tolerance analysis for two curved sheet 

metal parts. In order to examine the accuracy of the MIC 

method for the curved sheets, the MIC equations are 

expanded to 3-D in which the sensitivity matrix is 

calculated based on the sources of variation, and the 

variation analysis of two quarter cylinder parts is 

presented. The results are also compared to the results of 

the MSC method. In addition, the equations of MIC are 

directly used to find the optimum tolerances of parts 

based on a desired tolerance of the assembly. 

A new method called Interactive Worst Case (IWC) is 

also introduced for variation analysis of flexible 

assemblies, which can also be used for curved flexible 

sheet metal assemblies. This method is based on the 

Worst Case (WC), so if all the parts are within their 

tolerance limit, then it could ensure that all parts will 

assemble and function properly. As in the MIC method, 

some of the parts might get rejection. [1], [7], in this 

paper, some changes are made in the MIC equations in a 

way that it can predict tolerances of the assembly like as 

WC. 

2 FUNDAMENTALS & METHODS 

In order to simulate the assembly of flexible sheet 

metals, the following steps are usually considered as the 

assembly process [7], [15]: 

1- Parts are placed in their fixtures. 

2- Parts are forced to move to their nominal position. 

3- Parts are joined together (For instance, by spot 

welding). 

4- Some of the fixtures are released, and the spring-back 

of the assembly occurs. 

In this paper, it is assumed that the deformation is in the 

elastic range, and parts are joined by spot welding. In 

addition, it is assumed that fixtures and welding guns are 

solid compared to sheet metals. Because of the use of 

spot welding, distortion caused by welding is negligible. 

[12] After welding, the assembly is released, and the 

spring-back happens due to the applied forces and initial 

deviations [9]. 

IWC Method 

The Interactive Worst-Case method (IWC) introduced in 

this paper is based on the WC method which was 

developed for rigid assemblies. The WC method 

guarantees that the deviations in all the assemblies will 

remain inside the desired limits. Therefore, in this 
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method, it is assumed the deviations in parts are at the 

upper or lower limit of their tolerances [1]. In order to 

utilize the WC method for flexible assemblies, in this 

paper, the method is modified using finite element 

analysis. In the proposed method, all possible extreme 

cases are examined. The largest boundary calculated 

from these cases will be the tolerances of the assembly. 

Welding gun forces [7]: 
At First, the influence coefficients matrix ([C]) is 

determined using FEM. By simulating each part 

separately in a finite element software, the deformation 

of all nodes at spot welding is determined while a unit 

force is applied to the j-th weld point (j=1 to N: number 

of weld points). The results construct the matrix of [C] 

as “Eq. (1)ˮ: 

 

 
 

      (1) 
 

 
 

 

 

Where, j-th column indicates the deformation of nodes 

at spot welding when the unit force is applied at j-th weld 

point.  

Assuming the linear behavior for sheet metals, then the 

welding gun forces required to move the weld points to 

their nominal position are calculated from “Eq. (2)ˮ.  

 

 

 

(2) 
 

 
 

 

 

Where, [K] is stiffness matrix and {V} is the vector of 

any arbitrary deviation at weld points. Instead of 

deviation in weld points, the deviations at sources of 

variation are known in actual situations. Therefore, it is 

necessary to determine the relationship between 

deviation at weld points and sources of variation as 

follows in “Eq. (3)ˮ: 

 

(3) 
 

 

Where, { }V   is the vector of deviation at sources of 

variation, and N' is the number of sources of variation. 

Considering unit deviation only at m-th source of 

variation, parts are simulated in a finite element 

software. The parts are fixed at the ideal position of 

fixtures, then the deviations of nodes at spot welding are 

extracted. So the m-th ( 1: )m N  column of [P] 

matrix is determined.  

Finally, the welding gun forces based on the deviation at 

sources of variation are calculated as follows in “Eq. 

(4)ˮ: 

 

(4) 

 

The Flow Chart of IWC: 

Figure 1 represents the flow chart of the IWC method. 

After determining the sources of variation, boundary 

conditions, and their upper and lower limits, the extreme 

cases are determined in which all the sources of variation 

have their extreme values. 

 

 
Fig. 1 The flowchart of the IWC method. 

 

The number of cases will be equal to ( 2 )NL


 . The 

assembly process is then simulated for each extreme 

case using the FEM. By applying the welding gun 

forces, nodes at spot welding are forced to move to their 

nominal positions, and the stress and strain fields are 

saved for the next step. To consider the interaction 

between parts, they are re-simulated in FEM, node pairs 

at spot welding are joined together, and the stress and 
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strain field are applied as the initial conditions. The 

spring-back of the assembly is calculated after releasing 

some fixtures. Finally, the assembly deviation in the 

desired points, namely control points, is extracted. By 

comparing the deviation in the assembly specification in 

all cases, the maximum and minimum deviation is 

extracted, and the dimensional tolerances of the 

assembly specification could be determined. This 

method has zero rejection rate because it is developed 

based on WC method. 

In order to provide a general overview of the effects of 

deviations of parts on the deviations of the assembly, 

especially in complicated cases, the results of all 

extreme cases at various nodes could be plotted in one 

diagram. In this way, a better understanding of the 

position and deviation of the assembly nodes could be 

obtained. The diagram also helps to compare the results 

of extreme cases together in a simple and quick way. 

MIC 

MIC is one of the most important methods developed in 

the field of flexible assembly tolerance analysis. This 

method assumes that there is a linear relationship 

between deviations of parts and assembly deviations [7]. 

This assumption is valid as long as the deviations are 

small and the material behavior is linear. The sensitivity 

matrix, in this paper, is calculated based on the deviation 

in sources of variation{ }V  , rather than using the 

deviations in the weld points {V }. In this way, the 

assembly specifications are directly related to the 

sources of variation, and from the viewpoint of 

application, the tolerance analysis would be more 

practical than the original MIC. 

The finite element simulation is done according to the 

FEM simulation box in Fig. 1, except that the geometry 

model is created with unit deviation in i-th source of 

variation. Then, the { }iS vector, which includes the 

deviations of the control points, is recorded as “Eq. (5)ˮ, 

in which M represents the number of control points. 
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                                                          (5) 

Where, x, y, and z represent the axis of the coordinate 

system. Combining vectors of { }iS would easily 

construct the sensitivity matrix [S]. The assembly 

deviations at the control points {U} for arbitrary 

deviation in sources of variation are calculated using 

“Eq. (6)ˮ: 

 

(6) 
 

Equation (6) could be used for Cartesian, Cylindrical, 

and Spherical coordinate systems. Based on the chosen 

distribution for sources of variation, random deviations 

are generated, and the spring-back related to each 

deviation is calculated using the sensitivity matrix. 

Distribution of the assembly deviations could then be 

obtained by this collected data. When the sources of 

variation are independent and normal distribution is 

assumed (like statistical tolerance analysis), the 

distribution of assembly deviations could also be 

estimated using “Eqs. (7) and (8)ˮ.  

 

(7) 
 

 

                                                     (8) 

 

 

In these equations, 2 2{ }, { }, { }     } {a a p pand    are mean 

deviation and variance vector of control points and 

sources of variation, respectively. Finally, the tolerance 

of the assembly could be determined by assuming that 

the equal bilateral tolerance is equal to ±3σ. It is 

worthwhile to mention some advantages of MIC that 

might have been less noticed in papers: 

1) This method could be employed when another 

distribution such as lognormal is valid for the sources of 

variation using MCS based on MIC.  

2) Based on the desired assembly tolerances, the 

optimum tolerances of parts could be easily calculated 

by Eqs. “(7) and (8)ˮ. It will be discussed in the 

following sections.  

3) Considering the uniform distribution for deviation in 

sources of variation leads to the MIC similar to WC 

method which is examined in this paper. Based on this 

assumption, the vector of assembly's equal bilateral 

tolerance Ta could be estimated using “Eq. (9)ˮ: 
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Where, Tp is the equal bilateral tolerance vector of 

sources of variation in parts. Note that in this paper, 

whenever MIC is used with uniform distribution, the 

method is called uniform MIC, and when using the 

normal distribution, it is only referred to as MIC. 

MCS 

MCS is one of the common approaches for the variation 

simulation of flexible assemblies. In order to calculate 

the assembly deviations in this method, the random 

dimensions based on the statistical distribution of each 

source of variation are generated. The finite element 

simulation is created according to the FEM simulation 

box in “Fig. 1ˮ, except that the geometry of the model is 

based on these random deviations. The distribution of 

spring-back and deviations in the assembly is calculated 

by solving adequate finite element models. This method 

is very time-consuming. More information about MCS 

could be found by referring to Liu and Hu 1997, [7]. 

3 CASE STUDY 

The case study of this paper is the assembly of two sheet 

metal parts in the form of quarter cylinders. As 

demonstrated in “Fig. 2ˮ, parts are joined together in six 

weld points.  

 
Fig. 2 Representative picture of the case study. 

 

The nominal radius of each sheet is 120 mm with a 

thickness of 1 mm. Each part is fixed with two fixtures, 

as shown in “Fig. 2ˮ. The fixtures constrain the motion 

of the area in all directions. The Young's modulus, 

Poisson's ratio, and friction factor are equal to 206 GPa, 

0.3, and 0.1, respectively. As shown in “Fig. 2ˮ, five 

control points (CPi, i=1 to 5) are chosen to determine the 

spring-back and deviations of the assembly in each 

analysis. Note that the changes in the results along the 

height (z-direction in “Fig. 2ˮ) are negligible. Therefore, 

the deviations in the middle line of assembly are 

considered for spring-back calculation.  

In order to verify the finite element analysis, the case 

study of Liao X and Wang GG 2007[10] was simulated 

in which two rectangular parts with dimensions of 

166.37mm×212.85mm are joined together in six weld 

points. The results show that there is a good agreement 

with the experimental results of the mentioned reference. 

In this paper, the deviation in the radius of parts is 

considered as the sources of variation, and it is assumed 

that the curved parts are ideal cylinders. Figure 3.a 

illustrates the cross-section of the two quarter cylinders 

with the same centerline. Figure 3.b depicts the sheets 

fixed by fixtures in their ideal positions.  

 

 
Fig. 3 Symbolic model of the case study: a) geometry of 

the parts. b) parts in the fixture position. 

 

It is assumed that the radius of part 1 varies between 119 

to 120mm (119.5±0.5mm), and the radius of part 2 

varies between 120 to 121mm (120.5±0.5mm). Thus, in 

the IWC method, four extreme cases exist, which are 

described below: 

  

Case I 
Part 1 with a radius of 119 mm 

Part 2 with a radius of 120 mm 

Case II 
Part 1 with a radius of 120 mm 

Part 2 with a radius of 121 mm 

Case III 
Part 1 with a radius of 119 mm 

Part 2 with a radius of 121 mm 

Case IV 

(ideal case) 

Part 1 with a radius of 120 mm 

Part 2 with a radius of 120 mm 

 

Since the radius of both parts in case IV is equal to 120 

mm, it does not need any FEM simulation. In order to 
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determine the radius of the assembly, after releasing the 

fixture of part 1, the center of two edges is selected as 

the center of the half-cylinder. The case study is also 

analyzed with MIC and MCS. In MIC, two cases of 

uniform distribution and normal distribution are 

assumed. In MCS, the normal distribution is considered 

for sources of variation. 

4 RESULTS AND DISCUSSION  

Figure 4 depicts the deviation of radius versus the angle 

for the middle line passing through the control points for 

all the extreme cases.  

As can be seen, the largest and the smallest radiuses are 

120.496 and 119.504 mm, related to the case I and II, 

respectively. The largest deviation from circularity 

which shows the profile tolerance of the middle line, 

happened at case III between CP2 and CP4, with the 

value of 0.828 mm. 

 
Table 1 Distance between two edges (IWC method) 

 
Case 

I 

Case 

II 

Case 

III 

Cas

e IV 

Mean 

value 

Equal 

bilater

al 

toleran

ce 

Dista

nce 

(mm) 

239.0

069 

240.9

812 

240.0

751 
240 

239.9

940 
0.9872 

 

The tolerance of distance between two edges of the half-

cylinder assembly is an important parameter, especially 

for further assemblies in multi-station assembly 

processes. The tolerance of this distance is listed in 

“Table 1ˮ, which is calculated by means of the IWC 

method. The mean value and standard deviation of half-

cylinder radius, calculated by the MIC and MCS 

methods, are listed in “Table 2ˮ for the control points. In 

order to obtain the satisfactory distribution, 230 

simulations are done in the MCS method by scripting the 

FEM software with Python. Figure 5 illustrates the 

normal distributions of the half-cylinder radius for CP1 

to CP5. 

 

 
Fig. 4 Radius of the middle line in each case (the diagram 

of IWC method). 

 
 

 

Table 2 Normal distribution of radius in the control nodes 

control point 
Mean value 

(MCS) 

Standard 

deviation 

(MCS) 

Mean value 

(MIC) 

Standard 

deviation 

(MIC) 

MIC/MCS 

difference 

(Mean value) 

MIC/MCS 

difference 

(Standard 

deviation) 

CP1/CP5 119.9910 0.1147 119.9924 0.1163 0.0014 0.0015 

CP2 120.2090 0.0529 120.2080 0.0490 0.0010 0.0038 

CP3 120.0140 0.0549 120.0114 0.0468 0.0026 0.0081 

CP4 119.7980 0.0499 119.7988 0.0474 0.0008 0.0025 
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Fig. 5 Statistical distribution of radius in the control points. 

 
Mean, maximum and minimum values of assembly parts 

radius, as well as radius tolerances of the assembly, are 

presented in “Table 3ˮ, calculated by various methods. 

Note that when the normal distribution is assumed for 

sources of variation, equal bilateral tolerance is equal to 

±3σ. It can be seen that the results of MIC and MCS with 

normal distribution are particularly close. Therefore, 

MIC can be used for curved sheet metal assemblies. The 

results of the IWC and uniform MIC are also very close. 

Thus, IWC could be used as an accurate and independent 

approach for tolerance analysis. It can be noted that the 

mean value in all the used methods has the same value 

with a negligible difference. The radius tolerance in the 

MIC and the MSC is derived based on the results in CP2 

and CP4 while in the IWC and the uniform MIC, CP1 

and CP5 are used. 

 
Table 3 Radius tolerances of the assembly 

Method Mean value 
Equal bilateral 

tolerances 
Maximum value Minimum value 

Upper 

limit from 

120 mm 

Lower 

limit from 

120 mm 

IWC 119.9980 0.4933 120.4913 119.5047 0.4913 -0.4953 

Uniform MIC 119.9924 0.4970 120.4857 119.4992 0.4857 -0.5008 

MCS 120.0079 0.3597 120.3676 119.6482 0.3676 -0.3518 

MIC 120.0058 0.3492 120.355 119.6565 0.3550 -0.3435 
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“Table 4ˮ compares the assembly's profile tolerances 

derived from various methods derived from CP2 and 

CP4. “Table 5ˮ Compares the tolerances of the distance 

between two edges of the assembly determined by 

various methods. As can be seen, the tolerance ranges of 

IWC and uniform MIC are greater than MIC and MCS 

because of the proposed distribution. 

 

Table 4 Profile tolerance of the assembly 

Method 
Control 

point 
Mean value 

Bilateral 

tolerance 

Maximum 

value 

Minimum 

value 

Profile 

tolerance 

IWC 
CP2 120.2123 0.2123 120.4246 120 

0.8277 
CP4 119.7985 0.2015 120 119.5970 

Uniform 

MIC 

CP2 120.2080 0.2080 120.4159 120 
0.8197 

CP4 119.7988 0.2012 120 119.5976 

MCS 
CP2 120.2090 0.1586 120.3676 120.0504 

0.7194 
CP4 119.7980 0.1498 119.9478 119.6482 

MIC 
CP2 120.2080 0.1471 120.3550 120.0609 

0.6985 
CP4 119.7988 0.1423 119.9411 119.6565 

 

Table 5 Tolerances of distance of the two edges in the assembly 

Method Mean value Bilateral tolerance 
Upper limit from 

240 mm 

Lower limit from 

240 mm 

IWC 239.9940 0.9872 0.9812 -0.9931 

Uniform MIC 239.9849 0.9865 0.9714 -1.0016 

MCS 239.982 0.6884 0.6704 -0.7064 

MIC 239.9849 0.6977 0.6826 -0.7128 

 

The tolerances of parts could be determined using MIC 

linear equations based on the desired assembly 

tolerances. In order to obtain the desired tolerance for 

the distance between two edges, “Eqs. (7) and (8)ˮ, as 

well as the sensitivity matrix given in “Table A1ˮ 

(Appendix) are considered, and “Eqs. (10) and (11)ˮ are 

derived for the case study: 

 

1 21.00163 0.9714p p a                                    (11) 

 
2 2 2

1 21.003263 0.94371p p a                              (12) 

 

Where, 2

1p
and 2

2p are the variance of absolute radius 

deviation in part 1 and 2, respectively, and 2

a  is the 

variance of distance between edges deviation in the 

assembly.
1p  and 

2p are mean values of absolute radius 

deviation in part 1 and 2, respectively, and 
a is the 

mean value deviation of distance between the two edges. 

For this case study, since the two parts are similar, it is 

reasonable to assume that the mean and standard 

deviation of the parts radius are approximately equal. 

Therefore, 0a   would be true. 

For instance, to achieve a tolerance of 240±2mm for the 

distance between two edges in the assembly, the 

tolerances that come into the designer's mind are 

119.5±0.5 0

1(120 )
 and 120.5±0.5 1

0(120 )  for the radius 

of part 1 and 2, respectively. However, by solving the 

equations, the tolerances of 118.4±1.6 and 121.6±1.6 

mm are obtained for parts 1 and 2, respectively which 

results in a standard deviation of 0.56. The results 

indicate that the tolerance ranges of the radius for parts 

could be up to three times larger than the initial choice. 

“Eqs. (12) to (17)ˮ are obtained based on the rows of 

CP2 and CP4 in the sensitivity matrix given in Table A2 

(Appendix), as well as “Eqs. (7) and (8)ˮ. These 

equations are used to determine the radius tolerances of 

parts in order to achieve the desired radius tolerance for 

assembly. 

 

1 2 20.2045 0.2114p p a                                   (12) 

 
2 2 2

1 2 20.04182 0.04469p p a                              (13) 

 

1 2 40.2045 0.19782p p a                                  (14) 

 
2 2 2

1 2 40.04185 0.03913p p a                             (15) 
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2 23a a A                                                              (16) 

 

4 43a a B                                                              (17) 

 

Where, A and B are upper and lower limit of radius 

tolerance in the assembly, respectively. 
2a
and 

4a  are 

the standard deviation of radius in CP2 and CP4. 
2a  and 

2a are the mean values of radius deviation for CP2 and 

CP4. Same as before, it could be assumed that: 
1 2p p    

and 
1 2.p p   Therefore, the following equations are 

obtained from Eqs. (12 to 17): 

 

1 10.8823774p p A                             (18) 

 

2 20.85371p p B                                (19) 

 

The assembly has equal bilateral tolerance, so A=B. 

These two equations have no appropriate solution 

together. Therefore, these equations should be solved 

separately. In this case study, it is considered that 
p is 

equal to 
1p  for each part. The minimum value calculated 

for the standard deviation from “Eqs. (18) and (19)ˮ is 

chosen as the final result.  

For instance, if the tolerance of 120±1mm is considered 

for the radius of the assembly, the mean value of radius 

deviation and standard deviation of the radius in each 

part from “Eq. (18)ˮ will be 1.4084 and 0.4695, 

respectively, and from “Eq. (19)ˮ will be 1.4557 and 

0.4852. Therefore, the designer could choose a tolerance 

of 121.4±1.4 for the radius of part 2 and 118.6±1.4 for 

part 1. This wide range of tolerance could lower the 

product cost. 

5 CONCLUSIONS 

The Interactive Worst Case (IWC) method, in this paper, 

is introduced for tolerance analysis of flexible sheet 

metal assembly. By using finite element analysis in this 

method, it is possible to calculate the tolerance of 

assembly for each extreme case in which sheet metals 

have their maximum or minimum size limits. Although 

the proposed method is very simple, it could be helpful 

in the tolerance analysis. For complicated cases, the 

upper and lower limits of assembly tolerances could be 

determined by plotting the values of specific 

characteristics at various points along the assembly 

parts. The diagram provides a general overview of the 

effects of deviations in parts on the deviations of the 

assembly. The accuracy of the method was verified by 

comparing the results of the case study in which two 

quarter cylinders are joined together by spot welding, 

with ones obtained from the uniform MIC.  

In order to use MIC for curved sheet metal parts, the 

MIC equations were expanded to 3-D equations in this 

paper. The results were compared to the results of the 

MCS method, and according to it, the MIC method 

keeps its accuracy when the parts are curved. The best 

tolerances of the parts could be determined according to 

the given assembly tolerance by means of MIC 

equations. This approach helps to have wider tolerance 

ranges and reduces the cost of parts product. Therefore, 

this article proves that the MIC could be very helpful 

during the tolerance allocation process. 

8 APPENDIX  

Table A1 The sensitivity matrix for calculating the distance 

between the two edges 

The deviation 

in the radius of 

part 1 

The deviation in 

the radius of part 

2 
 

1.00163 -0.97145 

The distance 

between the two 

edges 

 

Table A2 The sensitivity matrix for calculating radius in the 

control points 

The deviation in 

the radius of part 

1 

The deviation in 

the radius of part 

2 

 

0.500815 -0.48572 The radius of 

CP1 

-0.2045 -0.2114 The radius of 

CP2 

-0.209584 0.18684 The radius of 

CP3 

0.204561 0.197818 The radius of 

CP4 

0.500815 -0.48572 The radius of 

CP5 
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